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Forestation may reduce temperatures by lowering atmospheric CO2. However, biogeophysical
changes from forestation may weaken this cooling. We use twelve Coupled Model Intercomparison
Project (CMIP6) models to quantify the biogeochemical (carbon cycle) and biogeophysical (non-
carbon cycle) effects of net forestation, as quantified as the difference between the end of two future
scenarios: ssp370-ssp126Lu and ssp370. Biogeochemical effects have an inferred global multi-
model mean cooling (−0.08 ± 0.02 K). Changes in fires have no significant effect on land carbon
storage globally. In contrast with studies indicating biogeophysical impacts counteract
biogeochemical impacts by up to 50%, we find that biogeophysical effects lead to insignificant global
mean cooling (−0.002 ± 0.041 K). Tropical land shows cooling (−0.058 ± 0.058 K) with eight of twelve
models indicating cooling, consistent with prior studies. Using the Surface Energy Balance
Decomposition, we find cooling is primarily from increased evapotranspiration and decreased
downwelling solar radiation related to clouds and aerosols.

Afforestation, or the planting of trees in areas where there is no recent tree
cover, and reforestation, or the planting of trees where they have been
recently removed, have been proposed as a naturalmethod of reducingCO2

in the atmosphere1–3. Reforestation and afforestation (hereinafter, foresta-
tion) increase the carbon stored in the terrestrial biosphere1,2 and thus
reduce atmospheric CO2. This CO2 sequestration is referred to as a “bio-
geochemical effect.” A previous study has indicated that forestation has a
mitigation potential of 4.9 GtCO2/year at 200 US $/tCO2 in 2050 through
biogeochemical effects2, which implies a role for forestation to help limit
warming to below 2 °C relative to preindustrial times.

In addition to the effects on atmospheric CO2, forestation can also
affect temperature through biogeophysical effects. “Biogeophysical effects”
are defined as changes in temperature due to changes in the physical
properties of the land that influence the surface energy balance (i.e., non-
carbon cycle effects). For example, this includes changes in surface albedo
(α), evapotranspiration (ET), and natural emissions of trace gases, aerosols,
and their precursors important for atmospheric composition. Biogeophy-
sical effects are important4, as previousmodeling studies have indicated that
up to 50% of biogeochemical effects may be offset by biogeophysical effects
in various deforestation and forestation scenarios5–9. More research is nee-
ded on the drivers of differences across previous estimates, possibly due to
model and scenario differences. Here, we examine whether there are robust
responses in biogeophysical and biogeochemical effects across the current

generation of Earth System Models in a common future net forestation
scenario, with the aim of advancing our understanding of how forestation
may contribute to climate change mitigation.

In addition to the fact that biogeochemical vs. biogeophysical responses
can be of different sign, there are both biogeophysical warming and cooling
impacts, necessitating analysis frameworks of the biogeophysical responses
that allow the identification of individual process drivers. First, we discuss
agents of biogeophysical cooling. Relative to other land surface types, trees
can cool the surface throughhighET and therefore increased latent heatflux
(LE)5,10,11. IncreasedET and temperature decreases can also lead to increased
humidity. Higher humidity can decrease downwelling surface shortwave
radiation (SWd) through increased cloud formation and direct atmospheric
absorption of shortwave radiation (e.g., by water vapor)12. Furthermore,
prior studies indicate that increases in leaf area index and particular tree
species are associated with enhanced emissions of biogenic volatile organic
compounds (BVOCs), which can be oxidized and form organic aerosols
(OA). OA are highly reflective and can reduce SWd and act as cloud con-
densation nuclei, having net surface cooling effects6,13–16.

These biogeophysical cooling effects could be countered by the bio-
geophysical warming effects of forestation17,18. Trees decrease surface albedo
through surface darkening5,19 and may increase tropospheric ozone (O3)
and methane (both greenhouse gases)5,6,15,16,20 through increased BVOC
emissions. The formation of clouds from increased ET and aerosol
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concentration can also increase surface downwelling longwave flux (LWd).
Enhanced vegetation cover anddecreasedwind speed can also decrease dust
aerosol emission, which scatters solar radiation21–23. Changes in wind speed
from increases in surface roughness can also alter vertical mixing and, thus,
sensible and latentfluxes, which can lead to localwarming or cooling.Water
vapor, aerosols, and sensible heat (H) can be transported via atmospheric
circulation over long distances, creating a potential for remote biogeophy-
sical effects24. A recent study indicates the potential for forestation to
remotely affect climate through adjusted atmospheric and oceanic
circulation25. They show that the remote climate effects of highly idealized
forestation (i.e., grassland, cropland, shrubs, andurban areas are turned into
forests, resulting in 80% forest coverage) are associated with a weakening
and poleward shift of the northernmid-latitude circulation and a slowdown
the Atlantic Meridional Overturning Circulation (AMOC).

To get a process-oriented viewof the changes in temperature due to the
biogeophysical effects of forestation, we employ the Surface Energy Balance
Decomposition (SEBD), which allows us to attribute changes in tempera-
ture to changes in downwelling shortwave and longwave radiation, sensible
and latent heat fluxes, and albedo (Methods). Thismethod has been used in
prior studies examining land cover changes5. Using the SEBD, mechanisms
for the changes in temperature can be further discerned through cross-
correlation analysis (e.g., if clouds or aerosols are responsible for a change in
surface temperatures).

Observations can be useful in learning more about the impacts of
forestation. Primarily, signals such as changes in ET or surface reflectivity
can be discerned from observation-based studies. For example, ref. 19
analyzed forestation in China (as of 2008) and found significant daytime
cooling associated with higher ET. Similarly, ref. 26 found that reforestation
in the eastern United States slowed warming associated with climate
change26. Performing new observational studies of forestation is expensive
and time-consuming, as it takes decades for forestation to effectively store
carbon, making studying the long-term and future effects of forestation
difficult1,17. In addition, with observations alone, it is difficult to attribute
causality concerning some effects of forestation, such as changes in aerosol
concentrationor cloud cover.Manyof these issues canbe circumventedwith
Earth SystemModel simulations, which are used here. Earth SystemModels
allowquantificationof local and remote effects25, in addition toother impacts
(e.g., changes in fires). In addition, climate models allow for studying global
forestation, so the specific impacts of increased tree cover can be compared

across latitudes, as prior studies indicate major differences in temperature
responses depending on where a tree is planted5,17,18. Although model
uncertainty exists, a multi-model analysis (as performed here) allows robust
changes and driving mechanisms to be quantified globally.

Understanding the effects of forestationonwildfires is vital, as an increase
in fire carbon emissions (fFire) could offset the increase in net primary pro-
duction fromforestation.Forexample,higher fuel load in temperateandboreal
regions is associatedwithmore frequent and severefires27–37. Therefore, as trees
containmore fuel than grasses or crops, forestation in the higher latitudesmay
lead to increased fFire. Alternatively, replacing tropical grasses with trees may
reduce fire emissions.Most fires in the tropics occur in grasses, which have an
annual life cycle that makes them more susceptible to fires than trees in the
region32. Therefore, changing the type of vegetation itself can affect fires
through changes in fuel type; therefore changes in fires are also connected to
biogeophysical effects, as differences in regional relative humidity and tem-
perature can significantly impact fuel flammability and availability24,38–41. In
summary, the effects forestationonwildfire occurrence and severitydependon
whether changes in flammability (from changes in fuel type or from biogeo-
physical effects) or differences in fuel load dominate the signal.

