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Recent weakening of carbon-water
coupling in northern ecosystems

Check for updates

Fubo Zhao1 , Wenbo Shi1, Jingfeng Xiao2, Meng Zhao3, Xing Li4 & Yiping Wu1

The terrestrial carbon and water cycles are deeply intertwined, and their coupling is critical to shaping
ecosystem processes and land-atmosphere feedback. Understanding how the carbon-water
coupling (CWC) changes, which remains rarely explored, is essential for predicting eco-hydrological
responses to climate change. Here, using data from eddy covariance towers and remote sensing, we
demonstrate a substantial decline in the CWC strength—measured as the correlation between gross
primary production and evapotranspiration—across northern ecosystems over the past two decades.
This weakening is primarily driven by rising CO₂ levels, with temperature, solar radiation, and
precipitation playing secondary roles. Land surface models in the TRENDY project fail to capture this
weakening synchronization, primarily due to their inadequate representation of the effects of elevated
atmospheric CO2 levels. Theweakening of this synchronous variation betweenwater and carbonmay
signify that the ecosystems are reshaping their eco-hydrological balances across the Northern
Hemisphere.

The terrestrial carbon and water cycles are fundamental components of the
Earth’s biosphere and climate system1, deeply intertwined through pro-
cesses like photosynthesis and evapotranspiration (ET) that mediate the
exchange of energy, carbon, and water between the land surface and the
atmosphere2–5. Gross primary production (GPP), a key measure of carbon
fixation by plants, is intricately linked to ET via leaf stomata, the process
through which water is transferred to the atmosphere via evaporation and
plant transpiration6–8. The strength of the correlation betweenGPP and ET,
known as carbon-water coupling (CWC), serves as a critical indicator of
how well carbon uptake and water use are synchronized and what are the
conditions of eco-hydrological balances in ecosystems6,9,10. Understanding
the dynamics of CWC is crucial because it directly influences land-
atmosphere feedbacks through changing eco-hydrological dynamics that
govern atmospheric moisture, surface cooling, and precipitation patterns.

A strong CWC signifies an ecosystem’s ability to efficiently
sequester carbon while maintaining balanced water fluxes through
evapotranspiration11. This, in turn, promotes surface cooling and enhances
atmospheric moisture, which can stimulate precipitation and contribute to
climate regulation on both local and regional scales12–14. Conversely, a
weakening of CWC of an originally tightly coupled GPP-ET ecosystem—a
decoupling of these interconnected processes—signals that ecosystems are
losing their capacity to balance carbon and water cycling effectively (i.e.,
ecosystems are losing their eco-hydrological balances)15,16. This decoupling
leads to reduced evapotranspiration, less surface cooling, and diminished

atmospheric moisture, exacerbating the effects of climate change. As
environmental changes continue, predicting howCWCwill evolve becomes
increasingly complex. Despite its importance, the dynamics of CWC have
been rarely explored, and understanding its evolution in response to climate
change is essential for predicting future ecohydrological outcomes and their
implications for global water availability17–19, food security20, and climate
regulation21,22.

Existing research has primarily focused onwater use efficiency (WUE),
ameasure of the trade-off between carbon gain andwater loss, and how it is
influenced by rising atmospheric CO₂, soil moisture, and vapor pressure
deficits3,4,8,23. While WUE trends have been widely studied, particularly in
relation to increasing CO₂ concentrations and their impact on ecosystem
water relations, the broader question of how CWC itself evolves over time
remains underexplored. Some studies suggest that vegetation growth is
increasingly constrained by water availability24–26, with soil moisture
dependence intensifying at continental scales27. However, there is little
consensus onhow the synchronization between the carbon andwater cycles
—CWC—may evolve as global environmental changes accelerate.

Here, by leveraging long-term in-situ measurements, remote sensing
observations, and land surface model simulations, we elucidate the spatial
and temporal dynamics of the GPP-ET coupling strength across the
extratropical Northern Hemispheric (NH) ecosystems and identify the
primary drivers of the trends. We focused on NH ecosystems because they
play a crucial role in shaping long-term trends in global net carbon uptake28.
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These ecosystems are particularly vulnerable to the impacts of a warming
climate29, making their analysis essential for understanding broader ecolo-
gical responses and informing climate adaptation strategies. First, we
investigated the spatiotemporal patterns of GPP-ET coupling using two
independentGPP-ETdatasets: one based on ground-based eddy covariance
(EC) tower observations, referred to as the EC GPP-ET, and the other
derived from satellite data, termed the RS GPP-ET. Second, we utilized
satellite-derived leaf area index (LAI), enhanced vegetation index (EVI), and
solar-induced fluorescence (SIF) as proxies of GPP to provide additional
evidence of CWC changes. Third, we employed simulations from land
surface models to assess whether these models could accurately capture the
observed trends of the GPP-ET coupling strength. Our findings offer new
insights into future climate dynamics and strategies for ecosystem
management.

