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Recent changes in spatiotemporal
patterns of heat extremes in South Asia
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Tanujit Chakraborty7,8 , Dibakar Ghosh4, Jürgen Kurths3,9 & Chittaranjan Hens10

The likelihood of intense heatwaves in South Asia is increasing due to climate change, highlighting the
need to understand their evolving spatiotemporal patterns. Using a complex network-based
approach, we analyze synchronous extreme heat events across South and West Asia over three 30-
year periods: two historical phases (1960–1989, 1990–2019) and a near-future projection (2020–2049)
under theSSP2-4.5 scenario.Our findings reveal a shift in heatwave synchronization fromwestern and
central Asia before 1990 towards Pakistan, northwest India, and the southwestern Tibetan Plateau by
the mid-21st century. This shift is primarily driven by increased surface sensible heat flux, which
enhances atmospheric diabatic heating and strengthens the early-summer circumglobal
teleconnection. Additionally, atmospheric conditions over the North Atlantic-Greenland sector
modulate South Asian heatwave synchronization. Our study provides novel insights into the evolving
land-atmosphere interactions driving extreme heat events, with implications for heatwave
predictability and risk assessment in a warming world.

The Sixth Assessment Report of the Intergovernmental Panel on Climate
Change confirmed with high confidence that the rising trend of heat
extremes across most of Asia is projected to continue in the coming
decades1. Climate change has amplified droughts in the arid and semi-arid
regions of western, central, and southern Asia and increased the likelihood
of spring to summer heatwaves (HWs) across the continent2. In India, HWs
occur frequently during the pre-monsoon season (March toMay, extending
intomid-June until the onset ofmonsoon), primarily affecting the northern
and central regions3. Recent data indicates a rise in HWs in northern
Pakistan, northwest India, the Indo-Gangetic Plain, and theTibetanPlateau
(Fig. 1). SouthAsia is oneof themost susceptible regions to climate extremes
due to its diverse landscape, varied climate, high population density, rapid
urbanization, and limited adaptive capacity. This region alone accounted for
23% of the 489,000 annual global heat-related deaths between 2000 and
20194,5. Extreme heat conditions also severely impact agriculture, causing
crop damage, yield reductions, and socio-economic decline6,7. Cascading
effects of heat extremes can increase susceptibility to wildfires, extreme
rainfall, flooding due to enhanced snowmelt and soil erosion, often leading
to compound events8–13.

In South Asia, HWs can develop and persist due to the simultaneous
occurrence of multiple favorable conditions. These conditions arise from a
complex interplay of local and remote factors. Regionally, persistent high-
pressure systems lead to atmospheric blocking, causing air to descend
(subsidence), resulting in clear skies and higher surface temperatures. Dry
soil further intensifies the heat by limiting evapotranspiration14,15.

At larger scales, the amplified phases of the atmospheric circumglobal
teleconnection (CGT), a wave-like pattern that travels along the mid-
latitude jet, can trigger high-pressure systems over South Asia, leading to
blocking events and stationary Rossby wave propagation16–18. Further, stu-
dies have linked anomalous anticyclonic circulation over theNorthAtlantic
and anomalous Atlantic sea surface temperatures to high-pressure
anomalies over northern India14,19,20. Anomalous European lows can pro-
duce blocking highs over north India and Pakistan, often associated with a
weakened polar jet stream and a northward-shifted subtropical jet, thereby
promoting pre-monsoon HW development21,22.

Although several works have examined decadal variations and future
trends in the frequency, persistence, and spatial classification of Indian
HWs23–25, limited attention has been given to understanding the recent
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changes in their spatiotemporal coherence patterns arising due to related
large-scale drivers. Understanding these changes is crucial for effective risk
assessment andmanagement, given South Asia’s significant socioeconomic
vulnerability to climate impacts. Furthermore, examining changes in land-
atmospheric processes that contribute tomore frequent and intenseHWs is
especially relevant in the context of anthropogenic land use and land cover
changes over the decades26,27. Such insights are essential for improving
model accuracy and enhancing predictive capabilities. For example, HWs
affectingPakistan andnorthern India in recent years could be predictedwell
in advance in extended-range forecasts, but themechanisms underlying this
predictability have remained unclear28.

This study investigates interdecadal changes in the interannual
variability of the spatiotemporal patterns of spring (March-April-May)
extreme heat events across South Asia, as well as adjacent regions in
Central and West Asia, which exhibit related mechanisms leading to
synchronous heat events. However, traditional methods such as corre-
lation analyses, empirical orthogonal functions, and seasonal composites
used in previous studies have limitations in capturing spatial extreme
heat covariability29. To gain insight into the spatiotemporal dynamics of
HWs, we employ the framework of climate networks. This belongs to the
class of functional complex networks, wherein the nodes represent
geographical locations and the edges represent the similarities between
their dynamical behavior (see Functional network construction using
event synchronization in “Methods”)30. To assess the similarity between
HW events at different locations, we use an event-based nonlinear
similarity measure, known as event synchronization (ES)31,32. The inte-
gration of ES with complex network theory has proven to be highly
effective in revealing global and regional coupling patterns of extreme
climate events, such as precipitation33,34, heatwaves35,36, and droughts37,38,
allowing the identification of specific large-scale atmospheric circula-
tions associated with synchronous extreme events32,39.