Specifically, our study quantifies how net forestation affects climate at
the end of the 21st Century, using the difference between twoCoupledModel
Intercomparison Project Phase 6 (CMIP6) 21st-century experiments and 12
Earth SystemModels (Supplement Table S1). We examine the multi-model
annual averages from 2070-2099. The experiments are: 1. ssp370, which
features relatively significant increases in greenhouse gases and global mean
deforestation as specified by the SSP3-7.0 scenario; and 2. ssp370-ssp126Lu,
which is identical to ssp370 except it features land cover changes from the
SSP1-2.6 scenario; SSP1-2.6 is characterized by global mean forestation and
prevented deforestation (Supplement Figure S1)42–45. The difference between
ssp370 and ssp370-ssp126Lu yields only the effects of land cover change (i.e.,
net forestation, since afforestation, reforestation, and avoideddeforestation in
ssp370-ssp126Lu greatly outweigh deforestation in ssp370).While allmodels
simulate carbon sequestration in vegetation and soil, they use prescribed
atmospheric CO2, and therefore, carbon sequestration does not change
atmospheric CO2. Thus, we estimate the biogeochemical effect offline using
the Transient Climate Response to Emissions (TCRE).

Figure 1 illustrates how forestation can affect temperature through
biogeophysical and biogeochemical effects and serves as a roadmap for our
study. The primary objectives of this study are to quantify the net

Biogeochemical
Effects Biogeophysical Effects

Land
Carbon
Storage

AlbedoLatent Heat
Flux

Downwelling
Shortwave

Flux

Net
Biogeopyhsical

Temperature Effect

Sensible Heat
Flux

Fire
Carbon

Emissions

Downwelling
Longwave

Flux

Positive Change

Negative Change

Mixed Changes

Fuel
Effects

Estimated
Biogeochemical

Temperature Effect

Estimated
Net

Temperature Change

Fig. 1 | Flowchart for possible global changes in biogeophysical and biogeochemical effects of forestation. Red lines represent net positive changes, blue lines represent
net negative changes, and purple lines represent uncertain effects. Colors are based on expected changes per prior literature cited in the introduction.
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biogeophysical effect on temperature (as well as the contributions of the
individual components of the surface energy budget via SEBD), to quantify
how biogeophysical changes alter fFire and how this influences the bio-
geochemical effect, and to quantify the biogeochemical effect on tempera-
ture. Expected responses to forestation, as suggested by previous literature,
are highlighted,withnotable uncertainty in the signof the response for fFire,
downwelling shortwave radiation (SWd), H, and LWd.

Results
Changes in Land Cover under Net Forestation
Figure 2 shows the multi-model annual mean change over the last 30 years
(2070–2099) in tree fraction (Fig. 2a), grass fraction (Fig. 2b), and crop
fraction (Fig. 2c) in ssp370-ssp126Lu compared to ssp370. The supplement
includes individual models’ differences (Supplement Figs. S2–S4). Figure 2
shows that the difference between ssp370-ssp126Lu and ssp370 yields a

Fig. 2 | Multi-model mean land cover change between ssp370-ssp126Lu and
ssp370 over years 2070-2099 for 12 climatemodels.Multi-modelmean differences
in (a) tree fraction, (b) grass fraction, and (c) crop fraction. Units are %. The global
mean change (in million km2) and uncertainty are indicated underneath each panel.

Black dots represent statistically significant changes at the 95% confidence interval
using a two-tailed test. Depicted to the right of each map is a zonal mean of each
value, with the uncertainty based on the 95% confidence interval of the model
spread.
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substantial increase in trees globally (i.e., net forestation). Hereinafter, we
refer to the difference between the scenarios as “net forestation.” The
increase in tree fraction globally is generally in place of crops, followed
by grass.

Overall, there is a 4.14 ± 0.88 million km2 increase in tree area cover
under net forestation (about half the area of the contiguous United States).
Uncertainty here and in the text throughout themanuscript is based on the
95% confidence interval across the models, estimated as 1.96 × standard
error (Methods). These errors, therefore, quantify the differences between
the models. Crop fraction decreases at− 3.01 ± 0.41 million km2, followed
by a (nonsignificant) decrease in grass fraction at− 0.77 ± 1.89million km2.
Theuncertainty in the fractional land cover changes results fromdifferences
among the individual models (Supplement Figs. S2–S4) and how they
implement the common harmonized land use drivers46. In particular,
considerable uncertainty in the change in grass fraction results from the
models with dynamic vegetation (i.e., changes in vegetation type are
explicitly simulated). In dynamic vegetationmodels, the model projects the
type of vegetation (i.e., shrubs vs. grasses vs. trees, as opposed to this being
prescribed as forest inmodelswith static vegetation)on theunmanaged land
converted from managed land. This applies to GFDL-ESM4, UKESM1-0-
LL, and MPI-ESM1-2-LR, all of which have a more considerable grass
increase, at the expense of forest cover, than the static vegetation models
(Supplement Fig. S2 & S3, Supplement Table S2).

The highest increases in tree fraction are on the east coast of theUnited
States, in centralAfrica, and innorthern SouthAmerica.Overall, the change
in tree fraction is dominated by the tropics, particularly by the Congo. The
scenarios ssp370 and ssp126 are determined by different IAMs and are
based on different socioeconomic assumptions, climate targets, and policy
assumptions (such as planting more bioenergy crops). While there are
substantial decreases in forest area in ssp370 and increases in forestation and
avoided deforestation in ssp12642,47, forestation does not occur everywhere
in the difference between them. For example, Fig. 2a demonstrates defor-
estation in China in ssp370-ssp126Lu relative to ssp370. This deforestation
is associated with increased crop fraction (Fig. 2c). It is also important to
note that while grass fraction decreases globally, it increases significantly in
the Sahel and South Africa (Fig. 2b). Changes in shrub fraction are much
smaller than other land fraction changes and are mostly regionally con-
strained to southern Africa (Supplement Fig. S5). Also of note are increases
in bare soil fraction in the Sahara desert that correspond to decreases in crop
fraction (Supplement Figs. S1, S4, & S6).

Biogeophysical impacts on regional climate
First, we examine the 2070–2099 biogeophysical impacts of net forestation
onnear-surface air temperature (Tas). There is insignificant global coolingof
−0.002 ± 0.04 K and insignificant global land-only cooling of
−0.01 ± 0.05 K. However, there are substantial model differences at the
global scale; four of the 12 models yield significant global mean warming,
and five of the 12 models yield significant global mean cooling (Table 1;
Supplement Fig. S7). Similarly, four models yield significant land-only
warming, whereas four yield significant land-only cooling.

Despite model differences globally, the models agree more on changes
in the tropics, wheremost of the cooling over land occurs. For example, over
land in the tropics (−15° to+15° latitude), there is a significantmulti-model
changeof−0.058 ± 0.058 K,with 8/12models agreeing that there is regional
mean cooling there (though only five have significant cooling). Over land in
the northern hemisphere (latitude > 15°), there is insignificant warming of
0.035 ± 0.079 K (six of twelve models agree on warming). There are, how-
ever, areas of significantwarming in the northern hemisphere. For example,
central/westernCanada and, to some extent, central Europe (Fig. 2a) feature
relatively large forestation and significant increases inTas (Fig. 3a). At lower
latitudes of the northern hemisphere, China shows significant increases in
Tas associated with deforestation.

