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This study applied Positive Matrix Factorization (PMF) to PM10 speciation datasets from 24 urban sites
across six European countries (France, Greece, Italy, Portugal, Spain, and Switzerland) to perform a
detailed source apportionment (SA) analysis. By using a consistent source apportionment tool for all
datasets, the study enhances the comparability of PM10 SA results across urban Europe. The results
identified seven major PM10 sources including road traffic, biomass burning, crustal/mineral sources,
secondary aerosols, industrial emissions, sea salt, and heavy oil combustion (HOC). Road traffic
emerged as the predominant source of PM10 in urban areas, with contributions varying by location, but
representing as much as 41% in high-traffic zones. Biomass burning was detected at 23 sites,
contributing 8% to 41% on yearly averages, with substantial increase in winter. Crustal sources were
present at all sites (3–33%). Industrial sources contributed relatively less PM10 mass, which was
identified at 10 sites with contributions ranging from 2% to 14%. Secondary inorganic and organic
aerosol, consisting primarily of ammoniumnitrates and sulfates, and organicmatter, formed a portion of
the PM10mass (5–41%). These secondary factors are primarily influenced by anthropogenic emissions,
including thevariouscombustionprocesses.Seasalt, predominantly found incoastal areas,contributed
between 4% and 21%, reflecting the impact of the marine environments on air quality. This source was
very often ‘aged’ (mixed with anthropogenic pollutants from different origins). Additionally, HOC,
especially emits fromshippingactivities, and tracedbyVandNi,was alsoa frequent contributing source
(2–15% for 9 sites), indicating a need for more stringent emission controls. The chemical comparison is
performed which indicates road traffic and secondary aerosols, showed consistent chemical profiles
across sites, while industrial, HOC, and crustal sources displayed significant site-specific variability.
These findings underscore the need for tailored air quality strategies according to local sources of
emissions and the importance of long-term PM speciation monitoring for effective pollution control.

Particulatematter (PM) is a complex and harmful atmospheric pollutant1–3.
The toxicity of PM is determined by its physicochemical properties,
including size, shape, and composition, which affect deposition in different
regions of the respiratory tract and subsequent biological responses4. Par-
ticle behavior in the atmosphere and respiratory system largely depends on

these properties, especially size. The size range of particles extends from
nanometers to tens of micrometers, which also influences their behavior in
the respiratory system. PM10 encompasses all ambient particulate matter
with an aerodynamic diameter less than or equal to 10 μm. Particles in these
size ranges canpenetrate the initial defenses of thenose, throat, penetrate the
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larynx, and deposit along the thoracic airways. Therefore, theWorldHealth
Organization (WHO)‘s 2021 air quality guidelines proposed a 24-h average
concentration limit for PM10 at 45 μg/m³, while the European Union (EU)
has adopted the same daily limit in latest European AQ Directive (2024/
2881/EC)5, allowing no more than 18 exceedances per calendar year.

Despite significant improvements in air quality across the EU over the
past three decades6, air pollution remains the leading environmental factor
contributing to premature mortality1,7,8. In a recent study, we analyzed the
spatiotemporal distribution of 20 trace elements at 55 monitoring sites
across Europe from 2013 to 20229, revealing that these trace element con-
centrations have decreased substantially compared to a decade ago
(2006–2015). Unfortunately, concentrations of PM10 have not fallen at the
same rate, and health risks are still substantial in many types of
environments9. This underscores the need for source apportionment studies
to identify PM10 sources and implement targeted control measures, parti-
cularly given the variability in pollutant composition and trends across sites,
suggesting diverse origins9,10.

Globally, extensive PM10 source apportionment has been conducted.
Reviews by Viana et al.11 and Hopke et al.12, among others, have identified
road traffic, biomass burning, heavy oil combustion (HOC),mineralmatter,
sea salt, and industrial emissions asmajor sources contributing to urbanPM
concentrations. Additionally, a substantial portion of PM, if not the largest,
is attributed to secondary inorganic and organic aerosols (SIA and SOA,
respectively). These studies have informed regional air qualitymanagement;
however, most European research on assessment of PM sources has been
limited to short-term analyses at individual sites13–17, even if some synthesis
exist for France18 and Switzerland19. This highlights the need for long-term,
transnational, andmulti-site studies over Europe to better understandPM10

sources anddevelop effective strategies to protect urbanpopulations’health.
However, the scarcity of long-term PM10 speciation data in urban

Europe poses a challenge for effective source apportionment. RI-URBANS
(Research Infrastructures Services Reinforcing Air Quality Monitoring
Capacities in European Urban & Industrial Areas, funded by the European
Union’s Horizon 2020 research and innovation program, 101036245) aims
to develop and apply advanced air quality tools that complement existing air
quality monitoring networks (AQMNs). In this study, the tool is applied
through detailed PM10 chemical characterization and source apportion-
ment using receptor modeling, contributing to improved understanding of
pollution sources and their health implications in urban environments. The
present study focuses on the collection and evaluation of data from24urban
monitoring stations with extensive measurements of chemical tracers
located across six European countries (France,Greece, Italy, Portugal, Spain
and Switzerland). To identify PM sources, Positive Matrix Factorization
(PMF) was applied individually at each site due to its capability to handle
complex datasets and resolve multiple sources without requiring prior
information about the sources12,18,20–23. This standardized approach enables a
more comprehensive understanding of air pollution patterns in Europe,
ultimately facilitating the formulation of effective strategies to improve air
quality in European cities.

