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Assimilating summer sea ice thickness
enhances predictions of Arctic seaice and
surrounding atmosphere within

two months
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Subseasonal prediction of Arctic sea ice and associated atmospheric conditions during the melting
season remains challenging due to limited understanding of sea ice initial conditions. This study
integrates sea ice assimilation into the coupled model FGOALS-f2 using the localized error subspace
transform ensemble Kalman filter, and conducts subseasonal predictions starting from August 1st
over 2004-2023. Results show that simultaneous assimilation of sea ice concentration (SIC) and
thickness (SIT) significantly improves sea ice predictions for up to two months, while assimilating SIC
alone primarily benefits one-month lead predictions. SIT assimilation provides added predictive value
for surface air temperature (SAT) forecasts beyond SIC assimilation alone, effectively extending the
atmospheric influence of sea ice initial conditions to two months. This improvement in SAT predictions
is primarily attributed to a more realistic representation of the surface energy budget. These findings
highlight the pivotal role of summer SIT assimilation to enhance subseasonal predictions in the Arctic
and challenge the conventional view that initial conditions affect only short-term forecasts. This study
underscores the necessity for better representation of ice—atmosphere interactions in models and
advocates for enhanced observational capabilities for summer SIT to improve subseasonal
predictions in the Arctic and surrounding regions.
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The Arctic region plays a pivotal role in the global climate system, with
its sea ice cover serving as a crucial modulator of energy exchanges
between the atmosphere and ocean'”. Accurate subseasonal prediction
of Arctic sea ice and its associated atmospheric conditions, particularly
during August and September when sea ice reaches its peak melting and
annual minimum, is essential for scientific research®™, marine
navigation®”, and environmental management®'"". However, precise
subseasonal predictions (typically ranging from two weeks to two
months) during this period remain challenging for current dynamical
operational systems'". The intricate interactions among sea ice, ocean,

and atmosphere complicate forecasting efforts
rapid decline in prediction skill beyond a few weeks

A primary limitation in current dynamical models for subseasonal
prediction of Arctic sea ice is the insufficient understanding of the role of sea
ice initial conditions™*"”. While sea ice concentration (SIC) is routinely
assimilated into models and has been shown to improve short-term pre-
dictions of SIC"™", its effect tends to diminish quickly over longer lead
times, especially during the melting season*”*'. The dynamic changes during
the melting season make it difficult for SIC assimilation alone to sustain
accurate predictions of ice evolution, particularly in the marginal ice

, often leading to a
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zones”>”. In contrast, sea ice thickness (SIT) has been demonstrated to

possess longer memory than SIC in numerical simulations, rendering it a
potential predictor for longer lead times* . Previous studies have shown
that assimilating satellite-retrieved SIT observations during winter and
spring can enhance subseasonal-to-seasonal predictions of SIC***™.
However, recent research has identified a spring predictability barrier in
Arctic sea ice—a specific date in spring after which predictions can reliably
forecast summer sea ice, while predictions initialized before this date exhibit
significantly lower skill"' . In light of this barrier, it is crucial to investigate
the potential impact of assimilating summer SIT on sea ice predictions. But
this area remains underexplored due to the challenges in acquiring summer
SIT observations. Landy et al. (2022) address this by combining deep
learning with numerical simulations of the Cryosat-2 radar altimetry
response to generate the first year-round Arctic SIT observations™. The
latest studies have shown that assimilating this dataset during summer can
improve September sea ice predictions™. Nevertheless, the limited tem-
poral coverage of these observations underscores the need for multi-year re-
forecasts to gain a more comprehensive understanding of the impact of
summer SIT assimilation on subseasonal sea ice prediction.

One challenge in subseasonal atmospheric prediction is the unclear
role of initial and boundary conditions at such a timescale”"*. While the
impact of atmospheric initial conditions on short-term weather forecasts is
well identified, the limited memory of the atmosphere makes it difficult to
influence subseasonal prediction’*"*. Therefore, it is essential to explore
potential sources of subseasonal predictability from components with
longer memory to improve and understand subseasonal predictions. Sea ice
has been reported to exhibit long memory and can influence local and
distant atmospheric variations after several weeks to months, as demon-
strated by observational data and numerical simulations* ™. Additionally,
some studies using atmospheric models have shown that initial perturba-
tions in SIC can improve extended-range forecasts for mid-to-high
latitudes” . However, it remains unclear to what extent and for how
long the sea ice initial conditions can affect the subseasonal atmospheric
prediction within a fully coupled dynamical prediction system.

By conducting multi-year re-forecasts initialized on August 1st, this
study aims to: (1) identify the impact of sea ice assimilation, particularly
summer SIT, on subseasonal Arctic sea ice and atmospheric predictions
during August and September, and (2) investigate the mechanisms through
which sea ice initialization influences atmospheric predictability on sub-
seasonal timescales using a fully coupled dynamical model. We seek to
deepen the understanding of sea ice-atmosphere interactions on subseasonal
timescales and provide insights for improving operational predictions.