Figure 3 shows the global and latitudinal distributions of the biogeo-
physical effects of net forestation on Tas (Fig. 3a, b), ET (Fig. 3c, d), and α
(Fig. 3e, f). Associatedwith significant decreases inTas in the tropics (Fig. 3a) T
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are significant increases inET (Fig. 3c). These increases inET in regionswith
increased tree fraction are associated with significant increases in near-
surface relative humidity, cloud cover, and water vapor path (Q) (Supple-
ment Fig. S8). This indicates that the increased ET associated with
forestation significantly increases moisture flux into the atmosphere.
However, while this change in relative humidity is associated with more
clouds over regions with forestation, the precipitation response is
more uncertain, with significant increases largely isolated to central Africa.
Some regional changes in ET and α are robust betweenmodels (e.g., central
Africa), with at least two-thirds of the models agreeing on the sign of the
differences (symbols in Fig. 3d, f). There is less model agreement in changes
in Tas (Fig. 3b), indicating relatively large inter-model diversity in the
temperature response over regions with forestation. One place where there
is a clear change in Tas as well as ET is in the tropics; in particular, central
Africa and northeastern South America have significant changes in both
quantities.

The spatial correspondence between tropical decreases in the multi-
model averageTas and increases inET suggests that changes inmoistureflux
due to an increased tree fraction have a cooling effect on the surface inmany
ESMs. Furthermore, in some regions (e.g., North America and central
Europe), significant decreases inα in areaswith forestation (Fig. 2a, Fig. 3e, f)
correspond to significantwarming. In the next section, we utilize the surface
energy balance decomposition method to further explore how changes in
ET and α, in addition to incoming shortwave and longwave radiation,
impact surface temperatures.

Surface energy balance decomposition
The surface energy balance decomposition (SEBD) relates changes in sur-
face temperature (Ts) to changes in surface energy fluxes (Methods)5. To

better isolate the drivers of the 2070-2099 Ts response due to the land cover
change,weapply theSEBDover grid cellswith an increaseordecrease in tree
fraction greater than or equal to 1%5 (hereinafter, sub-sampling). Figure 4
shows the multi-model mean SEBD.

We first note that the SEBD estimate of ΔTs is generally not sig-
nificantly different from the actual simulated ΔTs (Supplement Fig. S9).
However, prior work indicates that using Ts to approximate Tas results in
overestimation of the temperature response associated with
forestation48,49. We compare the SEBD estimate of ΔTs to the simulated
ΔTas and find that the former is generally not significantly different from
the latter, except near the equator where the SEBD overestimates cooling
(Fig. 4f). For example, outside the tropics, the error bars overlap in the
zonal mean, and there are no grid cells with significant differences (as
indicated by a lack of symbols on the spatial map in Fig. 4f). We also note
that the zonal mean Ts changes in Fig. 4f (subsampled to grid boxes
where the tree fraction increases or decreases by at least 1%) are, in
general, similar to those in Fig. 3a (zonal means over all longitudes). This
includes tropical cooling and extratropical warming in the northern
hemisphere. These signals (e.g., tropical cooling) are generally larger
when sub-sampling, implying the importance of local (as opposed to
remote) biogeophysical effects associated with trees. Southern hemi-
sphere extratropical cooling, however, is more evident in Fig. 3a (e.g.,
over the oceans), implying the importance of remote effects (e.g.,
atmospheric or oceanic circulation changes).

In the tropics and northern hemisphere, the increases in tree fraction
(Fig. 2a) coincide with a decrease in surface α (Fig. 3e), contributing to a
positive change in Ts from α there (Fig. 4a). The decreases in surface SWd

(Supplement Fig. S10) and strong increases in LE (Supplement Fig. S11)
counteract the α-driven increases in Ts near the tropics, leading to a net

Fig. 3 | Biogeophysical effects of net forestation (ssp370-ssp126Lu− ssp370) over
years 2070–2099. Multi-model annual mean response of (a) near-surface air tem-
perature (Tas; K), (c) surface evapotranspiration (ET; kg m

−2 year−1), and (e) surface
albedo (α; dimensionless). Black dots on (a), (c), and (e) symbolize statistically
significant differences at the 95% confidence interval using a two-tailed test. The
global mean change and its uncertainty are indicated underneath each panel.
Depicted to the right of eachmulti-modelmeanmap is a zonalmean of each variable,

with the uncertainty based on the 95% confidence interval of the model spread.
These plots share the same units as the color bar of the corresponding panel. Also
shown are model percent agreement plots (%) for (b) Tas, (d) ET, and (f) α. Yellow
colors indicate that themajority of themodels yield a positive difference. In contrast,
blue colors indicate that the majority of the models yield a negative difference. Black
dots on (b), (d), and (f) show grid cells with at least 66%model agreement on the sign
of the difference.
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cooling effect at the surface (Fig. 4b, d respectively). TheLE effect on tropical
Ts from increasedET is large, creating cooling effects ofmore than−0.7 °C)
in some tropical areas.

In the northern hemisphere poleward of 15°N, the warming is
primarily associated with the α SEBD term and secondly with the LWd

SEBD term, which overwhelm smaller changes in the LE, SWd, and H
SEBD terms. Therefore, forestation’s surface darkening warming effect
is a robust and significant signal among the models. Previous studies
using the SEBD point to changes in LWd being driven by the Planck
feedback, where a warmer surface (e.g., due to surface darkening) emits
more longwave radiation upwards, some of which is subsequently re-
radiated back down to the surface via the atmospheric greenhouse effect
(similarly, a colder surface is associated with lower LWd, as seen in the
tropics in Fig. 4c)5,50.

To better understand the drivers of LWd SEBD, we calculate its clear-
sky (LWd,cs) and cloud-only (all-sky minus clear sky; LWd,cl) components
(Supplement Fig. S12). Performing a cross-correlation analysis across grid
cells, we find that the LWd SEBD changes most significantly correlate with
LWd,cs SEBD (r = 0.91; Table 2). We also find a relatively large and sig-
nificant correlation betweenTs and LWd,cs SEBD (r = 0.89; Table 2). Despite
significant increases in clouds in many areas with forestation (Supplement
Fig. S8g), clouds appear less important for explaining changes inLWdSEBD.
For example, the correlation between the LWd SEBD and LWd,cl SEBD is
insignificant (r = 0.002), and LWd,cl SEBD changes are generally opposite
LWd SEBD. This is particularly prominent over central Africa where the
LWd,cl SEBD shows significant warming (Supplement Fig. S12b), consistent
with an increase in cloud fraction (SupplementFig. 8g), but in contrast to the
cooling under LWd and LWd,cs SEBD. The strong clear-sky LWd SEBD and
Ts correlation adds additional evidence that the Planck feedback drives the
LWd signal (i.e., some of the enhanced upwards long wave flux associated
with surfacewarming is redirected back down to the surface under clear-sky
conditions).