Results and discussion
Overview acrossmonitoring sites of the concentrations used for
the inputs of the PMF studies
The study compared the concentration variations of 32 detected metrics
across all sites and different types of monitoring sites (UB, TR, IND, SUB)
(Fig. 1 and Supplementary Fig. 1). To assess whether the distributions of
PM10 component concentrations conformed to normality assumptions, we
applied theKolmogorov–Smirnov test. The results showed thatmost species
exhibited non-normal distributions across sites, and thus non-parametric
methods were used for subsequent statistical comparisons. Subsequently,
Dunn’s post hoc test24 was conducted to compare differences in the same
metrics among paired monitoring site types. The results of the overall
Kruskal-Wallis test25 indicated significant differences among monitoring
sites for most species, except for Na, Mg, K, Ca, Cr, Rb, Cd, Sn, Sb, and Cl-

(see Supplementary Table 1). Figure 1 illustrates that the main components

in the PM10 at all sites are OC, EC, Fe, Al, Na,Mg, K, Ca, and inorganic ions
(NH4

+, Cl-, NO3
-, and SO4

2-). For a detailed description of these chemical
speciation concentration ranges at different site types, refer to the Supple-
mentary section 1 and Liu et al.9.

In addition, Pearson correlation analysiswas conductedon the species-
to-PM10 ratios across different locations (see Supplementary Fig. 2). Using
ratios rather than absolute concentrations helps minimize the influence of
mass loading variability across sites and emphasizes the compositional
similarities that are more indicative of common emission sources. This
analysis revealed robust positive correlations among certain relative abun-
dances, suggesting shared geochemical characteristics or common
sources9,26. For a more detailed discussion of overall correlations, seasonal
variations, and different types of monitoring sites in metrics (UB, TR, IND,
SUB), refer to our previous study9, which also demonstrated that specific
indicators serve as reliable markers for source apportionment. Meanwhile,
the study also found that all concentrations showed significant differences
across the various monitoring sites (Fig. 1), with industrial and traffic areas
tending to have higher concentrations of most indicators, reflecting the
greater impact of industrial and traffic-related pollution27,28. For instance, at
TR sites, components such as OC, EC, Cr, Cu, Zn, As, Rb, Sn, Sb, and Ba
showed elevated levels. This is primarily because traffic sites are exposed to
high vehicular emissions, brake wear, and tire wear, which contribute sig-
nificantly to the levels of these elements28,29. In contrast, atUB sites, elements
such asNa orNa+, Mg orMg2+, Al, Cl-, K, Ca or Ca2+, Ti, V,Mn, Fe,Ni, Cd,
and Pb were more prominent. The higher levels of these elements in UB
areas can be attributed to a combination of sources, including resuspended
road dust, domestic activity, industrial emissions transported over longer
distances, and natural sources such as sea spray and soil dust30,31.

With respect to SIA, DEM_SUB particularly, located 10 kmnorth-east
of downtown Athens at an altitude of 280m a.s.l, surrounded by Medi-
terranean vegetation (mainly pine trees), displayed notably higher con-
centrations of secondary inorganic ions NH4

+ and SO4
2- in agreement with

results from Eleftheriadis et al.32 and Vasilatou et al.33. It suggests the sig-
nificant impact of photochemical transformation and regional transport of
precursors such as NH3 and SO2 to this region. However, it’s important to
recognize that these conditions may not fully represent general suburban
conditions across Europe.

PM10 source apportionments
As shown in Fig. 2, solutionswith 5–9 factors provided themost suitable and
reliable outcomes across the 24 monitoring sites, based on the stability of
factor profiles and their alignment with known pollution sources11,12,34. In
summary, sources of ambient PM10 have been grouped into 7 categories:
road traffic (including exhaust and non-exhaust vehicle emissions), biomass
burning, a crustal source, a SIA+ SOA, industrial source, sea-salt source, a
mixed fuel-oil combustion (with or without shipping), and other specific
sources. The identification of each source was based on the presence and
relative contributions of well-established chemical markers, as summarized
in Supplementary Table 2. These solutions illustrate the contributions of
various pollution sources to PM10 concentrations, with road traffic, biomass
burning, crustal, and secondary sulfate sources being the most common
(identified at 22–24 sites). By contrast, industrial and sea-salt sources were
less frequently identified, reflecting their more localized or episodic con-
tributions.Meanwhile, the source profiles identified by the PMF analysis are
shown in Supplementary Fig. 3 and the temporal series of each source
contribution to PM10 are displayed in Supplementary Fig. 4. By comparing
PM10 contributions across sites, differences in source contributions are evi-
dent for urban, suburban, and industrial areas. A notable limitation in this
study is the inconsistent inclusion of key tracers across sites. For example,
levoglucosan, an important marker for biomass burning, was only available
at 9 of the 24monitoring sites. Sensitivity analyses at these nine sites revealed
that biomass burning could still be identified at eight sites even in the absence
of levoglucosan,with comparable contribution estimates (see Supplementary
Fig. 5). However, at one site (ZUR_UB), the biomass burning factor could
not be resolved without levoglucosan. This suggests that while levoglucosan
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enhances source resolution and quantification, its absence does not inevi-
tably lead to source misclassification, although it may increase uncertainty.
These findings highlight the need for harmonized chemical speciation pro-
tocols in multi-site studies to ensure reliable and comparable source
apportionment, especially for sources with overlapping chemical profiles.

Overall comparison of source contributions: profiles and tem-
poral variability
The similarities among all the chemical profiles identified in this study were
first analyzed using tools developed within the framework of FAIRMODE
(Forum for Air Quality Modeling) activities, as presented by Belis et al.35,

Fig. 1 | The concentrations of metrics at different types monitoring sites (UB urban background, TR traffic, UI urban industry, SUB suburban).
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based on the relative chemical profile of runs under a unified protocol. PMF
factor profiles attributed to specific source categories were compared using
two similarity indicators: PD (Pearson Distance) and SID (Standardized
Identity Distance). Factors identified at certain sites were excluded from this
analysis when they exhibited significant mixing with other emission sources,
making themless representativeof adistinct source category.TheSIDandPD
analysis was performed after the pollution sources were resolved using PMF,
specifically to compare the similarity of factor profiles across different sites.
Figure 3 illustrates the mean and standard deviation of distances between all
pairs of factor/source profiles tagged as belonging to the same category in the
SID-PD space. This comparison involves n×(n+ 1)/2−n profile pairs for
each category,wheren represents the number of profiles assigned to a specific
source category (Fig. 3). The results revealed that the chemical profiles for
road traffic, secondary sulfate, secondary nitrate, biomass burning, and sea
salt exhibit homogeneity across the study sites, indicating their international
stability (Fig. 3). In contrast, local sources such as industrial,HOC, and crustal
sources showed greater variability in their chemical profiles (PD> 0.4),
reflecting site- or country-specific differences in these sources (Fig. 3).