Results
Evidence from long term in-situ measurements
To investigate the changes in theGPP and ET coupling, we used FLUXNET
and calculated the correlation between GPP and ET across the NH eco-
systems (see Fig. 6 for FLUXNET sites). As shown in Fig. 1a, the mean
correlation coefficients between GPP and ET were consistently positive,
with the highest value of 0.48 and the lowest value of 0.33. Using the 5-year
moving correlation analysis, we found a significant decreasing trend in the
CWC strength, with a decline rate of −0.013 per year (R2 = 0.62, p < 0.01).
This indicates that the coupling strength between GPP and ET weakened
from 2001 to 2014. Among the 80 sites, 59% (47 sites) exhibited decreasing
trends, while 41% (33 sites) showed increasing trends. Despite large across-
site variations, themeanECGPP-ET correlation decreased by 21% from the
initialfive-yearperiodof this century—2001–2005 (0.48) to the lastfive-year
period—2010–2014 (0.38) (Fig. 1b).

We further investigated the CWC strength across different ecosystem
types (Table 1). We found a consistent trend in EC GPP-ET correlation
across all theNHecosystems. Specifically, the strongest GPP-ET correlation
(0.95) was found in woody savanna, which showed a decline trend of
−0.0017/year. The lowest GPP-ET correlation (0.27) was found in ever-
green needle-leaf forest and cropland, and they showed relatively high
decline rates of −0.0443/year and −0.0197/year, respectively. In contrast,
ecosystems such as evergreen broadleaf forests and wetlands exhibited
strong GPP-ET correlations (0.61) but different rates of decline (−0.109/
year and −0.093/year, respectively). The mixed forests and grasslands had
moderate correlations of 0.29 and 0.52, with declining trends of −0.0261/
year and −0.0007/year, indicating a varied response across different eco-
systems. These findings suggest that while the overall CWC strength
decreased, the rate and magnitude of this decline varied obviously among
ecosystem types.

Evidence from satellite-derived data products
To gain further insights into the relationship between GPP and ET across
the whole NH, we analyzed the spatiotemporal evolution of the CWC
strength using four sets of remote sensing GPP data (CMG, EC-LUE,
MODIS, and PML) and three sets of ET data (GLEAM,MODIS, and PML)

(Fig. 2). As depicted in Fig. 2, the RS GPP-ET correlations derived from the
12 data combinations across the NH were almost all significantly positive,
with an average correlation coefficient of 0.69 (p < 0.01). These positive
correlations were also confirmed by the individual data combinations
(Supplementary Fig. 1). However, it should be noted that relatively large
areas showed negative correlation between GPP and ET when the EC-LUE
GPP product was used. Widespread significant declines in the RS GPP-ET
correlation were found, particularly in high-latitude and mid-to-low-
latitude areas of the NH (Fig. 2b). 18.9% of the NH exhibited significant
(p < 0.05) decreasing trends in RSGPP-ET correlation, while 13.2% showed
increasing trends. The spatial distribution of the trend remained evident
across different combinations of GPP and ET data (Supplementary Fig. 2).
When looking at the time series of RS GPP-ET correlation using 5-year
movingwindow,we found the ensemblemean value ofGPP-ETcorrelation
showed a significant decreasing trend (−0.005/year, p = 0.000). This
decreasing trend was also confirmed when using 10-year moving correla-
tion analysis (Supplementary Fig. 3). All different data combinations also
exhibited varying degrees of decline in the GPP-ET correlation (Fig. 2g),
indicating a weakening CWC strength during the study period. In total, the
mean RS GPP-ET correlation decreased from 0.46 to 0.41 (decreased by
11%) from the first 5 years to the last, which is lower than that of EC site
observation (Supplementary Fig. 4). To further investigate whether the
changes in GPP-ET are robust across different ecosystems, we further
explored the magnitude and variations of GPP-ET in various ecosystems
(Supplementary Table 1). Consistent with the observations, RS GPP-ET
correlations were all positive across different ecosystems. In contrast, we
observed an increasing correlation between RS GPP-ET in the DBF, CRO,
and CSH ecosystems over the past years, which may be influenced by the
sample size and duration of the study. However, other ecosystems exhibited

Fig. 1 | Evolution of CWC strength during the
2001–2014 calculated from 80 EC sites. a Time
series of EC GPP-ET correlation calculated using
5-year moving window. Numbers in each point
indicate the number of sites involved in calculating
the ECGPP-ET correlation within each 5 years. The
gray line in each dot indicates the deviations among
the sites. The inserted barplot indicates the site count
showing decreasing (orange: Dec) and increasing
(blue: Inc) trends in EC GPP-ET correlation.
b Comparison of CWC strength between the first 5
years (2001-2005) and the last 5 years (2010-2014).