Significant decreases in SWd contribute to significant cooling in the
tropics (Fig. 4b), which is related to higher regional aerosol concentrations
and enhanced cloud cover (Supplement Fig. S8g). To try to understand the
importance of aerosol direct effects (e.g., scattering and absorption of solar
radiation), we analyze the multi-model mean changes in clear-sky down-
welling shortwave surface flux (SWd,cs) SEBD. There is reduced SWd,cs

SEBD in the tropics, with significant zonal mean cooling from about 10°S
to 20°N (Supplement Fig. S13a). This decrease in SWd,cs SEBD contributes
to the total cooling associated with the SWd decrease (Supplement Fig.
S13a). Correlating the multi-model mean change in SWd,cs SEBD with
aerosol optical depth (AOD) for the seven models with AOD diagnostics
available results in a significant correlation coefficient of r =− 0.66 (Table
3; see also Supplement Fig. S14). Note that the corresponding correlation
between SWd,cs SEBD and Q is weak and nonsignificant at r = −0.09,
implying aerosols, as opposed to water vapor, are important. Three of the
12 analyzed models (NorESM2-LM, UKESM1-0-LL, and GFDL-ESM4)
have interactive BVOCemissions (Supplement Table S2). Two of the three
models (NorESM2-LM and UKESM1-0-LL) show significant increases in
BVOC emissions and OA, largely in the tropics (Supplement Fig. S15;
Supplement Section 1). Also seen in somemodels (e.g., ACCESS-ESM1-5,
GFDL-ESM4, CNRM-ESM2-1) is an increase in AOD over the Sahara
desert and sub-Sahara (Supplement Fig. S16). For these models, there is a
corresponding decrease in crop fraction and an increase in bare soil frac-
tion (Supplement Figs. S16, S17, S2, & S6). Such changes, which occur
around 10–20°Nwhere themaximum SWd,csdecrease occurs (Supplement
Fig. S14),might be the result of an increase indust emissions (diagnostics of
which these models did not archive).

Cloud changes are also important to SWd. The cloud-only (all-sky
minus clear-sky) downwelling surface shortwave radiation (SWd,cl) SEBD
term shows significant cooling in many afforested regions, including in the
tropics (e.g., central Africa; Supplement Fig. S13b). This SWd,cl SEBD
cooling corresponds spatially with a significant increase in cloud fraction

Fig. 4 | Multi-model mean surface energy balance decomposition (SEBD) of the
surface temperature (Ts) response under net forestation (ssp370-ssp126Lu −
ssp370) over years 2070–2099 where tree fraction increases or decreases by at
least 1%. SEBD estimated contributions of surface (a) albedo (α), (b) downwelling
shortwave radiative flux (SWd), (c) downwelling longwave (LWd) radiative flux, (d)
latent heat flux (LE), and (e) sensible heat flux (H). Panel (f) shows the corre-
sponding SEBD estimatedmulti-modelmean Ts response (i.e., the sum of individual

component) minus the actual Tas response. Black dots on spatial maps symbolize
statistically significant differences at the 95% confidence interval using a two-tailed
test. Depicted to the right of each map is a zonal mean of each variable, with the
uncertainty based on the 95% confidence interval of the model spread. The zonal
mean plot for panel (f) shows the SEBD-estimated multi-model mean Ts (blue) and
the actual Tas (red). Units are K.
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(Supplement Fig. S8g). Alternatively, there is also a significant decrease in
cloud fraction over deforested areas in the northern hemisphere (Supple-
ment Fig. S8g),which is associatedwith a significant increase in SWd,clSEBD
(Supplement Fig.S13b). As mentioned above, these changes in cloud frac-
tion correspond to similar signed and significant changes inQ (Supplement
Fig. S8a; r = 0.63 from Table 3), surface relative humidity (Supplement Fig.
S8c), and ET (Fig. 3c) in many regions, implying the importance of trees to
the atmospheric moisture flux. Furthermore, the Ts response to forestation
may also contribute to the cloud response (r =−0.53; Table 3) through
altered relative humidity, i.e., forestation both cools and adds atmospheric
moisture, both of which act to increase relative humidity (and potentially
clouds).

Thus, clouds and aerosols contribute to the significant surface cooling
associated with changes in SWd. Although SWd,cs SEBD yields stronger and
more significant zonal mean tropical cooling (Supplement Fig. S13a) than
does SWd,cl SEBD (Supplement Fig. 12b), there is better spatial agreement
between SWd and SWd,cl SEBD terms (r = 0.93; Table 3) than there is
between SWd and SWd,cs SEBD terms (r = 0.58; Table 3). Furthermore,
SWd,cl tends to be larger in magnitude than SWd,cs in most regions.We also
note that aerosols could impact the clouds, but we cannot quantify the
aerosol-cloud effect here (e.g., due to a lack of relevant diagnostics).

H SEBD is also associated with significant changes in many regions
with forestation, but these tend to be weaker in magnitude than the other
SEBD components. Generally, the response in H is consistent with the
expectation that forestation is associated with sensible heat-driven cooling.
As trees increase surface roughness, they also increase vertical mixing5,
which transports heat away from the surface. However, there are some
regional inconsistencies, including, for example, significant warming asso-
ciated with ΔH in part of central Africa (Fig. 4e, Supplement Fig. S11c),
where heavy forestation occurs (Fig. 2a).

We reiterate that there are substantial inter-model differences in their
Tas responses to net forestation (i.e., half of the models yield global mean
land cooling, whereas the other half yield the opposite; Table 1). To

investigate further, we conduct the SEBDon twomodel subsets: the “warm”
versus “cold” models, i.e., the models that yield global land-only warming
versus those that yield cooling, respectively (eachwith sixmodels).A smaller
LE cooling effect in the tropics leads to larger tropical land-only warming in
the warm model subset relative to the cold model subset (Supplement Fig.
S18). Furthermore, across all models, there is generally a significant positive
inter-model correlation between Tas and the LE SEBD over the tropics
(Supplement Fig. S19d). This implies that models with higher LE in the
tropics have more cooling over tropical land.

In the NH poleward of about 30°N, a larger α-driven warming effect
leads to more warming over NH land in the warmmodel subset relative to
the coldmodel subset (Supplement Fig. S18).This point is further supported
by significant positive inter-model correlations between the α SEBD andTas
over much of the northern hemisphere (Supplement Fig. S19a). Addition-
ally, the warmermodels have a stronger increase in LWd SEBD, presumably
due to the larger α-driven NH warming leading to larger LWd-driven
warming, consistent with the Planck Feedback. Overall, most of the
enhanced warming in the warm model subset relative to the cold model
subset occurs in theNHextratropics, implying thatmodel differences in the
representation of the forestation effect on α contribute to the relatively large
inter-model differences in the Ts response. Inter-model differences in their
climate sensitivity may also contribute, as the correlation between each
model’s global land Tas response and their Equilibrium Climate Sensitivity
(ECS; as obtained from ref. 51) is r = 0.76 (CMCC-ESM2 not included).

Remote effects
There are signs that net forestation in the experiments analyzed here yields
remote climate effects. Although amajority of areaswith significant changes
in Tas over land (Fig. 3a) coincide with grid cells with a 1% change in tree
fraction or higher (Fig. 2a), there are also significant temperature changes
over parts of the ocean. In the northern hemisphere, for example, there is
significant warming of much of the ocean (aside from the subpolar North
Atlantic). In the southern hemisphere, there are regions of significant

Table 2 |Grid cell-by-grid cell cross-correlations betweenLWdSEBD (over grid cellswith 1%change in tree fractionormore), its
components, and variable responses

LWd SEBD 1 0.91 −0.0015 0.26 0.72 −0.017

LWd,cs SEBD 0.91 1 −0.42 0.071 0.9 −0.37

LWd,cl SEBD −0.0015 −0.42 1 0.39 −0.57 0.83

Q 0.26 0.071 0.39 1 −0.22 0.63

Ts 0.72 0.9 −0.57 −0.22 1 -0.53

CF −0.017 −0.37 0.83 0.63 -0.53 1

LWd SEBD LWd,cs SEBD LWd,cl SEBD Q Ts CF

Variables include the clear-sky and cloud-only components of LWd (LWd,cs & LWd,cl respectively), water vapor path (Q), surface temperature (Ts), and cloud fraction (CF). Bolded values are significant at the
90% confidence interval. Correlations are based on years 2070-2099.