Results

Improved sea ice initial conditions through optimized
initialization

Accurate subseasonal prediction of sea ice and associated atmospheric
conditions during August and September is essential but remains challen-
ging in current operational systems, as mentioned in the introduction. As
shown in Fig. 1, the FGOALS-f2 system™>”', which does not incorporate sea
ice assimilation (hereafter referred to as the Control experiment), exhibits
errors in both the SIC initial conditions of early August and the subsequent
one-to-two-month SIC predictions during the hindcast period from 2004 to
2023. We first calculate the mean absolute error (MAE; see Methods for
details) to assess the prediction skill of SIC spatial distribution. The MAE of
initial SIC on August 1st is 0.11, corresponding to 25% of the weighted mean
observed SIC. The initial SIC in the Control experiment is overestimated by
more than 15% over the northern Barents-Kara Seas and East Greenland
Sea, while underestimated by 5-40% over the Central Arctic Ocean, East
Siberian Sea, and northern Laptev Sea (Fig. 1g). In the one-month lead
prediction for August, the MAE increases by 18%, ranging from 0.11 t0 0.13,
mainly due to further underestimation of SIC in the Central Arctic Ocean
(Fig. 1h). In September, most regions are underestimated by more than 30%,
causing the MAE to rise further by 31%, from 0.13 to 0.17 (Fig. 1i). The
initial biases are amplified in the subseasonal prediction. Therefore, we will

identify the optimum sea ice parameters for initialization and investigate
whether and how optimizing sea ice initialization can improve the one-to-
two-month lead predictions.

SIC and SIT are pivotal parameters for characterizing the state and
dynamics of sea ice. Utilizing a localized error subspace transform
ensemble Kalman filter (LESTKF, see Methods for details)* provided by
the Parallel Data Assimilation Framework (PDAF)*, we carry out two sets
of re-forecasts: one with SIC assimilation alone (hereafter referred to as the
SIC-only experiment), and the other with simultaneous assimilation of
both SIC and SIT (hereafter referred to as the SIC-SIT experiment). The
assimilation experiments start on August 1st, producing predictions for the
next two months of each year during the hindcast period 2004-2023.

The SIC-only experiment shows substantial improvements in the
initial SIC relative to the Control experiment. The MAE of initial SIC sig-
nificantly decreases by 55%, from 0.11 to 0.05. Overestimations in the
northern Barents-Kara Seas and East Greenland Sea, as well as under-
estimations over the Central Arctic Ocean, East Siberian Sea, and Laptev Sea,
are reduced to less than 15% in most regions (Fig. 2¢). In the SIC-SIT
experiment, the initial SIC further improves compared to the SIC-only
experiment, with the MAE decreasing by 20%, from 0.05 to 0.04 (Fig. 2d).
The improvements mainly occur in the marginal ice zones, particularly in
the northern Barents-Kara Seas and East Siberian Sea.

In addition to the SIC improvements, the initial SIT is also significantly
improved in the SIC-SIT experiment compared to the Control and SIC-only
experiments (Fig. 3). In the Control experiment, SIT is overestimated in the
marginal ice zones (including the northern Barents-Kara Seas, East
Greenland Sea, and the Canadian Archipelago) and underestimated in the
Central Arctic Ocean (Fig. 3e). In most regions, SIT errors exceed 0.4 meters,
suggesting a relatively large bias in the model. While SIC assimilation
improves the initial SIC, it does not explicitly correct these SIT errors,
leaving the SIT biases largely unchanged (Fig. 3f). In contrast, the SIC-SIT
experiment effectively reduces the SIT biases across the Arctic (Fig. 3g). The
reduction of initial SIT biases leads to a more realistic sea ice state, which
likely enhances the consistency between SIC and SIT.

To further quantify the improvements in sea ice initialization, we
employ the Brier Score (BS)™ to evaluate the ability to capture the ice
edge position and occurrence probability (Fig. 4). Lower BS scores
indicate higher skill, reflecting that the initial conditions of the model
ensembles are more consistent with the observations, as detailed in the
Methods. In the Control experiment, the initial SIC exhibits relatively
low consistency with observations, with a 20-year averaged BS score of
0.091. The SIC-only experiment enhances the skill of initial SIC by 40%,
reducing the BS score from 0.091 to 0.055. In the SIC-SIT experiment,
the skill of the initial SIC is further improved, though only marginally
compared to the SIC-only experiment, with a reduction in BS from
0.055 to 0.049.

These results indicate that sea ice assimilation significantly enhances
the accuracy of sea ice initial conditions. The simultaneous assimilation of
both SIC and SIT produces more realistic initial conditions than SIC
assimilation alone, suggesting that this combined approach could be the
optimal strategy for sea ice initialization.

Optimizing initialization for enhanced subseasonal sea ice
prediction

Having demonstrated the improvements in the initial conditions through
sea ice assimilation, the next step is to assess how these enhancements
impact the subsequent one-to-two-month sea ice predictions. To address
this, we evaluate the prediction skill for August and September based on the
two initialization strategies mentioned above: the SIC-only and SIC-SIT
experiments.