Table 1 | Trends of ECGPP-ET correlation (2001–2014) derived
from EC tower GPP and ET data for different ecosystem types

Ecosystem type GPP-ET correlation Trend of correlation
(×10-2)

ENF 0.27 −4.43

EBF 0.61 −10.9

DBF 0.29 −5.81

MF 0.29 −2.61

GRA 0.52 −0.07

CRO 0.27 −1.97

WET 0.61 −9.3

WSA 0.95 −0.17

OSH 0.46 −1.0

CSH 0.74 −3.3

Ecosystem types: ENF (evergreen needle-leaf forest), EBF (evergreen broadleaf forest), DBF
(deciduous broadleaf forest), MF (mixed forest), GRA (grassland), CRO (cropland), WET (wetland),
WSA (woody savannas), OSH (open shrublands), and CSH (closed shrublands).
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a decreasing trend consistent with EC tower observations. To further
explore whether this trend persists over a longer timescale (1982−2018), we
also utilized some supplementary data (GPP datasets from GLASS and
REC-LUEandETdatasets fromGleamandTerraClimate) and employed 5-
year, 10-year, and 15-yearmoving windows to detect the evolution of GPP-
ET correlation. We found that regardless of the moving average used, their
ensemble averages consistently exhibited a significant declining trend
(Supplementary Fig. 5).

To further validate the changes in the GPP-ET correlation, we
employed satellite-derived EVI, NDVI, LAI, and SIF as proxies for GPP to
examine the CWC strength (Fig. 2d). We found that these GPP proxies
positively correlated with ET across almost the whole NH with an average
correlation of 0.35 (p < 0.01).When looking at the individual combinations,
we found that all GPP proxies (LAI, NDVI, EVI, and SIF) exhibited sig-
nificant positive correlations with ET, although they displayed considerable
spatial variability. For example, large areas in high-latitude regions showed a

Fig. 2 | Spatiotemporal patterns of carbon-water correlation (2001-2018).
a Spatial distribution of GPP-ET correlation. Rmean indicates the average of RS GPP-
ET correlation values based on the 12 data combinations, with statistical significance
marked by ** at p < 0.01. b Spatial trends in RS GPP-ET correlation over the study
period. Dot-shaded areas represent regions with significant trends (p < 0.05). The
pie chart indicates the proportion of significant (p < 0.05) positive (green) and
negative (orange) trends in GPP-ET correlation. cAggregatedmean values of trends
along latitudinal gradients, with gray-shaded areas showing the standard deviation
among the 12 data combinations. d Spatial distribution of correlation between
vegetation indices (EVI, NDVI, LAI, and SIF) and ET. Rmean indicates the spatial
average of GPP-ET correlation values, with statistical significance marked by ** at

p < 0.01. e Spatial trends in the correlation between vegetation indices (EVI, NDVI,
LAI, and SIF) and ET over the study period. Dot-shaded areas represent regions with
significant trends (p < 0.05). The pie chart indicates the proportion of significant
(p < 0.05) positive (green) and negative (orange) trends. Gray areas indicate non-
significant change portions. f Aggregated mean values of trends along latitudinal
gradients, with gray-shaded areas showing the standard deviation among the 12 data
combinations. g, h Temporal evolution of correlations of RS GPP-ET (g) and
vegetation indices and ET (h) from 2001 to 2018, analyzed using a 5-year moving
window. The black line represents the ensemble mean of the 12 data combinations,
while the gray dashed lines denote individual combinations of remote sensing data.
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negative NDVI-ET correlation (Supplementary Fig. 6). In comparison, the
trends in the correlation between GPP proxies and ET showed relatively
greater spatial consistency over the study period, with significant declines in
the correlation across large areas in the high-latitude regions, particularly in
the North America (Supplementary Fig. 7). In total, 18.7% of the total areas
showed significant (p < 0.05) decreasing CWC strength, while 13.6%
showed increasing trends, which were similar to that of gridded GPP-ET
correlation. The aggregated latitude pattern showed that the trend of cor-
relation betweenGPP proxies and ETwas almost all negative, except for the
regions between 43.5°N and 47°N and regions around 73.5°N. The CWC
strength showed a significant decreasing tendency (−0.0034/year, p < 0.01),
which was also confirmed by the individual combinations of the satellite-
derived GPP proxies and ET products (Fig. 2h and Supplementary Fig. 7).
Overall, similar toEC towerobservations, the satellite-derivedGPPdataand
proxies, alongwith satellite-derived ETdata indicate that theCWCstrength
decreased during 2001-2018.

Carbon-water coupling based on process-based model
simulations
Wefurther analyzed the spatiotemporal patterns in theCWCstrengthusing
simulations from13different global vegetationmodelswithin theTRENDY
ensemble (see Methods). These models, driven by observed climate fields,
varying CO₂ concentrations, and land use changes (S3), provided the real
predictions of GPP and ET for the period from 2001 to 2018. This approach
allows us to compare trends in carbon-water coupling in TRENDYmodels
with results from EC and RS observations. Despite structural differences,
most models (with the exception of CABLE-POP and IBIS) produced
similar spatial patterns in the correlation coefficients between GPP and ET
(Supplementary Fig. 8). The modeled GPP-ET correlation to a large extent,
matched those derived from satellite data (Fig. 2a). The models simulated
significant (p < 0.05) positive correlations betweenGPPand ET acrossmost
of the NH, except for the CABLE-POP and IBIS models, which yielded
negative values in high-latitude regions.