Specially, the crustal source may be influenced by desert dust. For example,
the DEM_SUB site is affected by Saharan dust events33, which suggests that
desert dust might be incorporated into the crustal source without being
separately resolved, thereby contributing to the observed variability.

In addition, the analysis of road traffic, secondary sulfate, secondary
nitrate, biomass burning, and sea salt profiles confirmed homogeneity
across most monitoring sites (see Supplementary Fig. 6). However, varia-
bility was observed in the PD-SID results for industrial, HOC, and crustal
sources. In detail, for industrial sources, chemical composition varies
depending on the specific source at each site. Three sites—MRS-AIX_UB,
MAD-EV_UB, and GRA_UB—exhibited substantially different chemical
profiles compared to other sites, as indicated by PDvalues. RegardingHOC,
the SID values across all sites remained within the similarity threshold.
However, PD analysis revealed differences in the major mass fraction
components of this source. The primary component driving these differ-
ences in HOC chemical profiles is likely sulfate36, which ranged from 0% to
60% across the profiles (see Supplementary Fig. 3). For crustal sources, the
chemical profile markers showed clear country-specific characteristics

Fig. 2 | Quantitative source apportionment (with PMF) of mean PM10 concentrations for 24 locations across 6 countries in Europe.

Fig. 3 | Similarity plot for all chemical profile in
24 sites of profiles belonging to the same factor/
source category in this study.Themean ± standard
deviation for a given source category is plotted. The
size of the dot is proportional to the number of
available pair of profile (from 10 to 276, shown in
parenthesis in the legend). The green box highlights
the acceptable area for profile similarity according to
Pernigotti and Belis118.

https://doi.org/10.1038/s41612-025-01097-7 Article

npj Climate and Atmospheric Science |           (2025) 8:255 4

www.nature.com/npjclimatsci


highlighting that dust profiles are very local and can’t be extrapolated easily
(in aCTMmodel for example).While the PDand SID valueswere generally
similar across sites, exceptions were noted for certain locations in Portugal
and Spain, such as COIM_TR, GIJ_UI, and BAI_UI. The SID values for all
sites were below 1, indicating overall homogeneity in the chemical profiles
when considering all components. However, PD values exceeding 0.4
highlight differences in themajor mass fraction of crustal dust, likely due to
the mixing of road dust and mineral dust.

Additionally, we used the K-W test and Dunn’s test to compare tem-
poral relative contributions of the same source type across sites. These
analyses found significant differences (p < 0.05) between certain site pairs
(see Supplementary Tables 3-10). For example, in the case of road traffic
sources, CA_UB exhibited significant differences compared to COIM_TR,
DEM_SUB, MAG_UB, ZUR_UB, MAD-EV_UB, GRE-fr_UB, GRE-
vif_UB, LEN_UB, MRS-LCP_UB, and MRS-AIX_UB (p < 0.05). These
results demonstrate that, while the chemical profiles of road traffic sources
are overall similar, their temporal contributions may vary significantly due
to local factors such as traffic patterns, meteorological conditions (e.g.,
thermal inversions in valleys), and emission intensities, leading to localized
variability, which could be more accurately captured with higher temporal
resolution data, such as daily or hourly measurements.

Similar patterns were observed for other sources. However, when
analyzing secondary sulfate, the variability between sites was relatively
smaller. Significant differences were only observed between PORT_TR and
other sites, including BAS_UB, CA_UB, COIM_TR, ZUR_UB, GIJ_UI,
MAD-EV_UB, CHAM_UV, GRE-cb_UB, GRE-fr_UB, and GRE-vif_UB.
No significant differenceswere detectedamongother site pairs,which aligns
with the previously discussed observation that sulfate sources tend to be
spatially distributed over larger regions37,38. This result is due to their for-
mation processes and dispersion characteristics, which result in a more
uniform distribution on regional scales.

Road traffic
Road traffic is a predominant sourceofPM10 inurbanenvironments atmost
monitoring sites. Despite advancements in emission control technologies
for both diesel and gasoline vehicle engines, emissions from exhaust (tail-
pipe) and non-exhaust sources (e.g., tire and brake wear and re-suspended
road dust) continue to be significant concerns28,29,39. According to the Eur-
opean Environment Agency report, road transport primary emissions
contributed to 11%of total PM10 to the emission inventories in theEU-28 in
201740. In our study, road traffic sources contributions were identified at all
siteswith contributions toPM10 ranging from5%to41%(Fig. 2).This factor
is probably a lower limit since it does not include all the secondary formation
of SIA (from NO2 emissions) nor SOA (from VOC emissions).

At specific sites such as MRS-LCP_UB, MRS-AIX_UB, and
PORT_TR, traffic source contributions exceeded 30%, highlighting the
substantial impact of road traffic on air quality in these areas. Conversely,
sites like MAD-EA_TR, LEN_UB, MAG_UB, and DEM_SUB had traffic
contributions below 10%, suggesting varying levels of traffic-related pollu-
tion across different urban settings and locations into a city. The variation in
traffic source contributions across different monitoring sites can be attrib-
uted to several factors, including the density of vehicular traffic41, the
effectiveness of local emission control policies42, and the urban
infrastructure43. High traffic density in urban centers typically leads to ele-
vated PM10 concentrations from both exhaust and non-exhaust emissions.
These “non-exhaust” sources contribute as much, and often more, to
ambient PM10 concentrations in cities than tailpipe exhaust44,45. Moreover,
urban sites near highways or busy intersections tend to show higher pol-
lutant concentrations from the constant vehicular activity. For instance, the
higher contributions at MRS-AIX_UB and MRS-LCP_UB could be linked
to their locations near major traffic routes.