Compared to the Control experiment, the SIC-only experiment
shows a marked improvement in the prediction skill of monthly mean
SIC distribution for August. The MAE of August mean SIC decreases by
23%, from 0.13 to 0.10 (Fig. 5¢). The most notable improvements occur
over the northern Barents-Kara Seas, Central Arctic Ocean, East

npj Climate and Atmospheric Science| (2025)8:210


www.nature.com/npjclimatsci

https://doi.org/10.1038/s41612-025-01050-8

Article

E=0.17

Fig. 1 | Observed and Control experiment (without sea ice assimilation) sea ice
concentration (SIC) and their differences in the Arctic (2004-2023 average). The
spatial distribution of observed mean SIC on (a) August 1st, (b) August, (c) Sep-
tember. The spatial distribution of mean SIC from the Control experiment on (d)
August 1st, (e) August, (f) September. The differences of mean SIC between the

Control experiments and observations on (g) August 1st, (h) August, (i) September.
Only the differences that exceed the 95% confidence level using a two-tailed Stu-
dent’s t-test are presented, with the mean absolute error (MAE) indicated in the
bottom left corner.

Siberian Sea, and northern Laptev Sea regions. Despite better SIC initial
conditions, no noticeable enhancement is achieved in September. The
MAE for the two-month lead prediction of SIC decreases only slightly,
from 0.17 to 0.16 (Fig. 5f). The underestimation of SIC over the Central
Arctic Ocean persists even with improved SIC initial conditions.

In the SIC-SIT experiment, the prediction skill of the mean SIC dis-
tribution for both August and September is evidently improved. For August,
the prediction skill is further enhanced compared to the SIC-only experi-
ment, with the MAE decreasing by 40%, from 0.10 to 0.06 (Fig. 5g). The
most notable improvements occur over the northern Laptev Sea and East
Siberian Sea. In September, the SIC-SIT experiment shows a substantial
enhancement in the prediction skill of monthly mean SIC distribution,
outperforming both the Control and SIC-only experiments (Fig. 5h). The
MAE of September mean SIC decreases by 47% and 44%, from 0.17 and 0.16

t0 0.09, respectively. This improvement is mainly reflected in reduced biases
over the Central Arctic Ocean.

To assess the impact of sea ice assimilation on predicting the
interannual anomalies of sea ice, we calculate the anomaly correlation
coefficient (ACC) and root mean square error (RMSE) of monthly
mean sea ice extent (SIE) anomalies for the hindcast period 2004-2023.
The SIE is defined as the total area of grid boxes with at least 15% SIC.
Since the long-term trend dominates the total variability, we remove the
linear trend from the SIE anomalies to focus on the interannual
fluctuations.

For the one-month lead prediction in August, the Control experiment
shows relatively low skill, with an ACC of 0.46 and an RMSE of 0.45 (Fig. 6).
The SIC-only experiment evidently enhances the prediction skill, increasing
the ACC to 0.70 and reducing the RMSE to 0.32. The SIC-SIT experiment
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Fig. 2 | Initial SIC on August st for different 10

assimilation experiments and their differences

from observations (2004-2023 average). The spa-

tial distribution of mean SIC from (a) the SIC-only 08

experiment (assimilating SIC alone), (b) the SIC-SIT

experiment (assimilating both SIC and SIT). The

mean SIC differences: (c) SIC-only experiment 06

minus observations, (d) SIC-SIT experiment minus

observations. Only the differences that exceed the 04

95% confidence level using a two-tailed Student’s ’

t-test are presented, with the MAE indicated in the

bottom left corner.
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Fig. 3 | Initial SIT (m) on August 1st from Pan-Arctic Ice Ocean Modeling and
Assimilation System (PIOMAS) and different experiments (2004-2023 average).
The spatial distribution of mean SIT from (a) PIOMAS, (b) the Control experiment,

(c) the SIC-only experiment, and (d) the SIC-SIT experiment. The mean SIT dif-
ferences: (e) Control experiment minus PIOMAS, (f) SIC-only experiment minus
PIOMAS, and (g) SIC-SIT experiment minus PIOMAS.

achieves a greater improvement, with an ACC of 0.90 and an RMSE 0f 0.19,
highlighting the added value of SIT assimilation.

The two-month lead prediction in September proves more chal-
lenging. In the Control experiment, the ACC decreases from 0.46 in
August to 0.42 in September, accompanied by an increase in RMSE
from 0.45 to 0.54. While the SIC-only experiment shows notable
improvements in August, its skill drops sharply in September, with the

ACC falling from 0.70 to 0.49 and the RMSE rising from 0.32 to 0.49.
This highlights the limitations of relying solely on SIC assimilation for
longer lead-time predictions. Although the SIC-SIT experiment also
experiences a decrease in prediction skill from August to September, it
still demonstrates a substantial advantage over the other two experi-
ments in September. The ACC reaches 0.82, representing a 95%
improvement over the Control experiment and a 67% rise over the SIC-
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only experiment. The RMSE reduces to 0.29, marking a substantial
enhancement over both the Control and SIC-only experiments.