Over the past 19 years, the geographic patterns of GPP-ET correlation
trends varied substantially among models (Supplementary Fig. 9). When
aggregated to the entire study region, only seven models captured the
negative trend in the GPP-ET correlation (Fig. 3). The ensemble of the
models showed almost no trends in GPP-ET correlation during the study
period. Only two models, CABLE-POP and CLM5.0, exhibited significant
negative trends (p < 0.05). In contrast, six other models showed positive
trends in GPP-ET correlation. Notably, the IBIS and ISBA-CTRIP models
demonstrated significant increasing trends (p < 0.01 and p < 0.05, respec-
tively) (Fig. 3b). This discrepancy arises because these models (Supple-
mentary Fig. 9) produced smaller areaswithdecreasingGPP-ET correlation
trends compared to satellite observations (Fig. 2). These findings highlight a
divergence betweenmodel simulations and satellite observations, indicating
thatmost land surfacemodels fail to accurately capture the observed decline
in the GPP-ET correlation.

Attribution
Finally, we evaluated the influence of climate factors (i.e., air temperature,
precipitation, and solar radiation) and atmospheric CO2 concentration on
the dynamics of CWC strength using two different methods: the partial
correlation (PC) analysis and the Lindeman, Merenda, and Gold (LMG)
method (Fig. 4).We based our attribution analysis on satellite-derived GPP
and ET data as they accurately captured the CWC and its trends during the
study period shown by the EC tower data. The PC analysis revealed that
atmospheric CO2 accounted for one-third (33.1% in total, and 16.7% of
them are statistically significant) of the variability in CWC strength. Air
temperature, precipitation, and solar radiation contributed similarly and
explained 23.7%, 22.0%, and 21.3% of the variability, respectively (Fig. 4a).
From themagnitude perspective, CO2 contributedmostly to the decreasing
GPP-ET correlation, followed by air temperature, solar radiation, and
precipitation. Spatially, the influence of CO2, precipitation, and solar
radiation extended across almost the entire NH, while the impact of tem-
perature was primarily concentrated in high-latitude regions (e.g., the
Northern Europe). The spatial patterns identified using the LMG method
closely mirrored those observed in the PC analysis, with increased atmo-
spheric CO2 identified as the primary driver in 35.0% (20.4% of them are
statistically significant) of the total areas, and similarly, air temperature,
precipitation, and solar radiation had comparable influences on CWC
changes (Fig. 4b). To further confirm the contribution toCWC changes, we
also employed amachine learning approach (random forest) to identify the
dominant factors. The results showed that CO₂ changes controlled 51.7%of
the area, with 24% having a significant impact, while the remaining influ-
ence was attributed to temperature, solar radiation, and precipitation
changes (supplementary Fig. 10). In summary, the variations in CWC
strength over the past two decades were primarily driven by increased
atmospheric CO2 concentration.

Discussion
In this study, we observed a significant decline in CWC strength across the
NH over the past two decades, identified through EC tower observations
and remote sensing data. This weakening CWC suggests a shift in the
ecohydrological coupling, with broad implications for ecosystem and
hydrological functioning30. Understanding the mechanisms driving this
decline is crucial not only for improving our predictive models but also for
projecting the broader ecological and hydrological impacts. Our findings
indicate that the primary driver of the decline in CWC strength is the
increasing concentration of atmospheric CO2, which affects GPP and ET in
ways that weaken their correlation31,32. The direct impact of elevatedCO2 on
ecosystems is twofold: it enhances photosynthesis, thereby increasing GPP,
while simultaneously reducing stomatal conductance, leading to a decrease
in ET17,33. The reduction in stomatal conductance is a physiological response
of plants to elevated CO2, and conserves water by limiting the loss of water
vapor through stomata34–36. However, this response also disrupts the tight
coupling between carbon uptake and water loss, as the enhanced carbon

Fig. 3 | Temporal evolution of correlations of GPP-ET derived from Trendy
models. a Times series of GPP-ET correlation calculated using 5-years moving
windows. Black line indicates the ensemble mean of the 13 models, and the gray

dashed lines indicate the time series of GPP-ET of each Trendy model. b Trend of
GPP-ET correlation during the study period. ** and * denote the significant levels at
p < 0.01 and p < 0.05, respectively.
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fixation does not translate proportionately into increased water use. In
addition to the physiological responses of vegetation to elevated CO2, the
radiative effects may also play an important role in downregulating
the coupling strength19,37. For example, increasedprecipitation causedby the
elevated CO2 may alleviate the water stress of ecosystems, and the decrease
ofGPPwill not necessarily be linked to decrease of ET6.As a result, theGPP-
ET relationship weakens, leading to a decline in CWC (see coupling
mechanism diagram presented in Supplementary Fig. 11). Other factors,
including changes in temperature, precipitation, and solar radiation, further
influence the CWC strength by altering plant physiology and water
availability.