Biomass burning
Biomass burning is a major source in many regions, contributing sub-
stantially to average ambient PM10 concentrations

46. Except for BCN_UB,

biomass burning sources were identified at all other 23 sites, with large
variations in their average contributions (10-41%). Specifically, the high
contribution at CHAM_UV, CA_UB, BAI_UI, COIM_UB, COIM_TR,
and MAG_UB, each exceeding 30%, indicated a substantial impact of
biomass burning on local air quality. For example, in the intramountainous
valleys of CHAM_UV,while natural gas is the primary source of household
heating47, biomass burning (e.g., wood or pellet stoves used as supplemen-
tary heating) still contributes substantially to PM10 concentrations, likely
due to coldwinter conditions, topographical factors, and traditional heating
practices.Conversely, the lower contributionatZUR_UB(10%) suggest that
the area may have fewer biomass burning activities or have implemented
more effective control measures. Therefore, as for road traffic, the sub-
stantial contributions in these areas underscore the need for effective
management and mitigation strategies to control biomass burning emis-
sions. For the two monitoring sites in Marseille, Longchamp (MRS-
LCP_UB) and Aix-en-Provence (MRS-AIX_UB), PMF source apportion-
ment identified a mixed source of biomass burning and secondary nitrate,
especially during winter and early spring (see Supplementary Fig. 4). This
phenomenon is not unique to Marseille but is also observed at other sites
where secondary nitrate was identified. This finding aligns with previous
study48 and is typically attributed to lower temperatures and higher relative
humidity, which shift the partitioning of semi-volatile ammonium nitrate
toward theparticle phase49,50. Additionally, organic nitrates are an important
component of organic aerosols (OA) in Marseille, leading to the mixed
source of biogenic aerosols and secondary nitrate48.

Furthermore, seasonal variations in biomass burning sources (see
Supplementary Fig. 4) show that contributions inwinter are generallymuch
higher than in summer for all sites. This is primarily due to increasedheating
demandand stable atmospheric conditions inwinter51,52, which intensify the
impact of biomass burning.

Crustal sources
PM10 contributions from crustal sources were identified at all sites (Fig. 2).
Out of the 24 sites, 13 (CHAM_UV, GRE-cb_UB, GRE-fr_UB, GRE-vif_-
SUB, LEN_UB, MRS-AIX_UB, CA_UB, FLO_SUB, COIM_TR, COI-
M_UB, BER_TR, PAY_UB, and ZUR_UB) had contributions from crustal
sources below 10%. Another 10 sites (MRS-LCP_UB, DEM_SUB,
PORT_TR, BCN_UB, GRA_UB, MAD-EA_TR, MAD-EV_UB, BAS_UB,
and MAG_UB) showed crustal source contributions ranging from 13% to
17%. However, BAI_UI andGIJ_UI had notably higher contributions from
crustal sources, at 25% and 33%, respectively. These elevated contributions
were primarily due to the influence of the industrial environments around
thesemonitoring sites, especially the ceramic industry near BAI_UI (Bailen,
SE Spain), and various industrial activities aroundGIJ_UI (Gijon, Northern
Spain). These activities at GIJ_UI include steel manufacturing (e.g., Arcelor
Mittal Ltd.), other metallurgy located in industrial parks or estates (such as
Somonte industrial park and Roces industrial park), the nearby presence of
the Aboño Coal-Fired Power Plant, as well as livestock rearing and
fisheries53. These results indicate that the PM10 sources at these locations are
a mix of crustal and industrial origins, further supporting the earlier
observation of chemical profiles where crustal dust tracers co-occur with
industrial markers. These findings are also consistent with previous reports
on BAI_UI by de la Campa and de La Rosa54 and Millán-Martínez et al.55

and GIJ_UI by Lara et al.56 and Megido et al.57.

Industrial sources
Among the 24 monitoring sites, industrial sources were detected at 10 sites
(GRE-cb_UB, GRE-fr_UB, GRE-vif_UB, LEN_UB, MRS-AIX_UB,
COIM_TR, BAI_UI, BCN_UB, GRA_UB, and MAD-EV_UB), with con-
tributions ranging from 2% to 14% (Fig. 2). The industrial source con-
tributions at BCN_UB and COIM_TR reached 11% and 14% respectively.
However, BAI_UI and GIJ_UI in known industrial areas, have relatively
small industrial source contributions (8% for BAI_UI) or no detectable
industrial sources (0% for GIJ_UI) (Fig. 2). These results may be partly
attributed to the variability in industrial source profiles, which can differ
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significantly depending on the types of industrial activities impacting each
site. This variability often leads to overlaps between industrial and crustal
source profiles, particularly in PMF analysis, where mixed sources may
remain unresolved (see Supplementary Fig. 3). For example, industrial
processes such as metal smelting, cement production, and chemical man-
ufacturing can produce distinct emissions, making it challenging to define a
universal industrial source profile. Consequently, the industrial contribu-
tions at sites like BAI_UI and GIJ_UI may be underestimated or partially
merged with crustal sources, resulting in smaller contributions or the
absence of a detectable industrial source. For the other sites (GRE-cb_UB,
GRE-fr_UB, GRE-vif_SUB, LEN_UB, MRS-AIX_UB, GRA_UB, and
MAD-EV_UB), the detected industrial source contributions were relatively
small (<6%), but they still made contributions to the overall PM10 pollution
pattern. These locations are influenced by small-scale industrial operations
andurban activities, which cumulatively contribute to the regional pollution
load. Further, the industrial sources’ chemical profile generally contains a
large fraction of various metals, which can be quite detrimental for public
health and generally present large values of oxidative potential58.

Secondary sources
Secondary aerosol sources primarily include secondary nitrates, sulfates,
and organic carbon, which are formed through atmospheric reactions
involving precursor gases such as nitrogen oxides (NOX), sulfur dioxide
(SO2), and volatile organic compounds (VOCs)59–62. These sources exhibit
spatial and temporal variability across Europe, influenced by traffic emis-
sions, industrial activities, meteorological conditions, and regional
transport.