To examine whether the improvements from sea ice assimilation are
consistent across different time scales, we also evaluate the weekly prediction

skill over the first eight weeks (Fig. S1). The MAE, ACC, and RMSE results
consistently show that the SIC-only experiment improves prediction skill
throughout the 8-week period compared to the Control experiment, with
the most notable improvement occurring in the first two weeks. The

Fig. 4 | Yearly Pan-Arctic Brier Score (BS) for
initial SIC on August 1st across different experi-
ments (2004-2023). BS scores for initial SIC in the
Control (blue line; average BS: 0.091), SIC-only
(orange line; average BS: 0.055), and SIC-SIT (red
line; average BS: 0.049) experiments. Dashed lines
represent the 20-year averaged BS scores. The SIC-
only and SIC-SIT experiments show a 40% and 46%
increase in skill compared to the Control experi-
ment, respectively.
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Fig. 5 | Arctic SIC in August and September for different assimilation experi-
ments and their differences from observations (2004-2023 average). The spatial
distribution of mean SIC from the SIC-only experiment in (a) August, (b) Sep-
tember, and from the SIC-SIT experiment in (c) August, (d) September. The mean

SIC differences: SIC-only experiment minus observations in (e) August, (f) Sep-
tember, and SIC-SIT experiment minus observations in (g) August, (h) September.
Only the differences that exceed the 95% confidence level using a two-tailed Stu-
dent’s t-test are presented, with the MAE indicated in the bottom left corner.

Fig. 6 | Anomaly correlation coefficient (ACC) and
Root Mean Square Error (RMSE) for monthly sea
ice extent (SIE) anomalies in August and Sep-
tember (2004-2023). a ACC between observations
and three prediction experiments: Control (blue
bar), SIC-only (orange bar), and SIC-SIT (red bar).
Higher ACC values indicate better prediction skills.
The numbers above the bars represent the ACC
values for each experiment, with asterisks indicating
statistical significance at the 95% confidence level
based on a Monte Carlo test. b As in a, but for the
RMSE. Lower RMSE values indicate better predic-
tion skills.
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Fig. 7 | Pan-Arctic Brier Score (BS) for daily SIC predictions for the hindcast
period 2004-2023. BS scores for the Control (blue line; average BS: 0.07), SIC-only
(orange line; average BS: 0.06), SIC-SIT (red line; average BS: 0.05) experiments, and
persistence (black line). Shaded areas represent one standard deviation for each
experiment. Dashed vertical lines mark key dates: August 19th, August 25th, Sep-
tember 1st, September 24th, and September 26th.

advantage weakens after week 3. In contrast, the SIC-SIT experiment
demonstrates consistently higher prediction skill throughout the 8-week
period, maintaining a significant advantage over both the Control and SIC-
only experiments, particularly at longer lead times (e.g., 4-8 weeks).

These findings emphasize the necessity of SIT assimilation for sub-
seasonal prediction, especially for overcoming the challenges of predicting
sea ice variability over longer lead times.

Previous studies have demonstrated that sea ice exhibits memory on
subseasonal timescales, a phenomenon known as persistence”. Persistence
has become a common benchmark for measuring the prediction skill of
SIC'**"*, Here, we calculate BS scores of daily SIC to further assess the
prediction skill from three sets of experiments, using persistence as a
benchmark.

As shown in Fig. 7, in the Control experiment, BS scores for dynamical
forecasts in August are higher than those for persistence, implying lower
prediction skill. It surpasses persistence on September 1st and maintains
higher skill for four weeks until September 24th. The SIC-only experiment
enhances the prediction skill over the next two months, reducing the average
BS score from 0.07 to 0.06. Assimilating SIC alone extends the period during
which prediction skill exceeds persistence to five weeks, from August 25th to
September 26th. The SIC-SIT experiment leads to further improvements in
prediction skill throughout August and September. The average BS score
decreases from 0.06 to 0.05, reflecting a more substantial enhancement in
prediction accuracy. Assimilating both SIC and SIT enables the prediction
skill to exceed persistence earlier, around August 19th, and sustains this
advantage for over six weeks, extending through the end of September.

Therefore, SIC assimilation alone significantly improves the initial SIC
and one-month lead prediction for August, but its impact on longer lead-
time predictions (here for September) remains limited. In contrast, simul-
taneous assimilation of SIC and SIT not only refines the sea ice initial state
but also leads to substantial improvements in subseasonal sea ice prediction
for both August and September. This improvement is notable for longer
lead-time predictions in September, underscoring the indispensable role of
SIT in improving sea ice prediction during the melting season.

Refined sea ice initial conditions enhance subseasonal SAT
predictions

Given the strong ice-atmosphere interactions’”’, the improved initial
conditions and subseasonal sea ice predictions are expected to enhance the

56,57

prediction skill of surface air temperature (SAT) on subseasonal timescales.
Here, we investigate how different sea ice assimilation strategies influence
SAT forecasts by comparing the SIC-only and SIC-SIT experiments with the
Control experiment, focusing on the core Arctic areas where the sea ice
variations are evident during the melting season.

As shown in Fig. 8a, the SAT predictions in the Control experiment for
August exhibit significant cold biases across the core Arctic areas, including
the Barents-Kara Seas, East Greenland Sea, Laptev Sea, Central Arctic
Ocean, and the Canadian Archipelago. In most of these regions, the biases
range from 1 to 3°C, indicating substantial prediction errors. In the SIC-only
experiment, the cold biases are slightly reduced, with reductions of less than
0.2°C in most regions (Fig. 8d). These improvements are not statistically
significant at the 95% confidence level, suggesting that SIC assimilation
alone provides limited improvement in correcting the systematic cold bia-
ses. In contrast, cold biases in the SIC-SIT experiment are significantly
reduced over the core Arctic areas, particularly in the northern Barents-Kara
Seas, East Greenland Sea, Central Arctic Ocean, and the Canadian Archi-
pelago, with reductions of 0.2 to 1°C (Fig. 8e).