Climate factors such as temperature, solar radiation, and precipitation
also contribute to the observed decline inCWC.Temperature is a keydriver
of both GPP and ET, influencing photosynthetic rates and VPD, which
regulates transpiration. Rising temperatures can exacerbate water stress26,
particularly in arid and semi-arid regions, leading to further coupling of
GPP-ET. In contrast, in temperate regions, warmer temperatures might
extend the growing season, leading to complex, region-specific responses in
CWC38 (Fig. 4). Solar radiation, which drives photosynthesis, can also
influence CWC. Changes in radiation, whether due to cloud cover, atmo-
spheric aerosols, or shifts in the Earth’s energy balance, can alter the CWC
by affecting the amount of energy available for photosynthesis and ET. For
example, changes in solar radiation may have significantly contributed to
increased water constraints on vegetation in the NH over the past few
decades26. Changes in the intensity, frequency, and seasonal distribution of
precipitation can significantly impact both GPP and ET39. In regions with
increasing precipitation, the enhanced water availability may decrease the
GPP-ET correlation, whereas in regions experiencing declining rainfall,
water stress could further enhance the coupling7. In addition to the climatic
factors, disturbances (e.g., deforestation, wildfire) could also contribute to
the decline of CWC, which can be a good subject in future research30. To
examine whether the dominant factors consistently influence correlation
dynamics throughout the study period, we employed a moving window
method to analyze the evolving area fractions controlled by CO2,

precipitation, solar radiation, and air temperature (Supplementary Fig. 12).
Overall, CO2 has maintained a dominant controlling effect throughout the
study, with its influence gradually increasing. As CO2 levels are projected to
continue rising in the future, the relationship between GPP and ET may
become increasingly uncertain.

Since similar environmental and physiological processes influence
bothCWCandWUE, our results also have divergent implications forWUE
dynamics. If GPP and ET are becoming less synchronized, it indicates that
external drivers such as rising CO₂ levels and climate variability are altering
the balance between carbon assimilation and water fluxes. In particular,
rising atmospheric CO₂ enhances photosynthesis while reducing stomatal
conductance, which can increase WUE at the leaf level23. However, at the
ecosystem scale, this effect may be offset by increased evaporative demand
due to warming and increasedVPD4, changes in precipitation patterns, and
vegetation structural adjustments8, leading to spatially variable WUE
responses. To better understand these interactions, future studies should
investigate the extent to which the observed CWC decline translates into
changes in WUE at different spatial and temporal scales. The observed
decoupling trend of carbon andwater fluxes has significant implications for
the functioning of ecosystems and their ability to provide critical services
such as carbon sequestration and water regulation40,41. The decline in
carbon-water coupling suggests that the carbon and water cycles are
becoming increasingly decoupled, which may signify that the ecosystems
are reshaping their eco-hydrological balances under the elevatedCO2

34. This
coupling could also alter the feedback loops that regulate climate-vegetation
interactions14. This trend could reduce the ability of ecosystems to buffer
climate change through carbon sequestration, as the efficiency of water use
becomes more variable and less predictable. Such a shift would have pro-
found implications for climate change mitigation strategies that rely on the
carbon sink function of terrestrial ecosystems42. The weakening CWC also
disrupts land-atmosphere feedbacks, which regulate the exchange of water,
carbon, and energy between ecosystems and the atmosphere. A strong
correlation between GPP and ET ensures that as ecosystems take up more
carbon through photosynthesis, they also transpire more water, helping to

Fig. 4 | Control factors of carbon-water coupling during 2001-2018. a Control
factors of carbon-water coupling derived using partial correlation analysis (PC).
b Control factors of carbon-water coupling derived using LMG analysis. Tables
indicate the proportions of controlled areas by each factor. SR, Pre, and Temp

indicate the solar radiation, precipitation, and air temperature. Dot-shaded areas
represent regions with significant trends (p < 0.05). In the pie chart, the outer ring
represents the total controlled area, while the inner ring indicates the proportion of
the significantly controlled area.
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cool the land surface and moisten the atmosphere9,12,43. This cooling and
increased atmospheric moisture can enhance cloud formation and pre-
cipitation, providing critical feedback that stabilizes ecosystems and reg-
ulates local and regional climates, especially in regions prone to extreme
weather events like droughts and heatwaves44. When ecosystems become
less synchronized in their carbon and water cycles (weakening CWC
strength), they lose their ability to regulate local climates through eva-
porative cooling and precipitation recycling45. This makes ecosystemsmore
vulnerable to extreme climate events, such as prolonged droughts and
heatwaves, which can further stress vegetation and reduce productivity46.
Reduced moisture recycling, caused by the weakening CWC, exacerbates
drought conditions, creating a negative feedback loop that further weakens
the CWC, intensifies ecosystem stress, and reducing water availability39. In
summary, with changing CWC strength, relying on natural ecosystems to
achieve carbon neutrality goals is becoming increasingly uncertain.