Table 3 |Grid cell-by-grid cell cross-correlationsbetweenSWdSEBD (over gridcellswith1%change in tree fractionormore), its
components, and variable responses

SWd SEBD 1 0.58 0.93 −0.52 0.58 −0.81 −0.19

SWd,cs SEBD 0.58 1 0.23 -0.091 0.34 −0.19 −0.66

SWd,cl SEBD 0.93 0.23 1 −0.58 0.54 -0.88 0.053

Q −0.52 −0.091 −0.58 1 −0.22 0.63 −0.34

Ts 0.58 0.34 0.54 −0.22 1 -0.53 −0.2

CF −0.81 −0.19 −0.88 0.63 −0.53 1 −0.24

AOD −0.19 −0.66 0.053 −0.34 −0.2 −0.24 1

SWd SEBD SWd,cs SEBD SWd,cl SEBD Q Ts CF AOD

Variables include the clear-sky and cloud-only components ofSWd (SWd,cs&SWd,cl respectively), water vapor path (Q), surface temperature (Ts), cloud fraction (CF), andaerosol optical depth (AOD). Cross-
correlations that involve AOD only include models with AOD data available (see Supplement Fig. S14). Bolded values are significant at the 90% confidence interval. Correlations are based on years
2070–2099.
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cooling over the ocean. This difference in the sign of the oceanic response
between hemispheres is consistent with the sign in response ofTas over land
in each hemisphere (Fig. 3a, Table 1), which implies significant remote
effects through changes in oceanic or atmospheric circulation. This
hypothesis is supported by a lack of significant change in clouds in these
areas of significant oceanic warming/cooling (Supplement Fig. S8). Fur-
thermore, there are signs consistent with a weakening AMOC as indicated
by a significant reduction in Tas in the subpolar North Atlantic (Fig. 3a),
which is consistent with ref. 25.However, we also note that these effectsmay
be due to internal climate variability rather than forced. Although we use 12
models, many of these models only performed one realization of ssp370-
ssp126Lu. It is clear that there is large internal climate variability in indi-
vidual model results, especially those with one realization (e.g., Supplement
Fig. S8). Ideally, future studies should perform multiple realizations to
improve signal-to-noise ratios and thus enable amore robust estimate of the
remote effects of tree forestation.

Estimation of the Biogeochemical Effect
Forestation aims to sequester carbon within the land to reduce global
atmospheric CO2 concentrations. Figure 5a shows the multi-model mean
change in carbon storage within the land (cLand) under net forestation over
the years 2070-2099. Overall, there is a global mean increase in stored land
carbon of 0.27 ± 0.13 kg m−2. This corresponds to a global mean annual
reduction in CO2 of approximately 0.99GtCO2year

−1. 89% of this carbon is
stored within the vegetation (cVeg; Fig. 5c), with robust model agreement
that there is an increase. 7% of the increase is due to carbon stored within
litter (cLitter), and the remaining 4%of the carbon is stored in the soil (cSoil)
(Supplement Fig. S20). The most significant increases in cLand are in the
areas with forestation in the tropics and the eastern United States. These
increases also have robust agreement on the sign of the change across the
models (Fig. 5c), with near-100% model agreement.

Using the transient climate response to cumulative carbon emissions
(TCRE; Methods)5, the multi-model mean biogeochemical effect on Tas is
estimated as−0.08 ± 0.02 K over years 2070–2099. The estimated ΔTas for
each model can be found in Supplement Table S3. Overall, this 2070–2099
biogeochemical cooling is significantly larger than the global biogeophysical
effect (−0.002 ± 0.041K) and even the global land-only biogeophysical
effect (−0.01 ± 0.05 K), which are both insignificant changes.

If we assume the globalmean biogeochemical cooling can be applied to
each grid box (under the assumptionCO2 is well-mixed),most regions yield
a significant decrease in total (biogeochemical plus biogeophysical)Tas (Fig.
6a). Insignificant multi-model mean changes occur in much of western
North America and northern Eurasia. The model agreement on the sign of
the total ΔTas (Fig. 6b) also shows robust cooling (more than 2/3 model
agreement) throughout the tropics and southern hemisphere.

Fire
We will now quantify the effects of net forestation and its biogeophysical
effects on fFire and the corresponding influence on the biogeochemical
effect estimated in Section “Estimation of the Biogeochemical Effect.” We
note that only five models with the available data used an interactive fire
module (Supplement Table S2). Of those models, three use some variation
of theCommunity LandModel and its firemodule52,53. Nonetheless, the five
models are used to discern the fire response under net forestation and to
determine if it significantly affects net primary production (npp) and cLand.

Figure 7a depicts the multi-model mean annual mean difference
between ssp370-ssp126Lu and ssp370 (i.e., net forestation) of fFire for the
five models with fire modules. Net forestation results in an insignificant
global mean increase in fFire, with the largest increases in the Sahel and
southern Africa. There are also significant increases in areas with foresta-
tion, such as Western Canada, India, and Central America. On the other
hand, in tropical forests, there are decreases in fFire (Fig. 7a). The effect on
fFire in these low-latitude regions is generally significant and generally has at
least 2/3model agreement on the sign of the response (Fig. 7b). Globally, the
percent change in fFire is +0.12 ± 4.2% (Supplement Fig. S21).

The insignificant global mean increase in fFire only weakly offsets the
carbonsequestrationbenefit of forestation. In thefivemodels, the globalmean
increase in fFire represents 13.1 ± 13.1% of the corresponding increase in npp
(Supplement Fig. S21b). This supports the assertion that forestation does not
significantly negatively impact the ability of the biosphere to store carbon.

We next determine how net forestation creates the pattern of fFire
changes in Fig. 7a through cross-correlation analysis. We cross-correlate
multi-model mean annual zonal mean differences of fFire, land cover
change variables, and climate variables related tofireweather (Ts and surface
relative humidity RHs; Fig. 7c). Changes in fFire are positively correlated
with changes in grass fraction for all five models. Additionally, these

Fig. 5 | The biogeochemical effect of net forestation (ssp370-ssp126Lu− ssp370)
over years 2070–2099. a, c depict the multi-model annual mean change in carbon
stored in the land (cLand) and in the vegetation (cVeg), respectively (units are kg
m−2). The global mean change and its uncertainty are indicated underneath each
panel. Black dots in (a, c) symbolize statistically significant differences at the 95%
confidence interval using a two-tailed test. Depicted to the right of eachmulti-model

mean map is a zonal mean of each variable, with the uncertainty based on the 95%
confidence interval of themodel spread. These plots share the same units as the color
bar of the corresponding panel. The model percent agreement on the sign of these
changes (%) is shown in (b) and (d) for ΔcLand and ΔcVeg, respectively. Black dots
in (b, d) symbolize 66% model agreement on the sign of the change.
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correlations are significant at the 95% confidence interval according to a
two-tailed test for all fivemodels. Four of the fivemodels are also associated
with negative correlations between fFire and tree fraction,with threemodels
having significant negative correlations at the 95% confidence interval.
Similarly, crop fraction and fFire have negative correlations for all five
models, though only three are significant. Changes in climate variables,
including Ts and RHs, have much weaker correlations with the change in
fFire, with only RHs having a significant relationship with fFire at the 90%
confidence interval. Therefore, this cross-correlation analysis suggests that
changes in fFire under net forestation are primarily driven by the land cover
change andnot by the changes in climate due to the biogeophysical effects of
net forestation. More specifically, increases in grass cover in these simula-
tions (which are likely a result of crop abandonment as grass is the natural
land cover in the region54) are associated with an increase in carbon fire
emissions (e.g., GFDL-ESM4; Fig. 7c, Supplement Figs. S3f & S22c).Models
with more decreases in grass fraction in the tropics (e.g., CESM2) have also
decreased fire emissions (Fig. 7c, Supplement Figs. S3c & S22a). In contrast,
increased cropland and tropical forests in these simulations are associated
with decreased fFire.