Specifically, the contribution of secondary nitrates at CHAM_UV,
GRE-cb_UB, GRE-fr_UB, GRE-vif_SUB, LEN_UB, DEM_SUB, FLO_UB,
COIM_UB,MAD-EA_TR,MAD-EV_UB, BAS_UB, BER_TR,MAG_UB,
PAY_UB, andZUR_UB ranges from11% to 41% (Fig. 2). Among these, the
secondarynitrate contributions at LEN_UB (Lens, France), BAS_UB (Basel,
Switzerland), PAY_UB (Payerne, Switzerland), and ZUR_UB (Zurich,
Switzerland) exceed 30%. These values were primarily due to high traffic
volumes in these areas, where nitrogen oxides (NOX) emitted from vehicles
oxidize in the atmosphere to formnitrates63,64. Further, the large agricultural
activities in northern France and Benelux areas lead to large NH3 emissions
during spring, favoring ammonium nitrate formation65. Additionally, cer-
tain regions have meteorological conditions, such as low wind speeds, low
temperature, andhigh humidity, that contribute to higher concentrations of
semi-volatile substances such as nitrate and ammonium, as observed in
Zurich66 and Basel67. This phenomenon aligns with the seasonal variations
in secondary nitrate sources identified in this study, which show higher
concentrations during the autumn and winter months (see Supplementary
Fig. 4).

Secondary sulfate is primarily formed through the oxidation of SO2

emissions, which are common byproducts of coal and oil combustion68.
These combustion processes often release pollutants such as Se, As, Pb, V,
Ni, and OC. It was previously shown that the inclusion of tracers from
secondary biogenic aerosol, like 3-MBTCA, into the PMF could lead to the
splitting of a large fraction of OC, particularly in summer, from this sulfate-
rich factor into the secondary biogenic factor determined by 3-MBTCA69.
Representative sites, including CHAM_UV, GRE-cb_UB, GRE-fr_UB,
LEN_UB, MRS-AIX_UB, CA_UB, COIM_TR, PORT_TR, BCN_UB,
GIJ_UI, BAS_UB, BER_TR, MAG_UB, and PAY_UB, show contributions
of secondary sulfate and related mixed sources ranging from 5% to 32%,
withmost sites fallingwithin themoderate range of 15% to 26% (Fig. 2). The
mixed sources are primarily linked to HOC (indicated by V and Ni from
shipping)70,71, coal combustion (indicated by Se, As, and Pb)72,73, and
regional organic pollutants.Overall, the combined contribution of these two
secondary factors (16%-68%) is consistentwithprevious reports for various
urban sites across Europe74–76, marking the highest source contribution
to PM10.

Furthermore, some cities may be affected by the regional transport of
PM10, where pollutants emitted from surrounding areas contribute to

increased concentrations of secondary sulfates and organic carbon. In
contrast, secondary nitrates are primarily formed locally due to the rapid
oxidation of NO2 by OH radicals. Sulfate sources, however, are generally
more regional because SO2 is oxidized approximately ten timesmore slowly
unless the city is near a local source, such as residential coal burning, which
can emit primary sulfate directly77. This distinction between local and
regional contributions highlights the spatial variability in secondary PM
sources. For instance37, demonstrated that sulfate sources tend to be spatially
distributed over larger regions, whereas nitrate sources are often localized.

Overall, the high contribution rates of secondary PM reflect the
complexity of abating these pollutants, as they result from a combination of
local and regional influences. These findings underscore the need for tar-
geted air quality management strategies that address both local emission
reductions (e.g., NOX for nitrates) and regional collaboration to manage
broader SO2 and secondary organic aerosol sources effectively.

Other sources
At the 24monitoring sites, other specific pollution sources representative of
the local emission have also quantitatively identified. One notable source
wasHOC, primarily detected at sites in Spain, France, Portugal, andGreece.
These sites include BCN_UB, COIM_UB, GRA_UB, LEN_UB, MAD-
EV_UB, MRS-AIX_UB, MRS-LCP_UB, DEM_SUB, MAD-EA_TR,
BAI_UI, and GIJ_UI, with contributions ranging from 2% to 15% (Fig. 2).

Another frequently seen source was identified as sea salt, observed at
BCN_UB, MAD-EV_UB, DEM_SUB, FLO_UB, GIJ_UI, MAD-EA_TR,
and PORT_TR, contributing from 4% to 21% (Fig. 2). Among these coastal
sites, BCN_UB, PORT_TR, DEM_SUB, and GIJ_UI exhibit contributions
exceeding 10%. Sea salt often reflects aged sea salt that contains additional
anthropogenic components, such as sulfate and nitrate, from interactions
with these acidic pollutants. While sulfate naturally exists in sea salt from
seawater, additional sulfate may be introduced through displacement
reactions with sulfuric acid or directly on the sea salt particle78. As sea salt
aerosols age, they undergo chemical reactions with NOX, SOX, and
ammonia in the atmosphere, leading to the formation of secondary inor-
ganic aerosols such as nitrate and sulfate. These reactions not only increase
the particle mass but also alter its composition, significantly contributing to
PM10 concentrations.At sites likeMRS-AIX_UBandMRS-LCP_UB,which
are also coastal but where sea salt sources were not explicitly resolved, the
absence of measurements for key ions like Na+ and Cl− may explain this
limitation. However, the relatively high contributions of secondary sulfates
and nitrates at these locations strongly suggest the influence of aged sea salt
aerosols, highlighting the need for more comprehensive chemical analyses
to better capture their impact. In addition, at the MAD-EV_UB site, 8% of
the PM10 is attributed to local mines, reflecting the influence of nearby
mining activities.