Land surface models exhibited substantial discrepancies from in situ
and satellite-derived observations in depicting the trend of the CWC
strength.Whilemostmodels captured the correlationbetweenGPPandET,
many land surface models included in the TRENDY project have failed to
adequately replicate the correlation trend (Supplementary Fig. 9). We fur-
ther explored the reasons underlying the failure of these models to capture
the correlation trend (Fig. 5). Our findings reveal that the majority of the
models, with the exception of VISIT-NIES, underestimated the negative
influence of CO2 on the trend of GPP-ET correlation, and even predicted a
positive effect of CO2 on this correlation trend. This discrepancy stands in
stark contrast to remote sensing observations (Fig. 4). Such inaccuracies
may stem from the utilization of diverse stomatal conductance equations
across the TRENDYmodels, which results in varied vegetation responses to
CO2 and subsequently leads to different predictions of GPP-ET coupling
and its trend47. The representation of stomatal conductance (gs) in land
surface models plays a critical role in simulating the interactions between
carbon and water fluxes. Most models employ variations of the Ball-Berry
(BB) or Medlyn (M) or Leuning approach11,48,49, these approaches link gs to
GPP,CO₂ concentration, and relative humidity (RH). TheBBmodel, which
expresses gs as (GPP × RH)/CO₂, results in complex interactions under
rising CO₂ levels: while increased CO₂ enhances photosynthesis, it simul-
taneously reduces gs, leading to a partial suppression of transpiration and
total ET. This formulation suggests that in arid regions, where soil moisture
limitations constrain GPP responses to CO₂ fertilization, the decoupling
between GPP and ET may be more pronounced4. In contrast, in humid
environmentswherewater ismore available, bothGPPandETmay increase
in a more synchronized manner, leading to weaker decoupling8. Therefore,
the development of a universal and accurate stomatal conductancemodel is
essential to improve the simulation of vegetation responses to CO2 effects in
climate models50. Moreover, more than half of the models (seven out of a
total of 13) predicted positive effects of climate change on GPP-ET corre-
lation trends, underscoring the need for more accurate projections of
vegetation responses to climate change within these models. Currently,
these model limitations hamper our ability to make accurate predictions

about the impacts of future climate change on carbon and water dynamics,
and by extension, on the global climate system itself. This underscores the
urgent need for land surface models to more accurately capture the spatial
and temporal dynamics of carbon-water coupling. It is essential to incor-
porate more sophisticated representations of the physiological responses of
plants to elevated CO2, as well as the complex feedbacks between carbon,
water, and other environmental factors like temperature, solar radiation,
and precipitation51,52. Strengthening these aspects of the models will likely
enable better understanding of how ecological and hydrological processes
interact and how these interactions influence and are influenced by climate
change. In addition, while we have analyzed trends in CWCacross different
ecosystem types, a more direct comparison based on moisture limitation
would provide additional insights into the spatial variations of GPP-ET
decoupling1. Future studies should explicitly quantify trends as a function of
moisture availability, for example, by examining relationships with soil
moisture indices or aridity metrics, to better assess how different gs for-
mulations influence model predictions of carbon-water interactions.

While our results reveal a general decline in CWC across theNorthern
Hemisphere, discrepancies exist between site-level ECobservations andRS-
derived estimates. Specifically, our comparison (Supplementary Fig. 13)
indicates that only 56.3%of EC sites exhibit trends consistentwithRS-based
ensemble estimates, while the remaining sites show inconsistencies. These
discrepancies likely stem from multiple sources of uncertainty inherent in
both datasets. First, EC-based measurements provide high-temporal-reso-
lution, site-specific observations that capture local environmental varia-
tions, whereas RS-derived estimates represent spatially aggregated values
that smooth out small-scale heterogeneity53. Differences in land cover,
vegetation structure, and microclimate conditions surrounding EC towers
may not be adequately represented in RS products, leading to potential
mismatches in CWC trends. Second, uncertainties in RS retrieval algo-
rithms, sensor limitations, and data processing techniques can introduce
biases. Factors such as cloud cover, atmospheric correction errors, and
variations in satellite overpass times may contribute to discrepancies
between EC and RS-based estimates54,55. Third, the number and spatial
distribution of EC sites used in this study are limited, whichmay contribute
to the relatively low proportion of sites showing agreement with RS-based
trends. The EC sites included in our analysis are mainly located in Europe
and central North America, while other regions, especially arid and semi-
arid ecosystems, are underrepresented. This uneven distributionmay affect
the overall consistency between EC and RS datasets. Despite these limita-
tions, the general consistency observed inmore thanhalf of theEC siteswith
RS estimates supports the robustness of our findings.

In conclusion,we show thatCWCstrength in northern ecosystems has
declined, driven primarily by rising CO₂ levels, with contributions from
other climatic factors. This decoupling trend may indicate that the ecosys-
tems in the Northern Hemisphere are reshaping their eco-hydrological
balances due to the elevated CO₂ levels. The failure of most land surface
models to capture this trend highlights an urgent need for enhanced
modeling approaches that incorporate the decoupling effects ofCO₂ and the
complex interplay of climate variables. As atmospheric CO₂ continues to
rise, refining these models is critical for improving climate projections and
developing strategies tomitigate the impacts of climate change on terrestrial
ecosystems.