Discussion
Our results suggest thatnet forestation, as specifiedby thedifferencebetween
ssp370-ssp126Lu and ssp370, would help mitigate anthropogenically

induced global warming. The increase in land carbon storage produces an
estimated global biogeochemical cooling of −0.08 ± 0.02 K. There is no
significant global biogeophysicalwarming (rather, an insignificant coolingof
−0.002 ± 0.04 K) associated with net forestation.

Regionally, there are differences in the net biogeophysical surface
temperature response tonet forestation. This includes general cooling of the
tropics butwarming of the northernhemisphere extratropics.While there is
robustmodel agreement and significantmulti-modelmean albedowarming
effects associated with forestation inmid-latitude regions, the latent cooling
resulting from increased evapotranspiration in these areas is less certain. In
contrast, relatively large and significant increases in evapotranspiration
occur in the tropics, which dominate over the albedo effect locally. Tropical
areas are associated with higher soil moisture, higher stomatal conductance,
a lack of a winter dormancy period for tropical vegetation, and generally
warmer overall temperatures; all these factors may lead to higher tran-
spiration responses there55–58. Therefore, the higher efficiency of ET in the
tropics compared to the mid-latitudes, as seen in Fig. 3c, is expected.

The lack of significant biogeophysical warming of net forestation is in
contrast to prior studies that indicate that the biogeophysical effects could
offset the biogeochemical effects by up to 50%4–9. This difference is partly
related to the spatial location (and magnitude) of the land cover change
examined here. For example, the land cover changes analyzed here show
relatively small increases in temperate and particularly boreal trees, both of

Fig. 6 | Biogeophysical plus TCRE-estimated biogeochemical effects of net for-
estation (ssp370-ssp126Lu− ssp370) over years 2070–2099.Multi-model annual
mean response of (a) near-surface air temperature (Tas; K). Black dots symbolize
statistically significant differences at the 95% confidence interval using a two-tailed
test. The globalmean change and its uncertainty are indicated underneath the panel.
Depicted to the right is the corresponding zonalmean, with the uncertainty based on

the 95% confidence interval of the model spread (units are K). Also shown is the
model percent agreement plot (%) for (b) biogeophysical plus biogeochemical
change in Tas. Yellow colors indicate that the majority of the models yield a positive
difference. In contrast, blue colors indicate that the majority of the models yield a
negative difference. Black dots on (b) show grid cells with at least 66% model
agreement on the sign of the difference.
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which are associated with a relatively large surface darkening (warming)
biogeophysical effect. Much of the net forestation examined here is tropical
and concentrated in central Africa.

Concerning aerosols, net forestation corresponds to a higher aerosol
burden regionally, as organic aerosol increases in some models due to the
increase in tree fraction (consistent with an increase in biogenic volatile
organic compounds in these models). This increase in aerosol burden may
help cool some regions. However, conclusions on the effects of net fores-
tationonaerosol burden (aswell asmethane andozone) requiremore study,
as only three models involved in this project have interactive atmospheric
chemistry and interactive biogenic volatile organic compound emissions.
Additionally, the aerosol response in some models may be due to increases
in dust from an increase in bare soil fraction in northern Africa.

There are some significant changes in near-surface air temperature
over the ocean that indicate remote climate effects under net forestation,
potentially related to changes in atmospheric/ocean circulation (e.g.,
temperature advection from afforested areas). However, the lack of
multiple realizations for most models means that these significant
changes in ocean temperatures could be due to internal climate varia-
bility. Therefore, furtherwork is needed to draw concrete conclusions on
the topic.

Thefire response undernet forestation showsminimal negative impact
on carbon sequestration. In central Africa, for example, there is a significant
decrease in fire carbon emissions, which would enhance carbon storage in
the biosphere there. One consequence of net forestation is increased fire
carbon emissions outside of tropical forests, especially in western and
southern Africa. However, this increase in fire carbon emissions is due to
higher grass fraction from crop abandonment in western and southern
Africa, as opposed to an increase in tree fraction. However, we note some
significant regional increases in fire carbon emissions associated with an
increase in trees in boreal North America. Furthermore, only five of the
models analyzed have an interactive fire module for these experiments, and
three have the same fire module52,53. Based on this lack of model diversity
and the large uncertainty in the change in fire carbon emissions, caution is
warranted with these results.

One caveat is that the land cover change differs across some of the
models, contributing to the inter-model uncertainty in the climate response.
This is because some models have different ways of implementing the land
cover change. This could be due towhether or not themodel uses a dynamic
global vegetation model or how the models implement the common har-
monized land use drivers46. For example, although CESM2, CMCC-ESM2,
and NorESM2-LM all share the same land cover change, including wide-
spread forestation at the expense of grass in tropical Africa, CanESM5
(which has no dynamic vegetation) and GFDL-ESM4 (which has dynamic
vegetation) have much weaker forestation there and even have increases in
grass (Supplement Figs. S2 & S3). Models with a larger increase in tree
fraction in this region generally havemore significant cooling there. Similar
statements apply to themid-latitudes, where somemodels show forestation
in western Europe, while other models show deforestation. There are also
noticeable differences in the forestation effect on albedo and latent heat
fluxes among models (e.g., that may stem from differences in stomatal
conductance, plant hydraulics, parameters related to surface and vegetation
albedo, etc). For example, models that experience net global warming yield
weaker latent cooling at the equator andmore albedo-drivenwarming in the
northern hemisphere. Therefore, further understanding of the causes of
these differences among the models is needed.

Despite these limitations, the CMIP6 multi-model ensemble mean
analyzed in this paper shows no significant warming effect from the bio-
geophysical impacts of net forestation and relatively modest cooling asso-
ciated with the biogeochemical effect. Aside from a significant increase in fire
activity just outside the tropics, these simulations show few significant
climate-specific drawbacks to supplementing traditional CO2 mitigation
techniques with forestation at low latitudes. Therefore, this study indicates
that forestation, tree preservation, and reforestation of the tropics (15oS-15oN
latitude) would reduce global CO2 concentrations, have latent cooling effects,
andmay decrease fire carbon emissions in some tropical regions (e.g., central
Africa). However, caution should be taken regarding forestation efforts
elsewhere. Additionally, given the relatively weak cooling effects under the
land cover change examinedhere, emissions reductions remain thedominant
lever to address anthropogenically induced climate change.