In contrast to the dominant cold biases over most Arctic areas in
August, the predictions for September SAT display an evident warm bias in
the central Arctic (Fig. 9a) while the areas over the Barents-Kara Seas, East
Greenland Sea, Laptev Sea, and the Canadian Archipelago still remain
substantial cold biases in the Control experiment. The warm biases emerge
in the Central Arctic Ocean and the Beaufort Sea, reaching up to 1.5 °C. SIC
assimilation alone leads to minor improvements. The warm biases over the
Central Arctic Ocean are slightly reduced by up to 0.3 °C, and the cold biases
over the East Greenland Sea and Barents-Kara Seas decrease by about 0.1 to
0.3 °C (Fig. 9d). With SIT assimilation included, the SAT predictions show
considerable improvements (Fig. 9¢). The warm biases in the Central Arctic
Ocean are reduced by up to 1°C and cold biases in the East Greenland Sea
and Canadian Archipelago are reduced by more than 1°C. These findings
confirm that SIT assimilation provides added predictive value for SAT
forecasts beyond SIC assimilation alone, highlighting the importance of SIT
initialization for subseasonal atmospheric prediction.

Surface budget improvements explain enhanced SAT
predictions

Based on the above analysis, the simultaneous assimilation of SIC and SIT
represents the optimal strategy for improving SAT forecasts. To further
investigate the underlying mechanisms behind the improved SAT predic-
tion skill, we compare the differences in surface budgets between the SIC-
SIT and Control experiments, as shown in Figs. 10-11. In August, the
overestimated SIC over the marginal seas, covering the northern Barents-
Kara Seas, East Greenland Sea, and the Canadian Archipelago, are evidently
reduced in the SIC-SIT experiment compared to the Control experiment
(Fig. 10a). Accordingly, the decreased sea ice in these areas corresponds to a
declined shortwave reflection, which causes a significant increase in net
downward shortwave radiation, thereby raising the surface temperature
(Fig. 10b). As surface warming increases the temperature gradient between
the ocean surface and the lower atmosphere, the upward sensible heat flux
and surface longwave radiation are amplified, further warming the lower
atmosphere (Fig. 10c, d). As a result, the original cold biases of SAT are
reduced and the SAT prediction acquires improvement.

Over the central Arctic region, the SAT biases are also reduced in
August, but the mechanism differs from that in the marginal seas. In the
SIC-SIT experiment, the underestimation of SIC over the central Arctic is
corrected. Surprisingly, despite the increased SIC, the upward latent heat
flux is observed to intensify (Fig. 10e). This indicates that surface water
evaporation is enhanced, likely due to the proliferation of melt ponds on the
ice surface. Melt ponds, with their lower albedo compared to the sur-
rounding sea ice, absorb more shortwave radiation. However, the low
thermal conductivity of sea ice limits the transfer of absorbed energy from
the melt ponds to the underlying ocean. As a result, the energy remains
trapped at the surface, leading to rapid warming of the melt ponds and
surrounding ice surface. This surface warming increases the surface
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Fig. 8 | Differences in the 20-year averaged surface air temperature (SAT) for minus observations, (d) SIC-only experiment minus Control experiment, (e) SIC-
August during the hindcast period 2004-2023 (°C). a Control experiment minus  SIT experiment minus Control experiment. Dotted areas indicate statistical sig-
observations, (b) SIC-only experiment minus observations, (c) SIC-SIT experiment  nificance based on a two-tailed Student’s t-test at the 95% confidence level.

Fig. 9 | Differences in the 20-year averaged SAT for September during the d SIC-only experiment minus Control experiment, e SIC-SIT experiment minus
hindcast period 2004-2023 (°C). a Control experiment minus observations,bSIC-  Control experiment. Dotted areas indicate statistical significance based on a two-
only experiment minus observations, ¢ SIC-SIT experiment minus observations, tailed Student’s t test at the 95% confidence level.
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Fig. 10 | Differences in the 20-year averaged SIC and energy fluxes for the Outgoing longwave radiation flux (W/m?). (d) Sensible heat flux (W/m?). (e) Latent
hindcast period 2004-2023 in August between the SIC-SIT and Control heat flux (W/m?). Dotted areas indicate statistical significance based on a two-tailed
experiments. Differences in (a) SIC, (b) net shortwave radiation flux (W/m?). (c) Student’s t-test at the 95% confidence level. All fluxes are positive upwards.

Fig. 11 | Differences in the 20-year averaged SIC and energy fluxes for the ¢ Outgoing longwave radiation flux (W/m?). d Sensible heat flux (W/m?). e Latent
hindcast period 2004-2023 in September between the SIC-SIT and Control heat flux (W/m?). Dotted areas indicate statistical significance based on a two-tailed
experiments. Differences in a SIC, b net shortwave radiation flux (W/m?). Student’s ¢ test at the 95% confidence level. All fluxes are positive upwards.
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temperature in the central Arctic even with greater ice coverage, amplifying
upward surface longwave radiation and further warming the lower atmo-
sphere. Additionally, observational data analysis reveals a significant posi-
tive correlation between year-to-year variations of summer SIC and SAT in
the central ice-covered regions (Fig. S2), reinforcing the connection between
sea ice changes and surface temperature variations discussed above.