Materials and methods
Study area and flux data
Our study focused on the NH extratropical terrestrial ecosystems (≥23.5°N,
Fig. 6). We first collected GPP and ET data from 80 sites in the global eddy
covariance flux database FLUXNET201556. These data were detrended for
the growing season (April toOctober) during the corresponding period.We
then conducted an interannual variability correlation analysis. Temporal
dynamics of the GPP-ET correlation (Pearson’s correlation coefficients)
were analyzed using a 5-year moving window. Note that FLUXNET’s GPP
and ET data are only available until 2014, so we analyzed the 5-yearmoving
correlationbetweenECGPP-ET for theperiod 2001-2014, yielding a total of

Fig. 5 | Attributions of GPP-ET correlation trend using the 13 models from
TRENDY project.

https://doi.org/10.1038/s41612-025-01059-z Article

npj Climate and Atmospheric Science |           (2025) 8:161 6

www.nature.com/npjclimatsci


10 time points. We applied specific criteria for data selection, including a
continuous time length of over six years and high-quality gap-filling within
each year. This ensured thatwe could analyze the 5-yearmoving correlation
of EC GPP-ET. Overall, we obtained data from 26 sites with recording
lengths between 6 and 8 years, 25 siteswith recording lengths between 9 and
11 years, and 29 sites with recording lengths of more than 12 years (Fig. 6).
These 80 sites encompass various land cover types: 23 evergreen needle-leaf
forests (ENFs), 13deciduous broadleaf forests (DBFs), 2 evergreenbroadleaf
forests (EBFs), 14 grasslands (GRAs), 11 croplands, 6 open shrublands
(OSHs), 5 wetlands (WETs), 3 mixed forests (MFs), 2 woody savannas
(WSAs), and 1 closed shrubland (CSH). GPP and latent heat flux (LE) data
were collected from these sites, and LEmeasurements converted to ET.GPP
was calculated fromthenet ecosystemexchange (NEE)measurementsusing
the nighttime partitioning approach.

Satellite-derived data
We utilized four satellite-derived GPP datasets and three satellite-derived
ET datasets to investigate changes in the RS GPP-ET coupling over the past
19 years. TheGPP datasets include estimates from the EC-LUEmodel (EC-
LUE GPP)57, VPM model (VPM GPP)58, MODIS (MODIS GPP)59, and
PML model (PML GPP)60. The EC-LUE model is an approach that inte-
grates eddy covariance observations with the concept of light use efficiency
to estimate gross primary productivity in terrestrial ecosystems. The input
data for this model include air temperature, dew point temperature, and
photosynthetically active radiation, which are derived from NASA’s global
atmospheric reanalysis dataset,MERRA-2.Additionally, land cover data are
obtained from the MODIS sensors aboard the Terra and Aqua satellites,
while LAI is sourced from the GLASS dataset, which is a fusion of AVHRR
(1981–2000) and MODIS (2000–present) data and relies on MODIS sen-
sors. The VPM model incorporates vegetation characteristics and meteor-
ological data to estimate photosynthesis rates and productivity. VPM
primarily relies on MODIS remote sensing data (MOD09A1 C6: EVI and
LSWI, MYD11A2 C6: Nighttime LST and MCD12Q1 C51: Land cover

type), NCEP Reanalysis meteorological data (for air temperature and
photosynthetically active radiation estimation), and static vegetation data
from Earth Stat and ISLSCP (for spatial distribution of C4 crops and
grasslands). MODIS GPP is derived from MODIS observations, analyzing
vegetation indices, solar radiation, and temperature to provide consistent
GPP estimates across different regions. The PML utilizes meteorological
forcing data from GLDAS-2.1, including precipitation, air temperature,
vapor pressure, shortwave downward radiation, longwave downward
radiation, and wind speed. Monthly atmospheric CO₂ concentrations are
sourced fromNOAA’s global average oceanic surface data. Remote sensing
inputs are derived fromMODIS Collection 6 products, including LAI from
MCD15A3H.006, albedo fromMCD43A3.006, and surface emissivity from
MOD11A2.006.

In addition to GPP data, we also used satellite-derived leaf area
index (LAI), enhanced vegetation index (EVI), normalized difference
vegetation index (NDVI), and solar-induced fluorescence (SIF) to
examine the carbon-water coupling. The vegetation data comprises
MODIS EVI, MODIS LAI, MODIS NDVI61, and SIF62. EVI enhances
vegetation monitoring in high biomass areas by correcting atmospheric
and soil background effects. LAI measures the total leaf area per unit
ground area. NDVI estimates vegetation health and density by measuring
the difference between near-infrared and red light reflectance. SIF, an
energy flux emitted by vegetation canopies during photosynthesis, cor-
relates strongly with GPP and is widely used as a proxy of GPP63. The SIF
data are derived from the global OCO-2-based SIF product, GOSIF62.