Marker analysis and source profiles
The identification ofmajor pollution sourceswas accomplished through the
use of specific chemical markers, which allow precise tracing and quanti-
fication of contributions from various origins. Road traffic emissions were
identified by markers such as EC, OC, Fe, Cr, Mn, Cu, Sb, Sn, Ba, and Zn,
while biomass burning was traced using levoglucosan, OC, EC, K, and Rb.
Crustal sources were characterized by elements including Ca, Al, K, Mg, Ti,
P, Sr, Rb, andMn, whereas SIA and SOAwere associated with markers like
NO3

-, SO4
2-,NH4

+, Se, andOC. Industrial emissionsweremarkedbyAs,Cd,
Cr, Cs, Co, Ni, Pb, Rb, Se, V, and Zn, while sea salt sources were dominated
by Na or Na+, Cl or Cl-, Mg orMg2+, oftenmixed with NO3

-, and SO4
2- due

to aging processes.Mixed fuel-oil combustion, including shipping activities,
was characterized by V, Ni, SO4

2-, and EC. These markers collectively
provide a comprehensive understanding of the contributions from various
sources across multiple monitoring sites. For example, in the biomass
burning source, OC has a high contribution to PM10, supporting the sig-
nificant impact of biomass burning onPM10 levels. In industrial sources, the
higher proportions of metals such as Ni and Zn further support the con-
clusion that specific industrial sites are influenced by industrial activities.
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Figure 4 illustrates how chemical components like OC, EC, Cu, Fe, K, and
levoglucosan occupy a high proportion in various sources. The factor
labeling was made using the same criteria for all the sites to facilitate the
assessment of common features and dissimilarities across them.

The results indicated that road traffic emissions were primarily iden-
tified by a combination of tracers, each contributing over 40% to the source.
Furthermore, Displacement (DISP) analysis revealed that these high con-
centrations were accompanied by relatively small DISP intervals (see
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Supplementary Fig. 7), underscoring the robustness of these findings. This
result underscores the significant role of road traffic in air pollution at the
monitoring sites. OCwas identified as the dominant component in biomass
burning, contributing between 27% and 70% of the total biomass burning
aerosol, reflecting the source apportionment of PM10 attributed to biomass
combustion. Moreover, the mass of OC represented between 10 ± 4% and
32 ± 11% of the PM10 mass during the monitoring period, which is

consistent with prior research18,75,79. Regarding the other tracers of biomass
burning, levoglucosan and EC were found to account for 74 ± 21% and
43 ± 10%, respectively, at sites monitoring these markers (levoglucosan at 9
out of 24 sites and EC at 15 out of 24 sites).Mass-wise, levoglucosan and EC
contributed 1 ± 2% and 5 ± 4% to the total PM10 mass. Additionally, a
significant amount of K+ or K was observed in the biomass burning profile,
contributing between 24% and 75% of their respective total mass to this
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source (Fig. 4 and Supplementary Fig. 3). These findings further emphasize
the substantial impact of biomass burning on PM10 levels across the
monitoring sites.

For crustal sources, with the exception of BAI_UI and GIJ_UI, the
Sanky diagrams analyses founded that the contributions of Al, Ti, V, Ca2+

(Ca), Fe, and Mg2+ (Mg) were the largest within the crustal sources (Fig. 4
and Supplementary Fig. 3). The contributions for these elements ranged
from 51%-99% for Al, 35%-85% for Ti, 42%-81% for V, 32%-69% for Ca or
Ca2+, 34%-74% for Fe, and 32%-75% for Mg or Mg2+. These elements are
commonly found in crustal material20 and their high contributions under-
score their substantial role in the composition of crustal PM, indicating
consistent patterns inPMcomposition across different geographic locations
within Europe. These results align with previous source apportionment
findings by Querol et al.69 and Cesari et al.80,81. The considerable presence of
crustal sources at various concentrations across all sites emphasizes the
importance of implementing urban dust abatement measures in most stu-
died cities. Effective measures might include controlling dust from con-
struction sites, implementing soil conservationpractices,maintainingpaved
roads to reduce soil disturbance82, and adopting aggressive street sweeping
strategies83, as successfully implemented in the US to address urban PM10

violations84. Furthermore, understanding the specific local conditions
contributing to higher crustal source emissions can help in tailoring more
effective mitigation strategies.

For the two sites with relatively high industrial source contributions
(>10%), BCN_UB and COIM_TR, as well as the industrial site BAI_UI, the
findings indicate specific industrial influences. In Barcelona (BCN_UB),
industrial sources are primarily characterized byNi, Cr, Zn, Al,Mn, and Pb,
contributing between 27% and 50% to the industrial source (Fig. 4 and
Supplementary Fig. 3). This result aligns with previous studies in Barcelona,
which have identified these pollutants as being emitted by industrial
activities in the southern part of the city, such as smelters and cement
kilns85–87. Similarly, in Coimbra, Portugal (COIM_TR), industrial sources
are likely linked to the city’s smelter and a cement plant located about 8
kilometers northeast of the monitoring site, despite both facilities having
emission controlmeasures in place88. At the Bailén industrial site (BAI_UI),
high concentrations of Cu were observed, averaging 42 ng/m3, with 71% of
the Cu attributed to industrial sources (Fig. 4 and Supplementary Fig. 3).
This is related to the nearby ceramic industry, as noted in previous
research54,55. These findings highlight the significant impact of industrial
activities on air quality at specific locations and the importance of identi-
fying local industrial sources for effective air quality management.

For secondary sources, the contributions of ammonium, sulfate,
nitrate, and organic carbon were observed. Specifically, NO3

- contributions
ranged from24% to 83%, SO4

2- contributions ranged from 21% to 74%, and
NH4

+ contributions ranged from 26% to 86%. These values were primarily
influenced by high traffic volumes in the areas studied, where nitrogen
oxides (NOX) emitted from vehicles oxidize in the atmosphere to form
nitrates. When SO2 is released into the atmosphere, it undergoes oxidation
to form sulfuric acid (H2SO4), which then reacts with NH3 to produce
ammonium sulfate ((NH4)2SO4), a key component of secondary sulfate
aerosols. The same conditions favouring the formation of secondary sulfates
(high photochemical oxidation) favour the oxidation of anthropogenic and
biogenic volatile organic compounds, which increase secondary organic
aerosols simultaneously. The stoichiometric SO4

2-/NH4
+ ratio for (NH4)2

SO4 is 2.7. In this study, for sites where the secondary sulfate source was
individually identified, the SO4

2-/NH4
+ ratio approached the stoichiometric

ratio at the following locations: FLO_UB (3.1), GRA_UB (2.6), and MRS-
LCP_UB (2.8). However, marine diesels do produce substantial amounts of
primary sulfate89–91 and were identified at multiple European ports by
Pandolfi et al.71. Strict regulations on SO2 emissions, such as EU Directives
1999/30/EC, 2008/50/EC92, and the amended Directive 89/427/EEC93, have
led to a significant reduction in SO2 levels within the European Union.
Currently, the primary sources of SO2 in the EU are emissions from
transportation, industry, energy production94, district heating95,96, and
shipping97,98, as well as volcanic eruptions99.