In the September prediction, the overestimated SIC over the East
Greenland Sea and the Canadian Archipelago in the Control experiment is
similarly reduced in the SIC-SIT experiment, along with a reduction in the
cold biases of SAT (Fig. 9a). Similar to August, the open waters continue to
absorb solar radiation, increasing upward longwave radiation and sensible
heat flux, which further warms the lower atmosphere (Fig. 9b-d). In the
northern Barents-Kara Seas, despite minimal changes in SIC and net
downward shortwave radiation, the original cold biases of SAT are evidently
reduced. This improvement is largely attributed to the strong thermal
memory of the sea surface temperature’”, allowing the higher surface
temperatures from August to persist into September, which continue to
enhance upward longwave radiation and sensible heat flux, thereby
improving the SAT prediction. As solar radiation decreases in September
and the melting of sea ice slows, the thermodynamic properties of the central
Arctic sea ice gradually align with those of the marginal seas. The under-
estimated SIC in the Control experiment corresponds to the warm biases of
SAT. After assimilation, the reduction in the original warm biases of SAT is
primarily due to increased SIC, which enhances albedo and reduces
absorbed solar radiation, leading to lower surface temperature. The cooler
surface temperature decreases upward longwave radiation and sensible heat
flux, further cooling the lower atmosphere.

In summary, optimized sea ice initial conditions improve the surface
energy budget predictions, thereby enhancing the subseasonal prediction of
SAT. Notably, the impact of sea ice initial condition lasts up to two months,
challenging the traditional view that initial conditions affect only short-term
forecasts.

Discussion

Accurate subseasonal prediction in the Arctic remains challenging in the
current operational systems, especially during the melting season
(August-September). Utilizing the LESTKF method within the PDAF fra-
mework, this study confirms that sea ice assimilation effectively improves
initial conditions and enhances subseasonal predictions in the Arctic with
lead times of up to two months. While SIC assimilation alone mainly
benefits one-month lead sea ice predictions, incorporating both SIC and SIT
produces substantial improvements for both one- and two-month leads.
SIC assimilation alone has minimal impact on SAT predictions, whereas
adding SIT assimilation significantly improves SAT forecasts for up to two
months. This improvement is primarily due to more realistic surface budget
predictions, challenging the conventional notion that initial conditions
affect only short-term forecasts.

Although sea ice initialization reduces biases in SAT predictions with
lead times of up to two months, the improvements remain modest relative to
the original errors. While sea ice predictions are substantially improved (by
approximately 46% to 96%), the more limited gains in SAT prediction skill
suggest that current models may not fully capture the complex feedback
between the ice surface and atmosphere®. This limitation underscores the
potential for further improvement in the sea ice-atmosphere coupling,
which could enhance subseasonal predictions both in the Arctic and the
broader atmospheric system.

This study highlights the critical role of summer SIT assimilation in
enhancing subseasonal predictions of both sea ice and atmospheric condi-
tions, reinforcing SIT as an indispensable source of predictability for sub-
seasonal dynamical forecasts. Strengthening SIT observational capabilities
during summer is essential for providing more accurate and stable sea ice
initial conditions. Given the challenges in obtaining comprehensive SIT data
across the Arctic, a promising approach is to conduct sensitivity experi-
ments in different regions to assess the influence of ice thickness on SIC
changes. A similar strategy has been proposed for predicting sea ice volume

(SIV) anomalies, where statistical models identified a small number of
optimal locations that account for most of the interannual SIV variability®".
Such experiments could guide targeted efforts to deploy additional SIT
observation points in areas with high sensitivity, ultimately providing more
reliable SIT initial conditions for subseasonal prediction systems.

Methods

The fully-coupled dynamical model FGOALS-f2

The operational subseasonal prediction system FGOALS-f2 utilized in this
study is developed by the State Key Laboratory of Numerical Modeling for
Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) at the
Institute of Atmospheric Physics (IAP), which is part of the Chinese
Academy of Sciences (CAS). FGOALS-f2 is a fully coupled model that
encompasses four components: atmosphere, ocean, land, and sea ice. The
atmospheric component is version 2 of the Finite-volume Atmospheric
Model (FAMIL2)%, which uses a finite-volume method® that is discretized
on a cube-sphere grid system®. It has a standard horizontal resolution of
C96, which means 96 x 96 grid points in each tile of the cube sphere, roughly
equivalent to 1-degree resolution. Vertically, it features 32 hybrid sigma-
pressure levels, with the uppermost level situated at 1 hPa. The land surface
component used in FGOALS-f2 is version 4 of the Community Land Model
(CLM4.0)%, featuring a horizontal resolution nearly at 1-degree resolution.
The oceanic component is Parallel Ocean Program version 2 (POP2)%,
which utilizes a displaced-pole grid with the North Pole shifted to Green-
land. This grid has a resolution of gx1v6, approximately equivalent to a
1-degree horizontal resolution, and includes 60 vertical layers. The sea ice
component is the Los Alamos Sea Ice Model version 4.0 (CICE4)”, sharing
the exact horizontal resolution as the ocean model. These four components
are coupled via the coupler version 7 in the Community Earth System Model
(CESM)*.