Fig. 7 | Change in fire carbon emissions under net forestation (ssp370-ssp126Lu
− ssp370) over years 2070–2099. Multi-model annual mean response of (a) fire
carbon emissions (fFire; kgm−2 year−1). The globalmean change and uncertainty are
indicated underneath panel (a). Black dots in (a) symbolize statistically significant
differences at the 95% confidence interval using a two-tailed test. Depicted to the
right of (a) is a zonalmean of fFire, with the uncertainty based on the 95% confidence
interval of the model spread. bModel percent agreement on the sign of the fFire

response (%). Black dots in (b) symbolize 66% model agreement on the sign of the
change. Also shown are (c) Pearson cross-correlation coefficients (r) between ΔfFire
and tree fraction (ΔtreeFrac), grass fraction (ΔgrassFrac), crop fraction (ΔcropFrac),
surface temperature (ΔTs), and surface relative humidity (ΔRHs). Correlations are
based on each variable’s annual mean zonal mean land responses. ∘ symbolizes
significant correlations at the 90% confidence interval and × symbolizes significant
correlations at the 95% confidence interval according to a two-tailed test.
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Methods
CMIP6 models and experiments
We analyze output from 12 CMIP6 Earth SystemModels (Supplementary
Table S1). Our analysis examines the difference between a global mean
forestation experiment (ssp370-ssp126Lu) and a global mean deforestation
experiment (ssp370),whichwe refer toas “net forestation” (Supplement Fig.
S1). We emphasize that the difference between the scenarios represents a
change in which afforestation, reforestation, and avoided deforestation
contribute to “net” forestation, so this is an imperfect test case for con-
straining the impact of forestation on regional and global climate.

The ssp370 experiment is driven by a variant of the SSP3 “regional
rivalry” IPCC scenario. It represents a future with medium-to-low CO2

emissionsmitigation42. In the ssp370 experiment, there is high deforestation
tomake room formore crops to feed a growing population and to support a
higher gross domestic product. The ssp370-ssp126Lu experiment is the
same as the ssp370 experiment concerning anthropogenic activity (e.g.,
atmospheric CO2 and other greenhouse gas concentrations, aerosol emis-
sions, etc.) and all other factors, excluding land use and land cover. In
particular, ssp370-ssp126Lu uses land cover from the SSP1-2.6 scenario as
opposed to that based on the SSP3-7.0 scenario. As such, ssp370-ssp126Lu
replaces much cropland and grassland in the ssp370 experiment with trees
(Fig. 2, Supplement Figs. S1–S4) andavoidsmost deforestation in the ssp370
experiment. However, there are a few notable exceptions. For example, the
difference between scenarios leads to net deforestation in China (and parts
of eastern Europe) and net crop fraction increase in the Sahel at the expense
of bare soil (Supplement Figs. S1, S2, S4, & S6). The land use and land cover
in each scenario are determined by an IntegratedAssessmentModel (IAM),
which determines how land cover evolves through the 21st Century based
on policy decisions and socioeconomic factors42,47.

Within the 12 CMIP6models, the land and atmosphere (and ocean and
sea-ice)models are coupled. Therefore, there is two-way feedback between the
land and the atmosphere that allows direct quantification of the biogeophy-
sical effects. However, the simulations have no land (or ocean) carbon feed-
backs onto the atmosphere (i.e., simulations use prescribed atmospheric CO2

concentrations and are not driven by CO2 emissions). As such, the impact of
carbon storage in vegetation and soil does not influence atmospheric CO2

concentration and air temperature; rather, the impact of the biogeochemical
effects on air temperature is estimated offline using the TCRE.While three of
the models (CESM, NorESM2, CMCC) share variations of the same land
model and thus the same land cover change (e.g., models that utilize CLM4.5
or CLM5; Supplement Figs. S2–S4), other models have slightly different land
cover changes. Some employ dynamic vegetation models that project vege-
tation cover, overriding the prescribed land cover except where the transition
to or from crop area is concerned (Supplement Figs. S2–S6).

The experiments begin in 2015 and are run for 85 years, except for the
NorESM2-LM ssp370-ssp126Lu experiment, which ends in 2099 instead of
2100. Therefore, 2099 is taken as the last year for each experiment and
model. For this analysis, the years 2070–2099 (the last 30 years) are averaged
together for each experiment andmodel. The 30-year average for the global
mean deforestation experiment (ssp370) is then subtracted from the global
mean forestation experiment (ssp370-ssp126Lu) to obtain the effect of the
land cover change. Previous studies have compared these two experiments
to analyze future changes in temperature and precipitation extremes44,45.
However, these studies did not investigate mechanisms driving these
extremes or quantify general regional or global mean changes in important
parameters such as fire. A list and description of the variable abbreviations
usedwithin this paper and the correspondingCMIP6 variable fromwhich it
is derived can be found in Supplement Table S4.

Dynamic vegetation models
Most of the ESMs used here do not employ a Dynamic Global Vegetation
Model (DGVM) and thus do not simulate changes in the distribution and
type of vegetation in response to changes in CO2, climate, fire, or vegetation
competition. However, all models simulate changes in vegetation physiol-
ogy and state, such as leaf area index and canopy height27,59.

Three models include a DGVM, including UKESM1-0-LL, MPI-
ESM1-2-LR, and GFDL-ESM4, and thus simulate changes in the type of
vegetation, also known as plant functional types (PFTs). More information
on DGVMs can be found in supplement section 2.

Fire modules
Of themodels used in this analysis, five have firemodules with output in the
CMIP6 archive for the ssp370-ssp126Lu experiment (Supplement Table
S2). Taking thedifference between the ssp370-ssp126Lu experiment and the
ssp370 experiment yields the response of fire carbon emissions to the effects
of the land cover change and its biogeophysical effects. As the atmospheric
CO2 concentration between the two experiments is the same, there are no
temperature-related biogeochemical effects on fire occurrence (or climate).
However, there are effects on CO2 fertilization due to the differences in land
cover type (trees responddifferently tohigherCO2 concentration thanother
vegetation types27). We also note that human ignitions and suppression of
fires are identical between both ssp370 and ssp370-ssp126Lu as both pro-
cesses are parameterized based on the human population, which evolves
identically in both experiments. Furthermore, none of the models in the
experiments utilized employ interactive fire emissions of trace gases and
aerosols; instead, they employ prescribed fire emissions of trace gases and
aerosols, which thus have amismatchwith interactive carbon emissions and
impacts. As aerosols emitted from fires can have shortwave and longwave
effects that significantly alter the climate (e.g.,27,60), the climate impacts of
fires in this experimental design are not completely captured as biomass
burning aerosols are the same between both simulations.More information
on how fire modules operate and the uncertainty associated with them can
be found in supplement section 3.

Representation of atmospheric chemistry and composition
Emissions of anthropogenic and biomass burning trace gases, aerosols,
and precursors are prescribed by SSP370 in both ssp370 and ssp370-
ssp126Lu experiments. Only three of the models include interactive
chemistry (GFDL-ESM4, NorESM2-LM, and UKESM1-0-LL)23,61–63,
which includes interactive BVOC emissions and their effects on atmo-
spheric constituents such as secondary organic aerosol (SOA) and ozone
(but not methane). In models with interactive BVOC emissions, the
emissions respond to climate change (e.g., changes in CO2, temperature,
etc.) and, in most cases, vegetation change too. In GFDL-ESM4, how-
ever, the vegetation model is decoupled from the BVOC module, and
therefore, the BVOC emissions only respond to changes in climate.
NorESM2-LM and GFDL-ESM4 simulate BVOC emissions using the
Model of Emissions of Gases and Aerosols from Nature (MEGAN64).
MEGAN BVOC emissions are based on a variety of factors, including
sunlight65, a temperature response based on enzymatic activity65, and a
CO2 response based on changes in metabolite pools, enzyme activity,
and gene expression66. Different models have different implementations
of the factors and number of factors included. For example, GFDL-
ESM4 does not include CO2-isoprene inhibition.