ET data were obtained from three sources: MODIS64, PML60, and
GLEAM65. The MODIS ET data, computed using the MOD16 algorithm,
integrates remote sensing information with land surface models. The PML
ET data combines the Penman-Monteith equation with the Leuning pho-
tosynthesis model to estimate ET. The GLEAM ET data utilizes remotely
sensed soil moisture, vegetation, and surface temperature data, along with
meteorological inputs, to provide comprehensive ET estimates. Prior to our
analysis, all datasets were bilinearly resampled to a spatial resolution of 0.25

Fig. 6 | EC tower sites collected from different ecosystems in the Northern Hemisphere. The inserted barplot indicates the EC tower numbers in each year gap.
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degrees. We used four sets of GPP/vegetation index data combined with
three sets of ET data to explore the CWC relationship and its evolution
patterns, resulting in a total of 12 carbon-water coupling changes under each
indicator during the study period of 2001−2018.

Land surface model simulations
In this study, we utilized GPP and ET outputs from 13 process-based eco-
system models: CABLE_POP, CLASSIC, CLM5.0, DLEM, IBIS, ISBA_C-
TRIP, JSBACH, JULES, LPJ_GUESS, ORCHIDEE, VISIT_NIES, and
VISIT. These models adhered to the protocol established by the historical
climate carbon cycle model intercomparison project (TRENDY V12)66.
Each model was initialized from its pre-industrial equilibrium, set at the
beginning of the 1900s, and run through to 2020 under three distinct sce-
narios. In this study, we employed the S3 scenario, which represents real-
world conditions where models are driven by observed historical climate
variations, rising CO2 concentrations, and land use changes. All models
provided estimates for both GPP and ET. To facilitate comparison with
satellite observations, we bilinearly resampled the GPP and ET outputs to a
spatial resolution of 0.25°.

Moving correlation analysis
This study focused on the correlation between interannual variations in
carbon and water across the Northern Hemisphere (NH) extratropical
regions from 2001 to 2018. The GPP, NDVI, LAI, SIF, and ET were
aggregated based on growing season values, defined as April through
October, following previous definitions26,28. To quantify the spatio-
temporal changes in carbon-water coupling evolution over the past
two decades, we applied a 5-year moving window for each grid cell,
indexing the results to the middle year. For instance, the GPP-ET
correlation for 2003 represented the correlation over the period from
2001 to 2005. This 5-year moving window approach ensured that
sufficient time series points were available to reflect correlation
fluctuations. Within each calculation period, data were detrended to
accurately determine the correlation between interannual variations.
After calculating the 5-year moving window correlation, the non-
parametric Theil-Sen slope estimator67,68 was employed to conduct
the trend analysis. The significance (p < 0.05) of these trends was
assessed using the Mann–Kendall test69,70.

Attribution analysis
The contributions of climate factors (mean annual air temperature, pre-
cipitation, and shortwave solar radiation (SR)) and atmospheric CO2 to the
observed trends of carbon-water coupling changes were assessed using two
methods. A linear regression model was developed using GPP-ET corre-
lation as a function of mean growing season air temperature, precipitation,
SR, and growing season CO2 in each 5-year moving window for each grid
cell. The most important factor driving correlation dynamics was deter-
mined according to the absolute partial correlation (PC) coefficients of each
factor32. To evaluate the robustness of the attribution analysis based on
regression models, we also used Lindeman, Merenda, and Gold (LMG)
relative importance algorithm to test the relative importance of each factor
in driving correlation changes. LMGattribution analysis is amethodused to
assess the relative importanceofmultiple predictors in explaining a response
variable. It decomposes the total variance explained by a set of variables into
contributions from each variable and calculates these contributions based
on the average contribution of each predictorwhen it is included in different
model combinations71. This method was implemented in R using the
“relaimpo” package.

Data availability
The FLUXNET 2015 datasets are available at https://fluxnet.org/data/
fluxnet2015-dataset/, the EC-LUE GPP is available at https://essd.
copernicus.org/articles/12/2725/2020/, the VPM GPP is available at
https://data.tpdc.ac.cn/zh-hans/data/582663f5-3be7-4f26-bc45-
b56a3c4fc3b7/, theMODISGPPwas downloaded from https://lpdaac.usgs.

gov/products/mod17a2hv006/, the PML GPP is available at https://www.
nature.com/articles/srep19124/. ET of MODIS, PML, and GLEAM are
available at https://lpdaac.usgs.gov/products/mod16a2v006/, https://data.
tpdc.ac.cn/zh-hans/data/48c16a8d-d307-4973-abab-972e9449627c/, and
https://www.gleam.eu/. EVI, LAI, and NDVI data from MODIS are avail-
able at https://lpdaac.usgs.gov/products/mod13q1v061/, https://lpdaac.
usgs.gov/products/mod15a2hv006/, and https://lpdaac.usgs.gov/products/
mod13q1v061/. SIF was collected from https://globalecology.unh.edu/data/
GOSIF.html. Atmospheric CO2 data was collected from https://doi.org/10.
3974/geodb.2021.11.01.V1.
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