Additionally, one limitation of PMF is the occurrence ofmixed factors,
which can result from various factors, such as the sample size and the
specific species selected for analysis100. For example, secondary sulfate
sources are often associated with secondary OC and coal/oil combustion
emissions. A prominent mixed source, HOC, is largely influenced by
shipping activities. This source is typically marked by V and Ni, with their
contributions ranging from 36% to 86% and 21% to 75% in source profiles,
respectively (Fig. 4 and Supplementary Fig. 3). These metals are generally
present as oxides, though approximately 10% exist as organometallic
compounds101. This result highlights the impact ofmaritime transport onair
quality in these port regions and presents a challenge to future ship-exhaust
source apportionment studies, since HOC emissions must be minimized
withinEmissionControlAreas (ECAs, coastal zonesnearEurope andNorth
America)102,103.

For other pollution sources, sea salt aerosols are predominantly char-
acterized by the ionsNa+ andCl-, which account for 41–94%and 79–86%of
the total composition, respectively. These ions are crucialmarkers ofmarine
influence and provide a clear indication of the contribution of sea salt to
atmospheric particulate matter in coastal and marine-adjacent regions.
DISP analysis indicated that the high contributions of Na+ and Cl- were
associated with narrow DISP intervals (see Supplementary Fig. 6), further
validating their reliability as tracers of sea salt aerosols.

Materials and methods
Study area
All datasets in this study provide PM10 chemical speciation. Of the
24 selected sites, 18 are located in background locations, including 16 urban
backgrounds (UB) and2 suburbanbackgrounds (SUB). The remaining sites
were specifically chosen for urban traffic (TR) (4/24) and urban industry
(UI) (2/24) context. These monitoring sites are spread across 6 European
countries and provide data for 3,602 samples: France (7 sites), Greece (1),
Italy (2), Portugal (3), Spain (6), andSwitzerland (5) (see SupplementaryFig.
8 and list below). Each site has at least one year of data to ensure its
representativeness (see Supplementary Table 11). For a detailed description
of the sampling sites and the analytical techniques employed, please refer to
Liu et al.9.
• Sixteen urban background (UB) sites: Basel (BAS_UB), Barcelona

(BCN_UB), Capannori Lucca (CA_UB), Coimbra (COIM_UB),
FlorenceFirenze_Bassi (FLO_UB),Granada (GRA_UB),Grenoble CB
(GRE-cb_UB), Grenoble FR (GRE-fr_UB), Lens (LEN_UB), Madrid
E. Vallecas (MAD-EV_UB), Magadino (MAG_UB), Marseille Long-
champ (MRS-LCP_UB), Aix-en-Provence (MRS-AIX_UB), Payerne
(PAY_UB), Zurich (ZUR_UB), Chamonix (CHAM_UV, with UV
referring to UB sites in intra-mountainous valleys).

• Four traffic (TR) sites: Bern (BER_TR), Coimbra (COIM_TR),Madrid
Esc. Aguirre (MAD-EA_TR), Porto (PORT_TR).

• Two urban industrial (UI) sites: Bailen (BAI_UI) and Gijon/
Aviles (GIJ_UI).

• Two suburban sites: Athens Demokritos (DEM_SUB) and Grenoble
VIF (GRE-vif_SUB).

Chemical analyses
The instrumentation used for measuring the chemistry of PM10 at the dif-
ferent stations is described in Supplementary Table 1. Briefly, in this study,
the elements (Na,Mg,Al, K,Ca, Ti, V,Cr,Mn, Fe,Ni, Cu, Zn,As, Se, Rb, Cd,
Sn, Sb, Ba, and Pb) were measured by (i) Inductively Coupled Plasma-Mass
Spectrometry (ICP-MS), (ii) Particle Induced X-Ray Emission (PIXE) and
(iii) X-Ray Fluorescence (XRF). More details can be found in Liu et al.9. The
Water-soluble ions (Ca2+, K+,Mg2+, SO4

2-,NO3
-, andNH4

+)were quantified
with ion chromatographs (ICs). The organic (OC) and elemental (EC)
carbon were analyzed by a Thermal–Optical-Transmissionmethod (Sunset
Lab., OR, US) using the EUSAAR_2 protocol104. To enhance the quantifi-
cation of biomass burning sources, levoglucosan was monitored at several
sites by determining its concentration by means of Gas Chromatography-
Mass Spectrometry (GC-MS) or high-performance liquid chromatography
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analysis tandem photodiode array detection (HPLC-PAD), for the sites of
COIM_UB, GIJ_UI, GRE-fr_UB, GRE-vif_SUB, MAD-EV_UB, PAY_UB,
ZUR_UB, MAD-EA_TR, and PORT_TR.

Quality assurance and quality control procedures
A comprehensive set of quality assurance and quality control (QA/QC)
protocols was implemented across all analytical techniques. These proce-
dures included the routine submission and analysis of field blanks, the
exclusion of compromised or damaged filters, and the pre-analysis opti-
mization of instruments such as ICP-MS, PIXE, and XRF. Regular assess-
ments of filter blanks were conducted to ensure accurate blank corrections
from themeasured concentrations.Additionally, amaximumthresholdwas
established for the standard deviation of five internal-standard-corrected
signal intensities for each sample during every analytical run. On average,
the standard deviation for final results fell within the range of 5–10%;
however, for certain elements, particularly those with lower concentrations
or those analyzedby specific instruments, this value could increase, reaching
up to approximately 20%.More details have been described in our previous
study9.