All of the models used have interactive dust emission schemes. Dust
emission is generally a function of leaf area index, bare soil fraction, soil
moisture, and/or wind speed, though the exact formulation depends on the
model (Supplement Table S2).

Surface energy balance decomposition
We utilize the surface energy balance decomposition (SEBD) method to
estimate the contribution of changes in surface energy fluxes to changes in
surface temperature5. The SEBD assumes that the change in Ts is directly
related to the change in surface radiative fluxes and the surface sensible and
latent heat fluxes. However, the SEBD does not consider every aspect of
surface energy transfer (such as sub-surface heat exchange) and may inac-
curately simulateTs in some areas.We only apply the SEBD to areas with an
increase or decrease in the tree fraction of 1% or greater to understand the
drivers of the surface temperature response directly due to the tree fraction
change.

https://doi.org/10.1038/s41612-025-01127-4 Article

npj Climate and Atmospheric Science |           (2025) 8:297 11

www.nature.com/npjclimatsci


In comparing an experiment to a control (i.e., ssp370-ssp126Lu versus
ssp370), surface temperature response can be approximated as

ΔTs ¼
1

4ϵσT3
s;control

ðΔSWdð1� αÞ � ΔαðSWdÞ þ ΔLWd � ΔLE � ΔHÞ

ð1Þ
where ΔTs is the change in surface temperature for the ssp370-ssp126Lu
experiment compared to the ssp370 experiment, Ts,control is the surface
temperature of the ssp370 experiment, ϵ is the surface emissivity
(approximated to be 0.97)67, and σ is the Stefan-Boltzmann constant (with
a value of 5.67 × 10−8 Wm−2 K−4). The first term in parentheses represents
the contribution from changes in surface downwelling shortwave radiation
(ΔSWd); the second term represents the contribution from changes in
surface albedo (Δ α); the third term represents the contribution from
changes in surface downwelling longwave radiation (ΔLWd); the fourth
term represents the contribution from changes in surface latent heat flux
(ΔLE); and the fifth term represents the contribution from changes in
surface sensible heat flux (ΔH).

Transient climate response to cumulative CO2 Emissions
Thechange in carbon stored in land (ΔcLand) due tonet forestation is givenby

ΔcLand ¼ ΔcVeg þ ΔcSoil þ ΔcLitter ð2Þ

where ΔcSoil is the carbon stored in soil organic matter and cLitter is the
carbon stored in litter. With the ΔcLand value, the biogeochemical effect of
net forestation on global mean Tas is given by

ΔTas ¼ ΔTCRE×ΔcLand ð3Þ

where ΔTCRE represents a near-linear relationship between cumulative
anthropogenic CO2 emissions and global warming since the preindustrial
and provides a good first estimate of the near-surface air temperature
response to land carbon changes. The values of TCRE used for each model
are given by ref. 68 and displayed in Supplement Table S3. For the CMCC-
ESM2model, a value of 1.77 K per 1 EgC is used based on the multi-model
average TCRE in ref. 68.

Data processing and statistics
The data processing and statistics utilized in this paper follow the methods of
refs. 23,27. Using bilinear interpolation, we utilizemonthlymeanCMIP6 data
and spatially re-grid all model data to a 2.5° × 2.5° grid. We calculate the net
forestation response as the difference in years 2070-2099 from ssp370-
ssp126Lu relative to the same years from the ssp370 simulation. The multi-
model mean is estimated from the average of all the models. If multiple
ensemble members are available for a given model, we first (i.e., before cal-
culating themulti-model average) calculate anensemble averageof thatmodel.

We emphasize the limitations of our study in terms of the lack of
availability of multiple ensemble members for each model. We use one
ensemble member for most models, as only one realization is available for
these experiments.Multiple realizations are available for ACCESS-ESM1-5,
UKESM1-0-LL, and CESM2, and we use 10, 5, and 3 realizations, respec-
tively (Supplement Table S1). For the models with multiple realizations, we
examine the ensemble average Tas and agreement in Supplement Fig. S23.
Wegenerallyfind robust (2/3rds agreementon the signof the change among
realizations) in Tas for all models in areas with significant forest cover
increase (e.g., Central Africa).However, inmany areaswhere the forestation
signal is weaker, there is less agreement on the sign of the change, high-
lighting a need formultiple ensemblemembers to discern robust responses.

Statistical significance of the climate response is calculated using two
different methods. In the first method, which is illustrated via dots onmaps
(e.g., Fig. 3a), we calculate the multi-model mean time series for both the
ssp370-ssp126Lu (experiment) and the ssp370 (control) simulations, and
we then calculate the 2070–2099 difference between the two for a given

variable. We use a two-tailed paired t-test to assess significance, where the
null hypothesis of a zero difference is evaluated at the 95% confidence
interval, with n-1 degrees of freedom, n is the number of years in the
experiment (30 years). Here, the paired variance,

1
n� 1

Xn

i¼1

ðdi � �dÞ2 ð4Þ

is used, where di is the difference between experiment and control for a given
year, and �d is the average difference between the experiment and control over
all time.Thepaired t-test has beenused extensively inpastCMIP6analyses69–71.

We also determine the statistical significance of themulti-modelmean
response relative to the response of eachmodel (the results of this testing are
given in the text to quantify global and regional uncertainty as well as in the
zonal averages). Here, we calculate the multi-model mean response as the
averageof the individualmodel responses, and its uncertainty is estimated as
plus/minus 1.96 × standard error (i.e., the 95% confidence interval)
according to

1:65× σ
ffiffiffiffiffiffi
nm

p ð5Þ

where σ is the standard deviation across models and nm is the number of
models. If this confidence interval does not include zero, then the multi-
model mean response is significant at the 95% confidence level.

We also estimate the model agreement on the sign of the model-mean
response (e.g., the yellow versus blue coloring onmaps like Fig. 3b), which is
determined at each grid cell as the percentage of models that have a positive
or negative response. Grid cells for which 66% (i.e., 2/3) of themodels agree
on a sign pass a 2-tailed binomial test to reject the null hypothesis of equal
probability of positive or negative sign at the 95% confidence level. Under
such conditions, there is robust agreement on the sign of the response across
the models (designated by symbols).

Concerning cross-correlation analysis, the statistical significance of the
Pearson cross-correlation coefficient (r) is approximated from a two-tailed
t-test as:

t ¼ rffiffiffiffiffiffiffi
1�r2
N�2

q ð6Þ

withN-2 degrees of freedom. For correlations performed over latitude,N is
the length of a variable’s latitude dimension (withmissing values removed),
as the correlations are performed zonally. For correlations performed on a
grid cell-by-grid cell basis, N is the total number of grid cells used in the
calculation. For correlations performed across models, N is the number of
models. Cross correlations are deemed significant if the p-value is under 0.1
(i.e., the 90% confidence interval).

Data availability
CMIP6 data can be downloaded from the Earth SystemGrid Federation at
https://esgf-node.llnl.gov/search/cmip6/. Standard codewas used to analyze
CMIP6 data, which is available upon request from jgome222@ucr.edu.
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