The FGOALS-f2 model adopts a Newtonian nudging method with
time-varying treatment® to initialize the atmospheric and oceanic condi-
tions. The atmospheric component of the model uses 3-dimensional initial
conditions, including temperature, wind, humidity, and geopotential height,
obtained from the China Meteorological Administration Global Reanalysis
(CRA-40)". The relaxation time scale used in this process is 6 h. In the
oceanic component, the Optimal Interpolation Sea Surface Temperature
(OISST)" from the National Oceanic and Atmospheric Administration
(NOAA) is used as the observation to relax the first layer of oceanic tem-
perature, with a 1-day relaxation time scale. No sea ice observations are
directly assimilated in the original version. Sea ice concentration, thickness,
and horizontal displacement are determined by the thermodynamic and
dynamic balance between the overlying atmosphere and underlying ocean
water. The model utilizes the time-lagged method to generate ensemble
members. For a more detailed explanation of the initialization scheme for
FGOALS-f2, please refer to previous studies™”.

Data assimilation scheme for sea ice
In this study, we use the LESTKF method provided by PDAF, an open-
source software for ensemble data assimilation, to incorporate sea ice
assimilation into the fully-coupled dynamical model FGOALS-f2. The
LESTKF is an advanced data assimilation technique derived from the
Ensemble Kalman Filter (EnKF) that incorporates localization and operates
within an error subspace. Building on the principles of the Error Subspace
Transform Kalman Filter (ESTKF), it updates ensemble members by per-
forming linear transformations within the error subspace generated by
ensemble samples’’. LESTKF introduces localization to selectively limit the
influence of observations to relevant neighboring areas, minimizing sam-
pling errors and enhancing the capture of local features. This approach
reduces computational complexity by avoiding the direct calculation of
high-dimensional error covariance matrices, making it well-suited for high-
dimensional nonlinear systems™. The LESTKF method has been shown to
be effective in sea ice assimilation””’.

The initialization procedure consists of two main steps: ensemble
generation and assimilation. The assimilation window is set from July 18th
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to August 1st for each year. To generate ensembles, 7-day simulations are
conducted from July 15th to July 21st for each of the past 20 years
(2004-2023), during which the daily model state vectors of SIC and SIT are
saved. These daily fields are concatenated to construct a state matrix that
characterizes the spatiotemporal variability of SIC and SIT during the pre-
assimilation period. Leading empirical orthogonal function (EOF) modes of
this matrix are then extracted to reduce dimensionality while retaining
dominant variability structures. Sixteen ensemble perturbations are gener-
ated using second-order exact sampling’® applied in the EOF space and
superimposed onto the mean state of model trajectories, thereby forming
the initial ensemble spread. Once the ensembles are generated, the LESTKF
is applied in analysis cycles to assimilate observed SIC and SIT fields along
with their observational uncertainties. The same procedure is applied when
assimilating SIC alone. Here, the observational uncertainty is set to 15% for
SIC and 0.75m for SIT. The overall assimilation strategy, including
ensemble size and observational uncertainty settings, draws upon previous
studies”””. Further details are provided in the Supplementary
Information.

Sea ice data for assimilation

The daily SIC data are obtained from the Near-Real-Time NOAA/NSIDC
Climate Data Record (CDR) of Passive Microwave Sea Ice Concentration”,
which integrates estimates derived from the NASA Team and Bootstrap
algorithms. The data are provided on the NSIDC polar stereographic grid
with a spatial resolution of 25 km. Monthly SIC is calculated by averaging
the daily values over each month.

We use thickness data from the Pan-Arctic Ice Ocean Modeling and
Assimilation System (PIOMAS)™ for assimilation, considering its long
temporal coverage, daily resolution, and complete Arctic-wide spatial cov-
erage. Previous studies have demonstrated that the PIOMAS SIT is in
reasonable agreement with observations®™' and is suitable for sea ice
assimilation®**, We also tested the assimilation of CryoSat-2 SIT data over
the 2011-2020 period™. While CryoSat-2 assimilation improves prediction
skill during the first two weeks, the improvement rapidly declines afterward
(Fig. S3), likely due to the thinner initial SIT increasing sensitivity to melting
(Fig. S4). This suggests that Arctic sea ice prediction is highly sensitive to the
choice of SIT data for initialization, underscoring the importance of
improving summertime SIT accuracy for better prediction skill during the
melting season.

Atmospheric and oceanic data for nudging

In addition to sea ice assimilation, this study also applies atmospheric and
oceanic nudging to improve the initial conditions. The atmospheric data
used for nudging come from the CRA-40 daily reanalysis dataset” provided
by the China Meteorological Administration, with a resolution of 0.5° x 0.5°.
The variables include temperature, wind, humidity, and geopotential height.
The SST data used for nudging is obtained from the NOAA OISST daily
dataset”", with a resolution of 0.25° x 0.25°.