Data selection and preprocessing
PMF has been widely utilized in analyzing PM sources during the last
decades105–107. It is amultivariate factor analysis receptormodel, dividing the
speciated sample data matrix into two matrices: factor contributions and
factor profiles. In the present study, the EPA PMF v.5.0 has been used108.
Detailed descriptions of PMF and result diagnostics can be found in Paatero
and Tapper (1994); Hopke, Paatero et al.106,109–112.

Species were selected based on two criteria: (1) a minimum detection
frequency of 80% and (2) signal-to-noise ratio (S/N), calculated as themean
difference between concentration and uncertainty divided by the uncer-
tainty. Across all sites, all collected species met the 80% detection threshold,
and the species listwasnarrowed to 17–28per site after S/N screening, based
on detection frequency and uncertainty (see Supplementary Fig. 9).

A few samples were excluded before model input due to anomalous
events (e.g., fireworks during holidays such as Christmas or New Year’s
Day), as these do not represent typical emission patterns113,114. In addition,
all datasets were processed by the same analyst, including outlier screening
and the PMF analysis (e.g., standardized criteria used during the source
apportionment process).

Uncertainty estimation
The uncertainties were treated as follows:
– Data below the limit of quantification (LOQ)were replaced with half of

the LOQ and the uncertainties were set to 5/6 of the LOQ115. The LOQ
values for each factor at different sites are provided in Supplementary
Table 12.

– The uncertainties (u) of the other data were set according to Eq. (1)

u ¼ error fraction× concentration
� �2 þ ð0:05 × LOQÞ2
h i0:5 ð1Þ

where error fraction is the fraction of uncertainty, LOQ is the limit of
quantification108. Error fraction was estimated from sampling error and
analytical error. In PMF analysis we assumed error fractions of 10% for each
metric.

In principle, PMF has the ability to model peaks concentrations rea-
sonably well. In the present study.

PMF execution and model validation
To determine the optimal number of factors, we started by varying the
number of factors in PMF from 2 to 9. In this study, S/N ratio are as follows:
“strong” if S/N > 1, “weak” if 0.5 ≤ S/N ≤ 1, and “bad” if S/N < 0.5.However,
if a species was critical for identifying a specific source, S/N thresholds were
reconsidered (e.g., reassigning weak or bad to strong). Diagnostic para-
meters such as Pearson correlation coefficients (R2, representing the

coefficient of determination between observed andmodeled concentrations
for each species) were categorized as “strong” if R2 > 0.6, “weak” if R2 < 0.6.
Conversely, species with significant relative contributions but less impor-
tance to source identification were adjusted to weak or bad. Within this
range, further evaluation of source profiles and matrices determined the
final solution. Additional diagnostics such as Qtrue, Qrobust, Qtrue/Qexpect,
interpretability of factor profiles, and the possibility of the temporal varia-
tions of source contributions were calculated to jointly identify the optimal
solution as exemplified in Glojek et al.116 (see Supplementary Figs. 3, 4,
10 and 11). Thefinal selection for each site combined these criteria to ensure
robust solutions.

Model robustness was further tested using DISP (displacement ana-
lysis) and BS (bootstrap) methods, which were used to confirm the
robustness and uniqueness of the PMF solutions112,117 (see Supplementary
Fig. 7 and Supplementary Table 13). No factor swaps were reported within
the allowed dQmax range. While correlations between BS runs and base
factors varied, a substantial portion reached or exceeded 80%. Potential
sources were interpreted based on seasonal and geochemical
considerations117. This approach ensured that PMF analyses were robust,
with solutions that accurately captured source contributions across
monitoring sites.

Sensitivity analysis of below-LOQ treatment
To assess the potential impact of handling data below the LOQ on the
stability and interpretability of PMF results—especially for trace species
such as Ni and levoglucosan that are important for source identification—
weconducteda sensitivity analysis usingdata fromrepresentative Swiss sites
(BAS_UB, BER_TR, MAG_UB, and ZUE_UB). Two aspects were tested:
(1) concentration substitution, by comparing the standard 1/2 LOQ
replacement with full LOQ values for below-LOQ data; and (2) uncertainty
estimation, by evaluating three scenarios in which uncertainties for these
data were set to 1/2 LOQ, 5/6 LOQ, or full LOQ.

Across both tests, PMF yielded consistent source contributions, sug-
gesting that the treatment of below-LOQ values had aminimal effect on the
overall resolution and reliability of the model outputs. These findings
support the robustness of the PMF results and are further documented in
Supplementary Fig. 12.

Similarity assessment
To assess the similarity between the chemical source profiles across Eur-
opean sites, comparisons were made based on the specific chemical relative
mass composition at each location, using the Pearson distance (PD) and
standardized identity distance (SID) metrics. These distances help evaluate
the homogeneity of the source chemical profiles across different urban
settings. Calculations for PDand SIDwere described byBelis et al.35 with the
equations presented below:

PD ¼ 1� R2 ð2Þ

where R2 is the Pearson coefficient of the relative mass to PM of all com-
ponents between 2 sites.

SID ¼
ffiffiffi
2

p

m

Xm

j¼1

jxj � yjj
xj þ yj

ð3Þ

wherem is the number of chemical compositions in a source, x and y are the
relative mass to PM of 2 different factors or sources.

The PDmetric primarily indicates the sensitivity of a chemical profile
to variations in themain mass fractions of particulate matter, while the SID
reflects sensitivity to the entire range of components, including trace species.
Profiles that are consistent across various site types are generally expected to
have PD values below 0.4 and SID values below 1.0118. In contrast, profiles
with values exceeding these thresholds are considered heterogeneous.
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Data availability
This study used existing datasets on PM10 chemical speciation collected
from24monitoring sites across six European countries. These datasetswere
previously described in detail in Liu et al.9. No new datasets were generated
in this study. The data were used for secondary analysis, including pre-
processing and PMF modeling. Further details on data processing, quality
control procedures, and species selection are provided in the manuscript
and Supplementary Information. Data access is subject to the original data
providers’ policies.
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