Persistence calculation

Our calculation of persistence follows the definition provided by Zampieri
etal. (2018)”. Persistence is computed based on the initial SIC. Taking 2023
as an example, the daily prediction skill is assessed using observed SIC on
each target day as the reference. The persistence forecast ensemble is con-
structed from SIC fields on August 1st during 2004-2023. To match the size
of the model ensemble, 16 samples are randomly selected from the 20 years
using a bootstrap method, repeated 1000 times to obtain an averaged
benchmark. This approach provides a persistence benchmark consistent
with the ensemble size of the model prediction, enabling a robust com-
parison of prediction skill.

Evaluation methods

Daily SIC data from the NOAA/NSIDC CDR of Passive Microwave Sea Ice
Concentration” are used to evaluate SIC prediction skill. The observed SIE,
defined as the total area of grid boxes with at least 15% SIC, is calculated

from this dataset. Monthly SIC is calculated by averaging the daily values
over each month. For atmospheric verification, the ERA5 monthly reana-
lysis dataset provided by the European Center for Medium-Range Weather
Forecasts (ECMWF) is used”. The dataset has a spatial resolution of 0.25° x
0.25° and includes variables such as 2-meter temperature, net shortwave
radiation flux, outgoing longwave radiation flux, sensible heat flux, and
latent heat flux.

To comprehensively assess the performance of the data assimilation,
we evaluate the spatial and temporal accuracy of SIC and SIE using several
metrics. Specifically, the MAE of the SIC spatial distribution is calculated to
quantify the average spatial discrepancy between predicted and observed
SIC. The ACC and RMSE of SIE anomalies are used to assess the model’s
skill in capturing both the sign and amplitude of sea ice anomalies. Given the
long-term trend dominates the total variability, we remove the linear trend
from the SIE anomalies to focus on interannual fluctuations. The linear
trend is calculated using the least squares method. The statistical significance
of the ACC and RMSE is assessed using the Monte Carlo test, whereby the
ACC and RMSE are computed after randomizing the predictions. This
procedure is repeated 1000 times, and the significance is defined as the
fraction of times the actual prediction ACC (RMSE) is greater (less) than
ACC (RMSE) achieved with the randomized set. The significance of dif-
ferences is tested using a two-tailed Student’s t-test. The BS is calculated to
evaluate the reliability of the probabilistic predictions regarding the presence
or absence of sea ice, with a focus on capturing ice edge position and
occurrence probability.

The MAE of SIC spatial distribution is calculated as:

N

1
MAE:NZ

i=1

SIC

pre,i

- SIC

obs,i
where SIC,, ; and SIC,, ; represent the predicted and observed SIC values
for grid cell 4, respectively. Here, N represents the total number of grid cells
where the difference between predicted and observed values is statistically
significant at the 95% level.

The ACC for SIE anomalies is calculated as:

ZIT=1 <SIEpre‘t - SI_Epre> (SIEahs.,t - SI_Eabs)

ACC = 5
T o T o 2
\/Zt:l <SIEpre,t - SIEpre) X \/Zt:l (SIEobs,t - SIEahs)

whereSIE,,, ,, SIE,, , represent the predicted and observed SIE anomalies at

time ¢, and T is the total number of years. The time averages for prediction
and })bservation, SIE,,, and SIE,,, are calculated by %ZLI SIE,, and
T 2 i=1 SIE 5y 4> respectively.

The RMSE for SIE anomalies is calculated as:

1 < 2
RMSE = | =3 (SIEP,“ - susohs,t)
t=1

where SIE,,., ,, SIE,, , represent the predicted and observed SIE anomalies at
time ¢, and T is the total number of years.

The BS scores for SIC distribution is calculated as:

1
BS = NZU; - Oi)z
i=1

where f, is the predicted probability of sea ice presence in grid cell 4, o; is the
observed binary outcome (1 for SIC > 15% and 0 otherwise), and N is the total
number of grid cells across all Arctic seas (similar to Wayand et al., 2019)*".

Data availability
Daily SIC data used for assimilation and validation are available from the
Near-Real-Time NOAA/NSIDC CDR of Passive Microwave Sea Ice
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Concentration (https://nsidc.org/data/g02202/versions/4). Daily PIOMAS
SIT data can be accessed at https://psc.apl.uw.edu/research/projects/arctic-
sea-ice-volume-anomaly/data. Weekly Cryosat-2 SIT data are available
from the British Antarctic Survy (https://data.bas.ac.uk/full-record.php?id=
GB/NERC/BAS/PDC/01613). Atmospheric variables used for assimilation,
including temperature, wind, humidity, and geopotential height, are avail-
able from the CRA-40 daily reanalysis dataset (https://data.cma.cn/analysis/
crad0). SST data used for assimilation are available from the NOAA OISST
daily dataset (https://www.ncei.noaa.gov/products/optimum-
interpolation-sst). ERA5 monthly reanalysis dataset for atmospheric vali-
dation is obtained from ECMWE (https://cds.climate.copernicus.eu/
datasets/reanalysis-era5-single-levels-monthly-means?tab=download).

Code availability
All codes for the analysis of this paper are available from the corresponding
author upon reasonable request.
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