The primary interest of our study is to identify continental-scale
coherence patterns of HWs in South Asia and understand their evolution
over multiple climatological periods. To achieve this, we integrate historical
temperature data fromERA5 reanalysis andCMIP6 future projections from
three Earth System Models, namely MPI-ESM1.2-LR, CNRM-CM6-1 and
UKESM1-0-LL (see Data in “Methods”). Previous studies have identified a
structural change in temperature trends and circulation patterns around the
mid-1990s22,40,41. Accordingly, we divide the historical period of analysis into
two equal 30-year climatological periods: 1960–1989 (P1) and 1990–2019
(P2), selecting 1990 as a practical cutoff to ensure comparability and tem-
poral symmetry. This division also aligns with broader climatic and socio-
economic transitions in South Asia during the post-1990 period, such as
accelerated urbanization, land-use change, and increased greenhouse gas
emissions1,42–44. Furthermore, to understand how HW coherence patterns
may evolve further under a realistic future warming scenario (SSP2-4.5)
with moderate emissions given current policies, we analyze near-future
temperature projections fromCMIP6. For consistent temporal comparison

across past and projected climates, we also use a 30-year window for the
future period (2020–2049).

HW events are defined as daily temperature anomalies, with respect to
the climatology of the given period, exceeding one standard deviation for at
least five consecutive days (refer to the definition inHeatwave identification
in “Methods”). Using event synchronization-based complex network
architecture and network-derived composite analysis, we identify changes
in land atmospheric processes associated with synchronous HWs in each
climatological period.Comparing twohistorical 30-year periods instead of a
single longhistorical period, alongwith future projections, allowsus to study
the evolution of HW characteristics over time and assess multi-decadal
variability. This approach enables us to identify themost susceptible regions
to synchronized heat extremes in a progressively warming climate, along
with the potential factors contributing to South Asian HW development.
Finally, we use causal network analysis to examine changes in the causal
interrelationships among these factors in the recentdecadesandvalidateour
findings (see Causal network analysis in “Methods”). Such an interdecadal
comparison enables us to unravel changes in the interplay of different fac-
tors influencing South Asian HW development post-1990 warming (see
“Results”).

Results
Heatwave coherence patterns in different climatological periods
We compare the spatiotemporal synchronization pattern of March-April-
May HWs over the Indian subcontinent of two different historical clima-
tological periods (see Fig. 1) using the node-based network centrality
measure degree as shown in Fig. 2 (see Functional Network Construction
using Event Synchronization and Network measures in “Methods”). We
choose the maximum allowed delay as τmax ¼ 5 days to identify synchro-
nized events. This choice is motivated by the typical lifetime of synoptic-
scale atmospheric systems-such as blocking highs and Rossby wave trains-
that are known drivers of heatwaves and generally persist for 5 to 7 days45,46.
Selecting τmax within this range allows us to capture synchronization
between events likely influenced by the same large-scale system, while
avoiding spurious associations with unrelated events.

For both P1 and P2 (1960–1989 and 1990–2019 respectively), a sig-
nificantly high-degree interaction is observed in the regions covering
northwest and central parts of India, most of Pakistan, the Himalayas, and
the Tibetan Plateau. There is a striking increase in the connectivity pattern
during P2 (Fig. 2b) in these high-degree regions compared to P1 (Fig. 2a).
Thedegree distributionof thenetwork for 1990–2019 (P2) extends tohigher
values and exhibits a thicker tail compared to 1960–1989 (P1), reflecting an
increase in node connectivity and heterogeneity in the spatial synchroni-
zation of extreme heat events (Supplementary Fig. S1). The high-degree
regions in our network align closely with areas showing increasing HW
trends, consistent with findings reported in previous studies19,24. The
increase in HW occurrences has been associated with anthropogenic
warming24,47–49.

Fig. 1 | Number of heatwaves during over South
Asia during the pre-monsoon season across his-
torical periods. Heatwaves during March-April-
May (see definition in Heatwave identification in
“Methods”) were identified using ERA5 daily 2m-
temperature for the periods: a 1960–1989 and
b 1990–2019. Each grid point shows the total
number of heatwave events over the respective 30-
year span.Warmer colors indicate higher frequency.
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AlthoughHWevents occur across the Indian subcontinent (Fig. 1), we
find that only those in the northwestern regions of the area under con-
sideration exhibit strong spatial synchronization (Fig. 2). This aligns with
the complex network-based findings of ref. 36, in which the authors further
infer that the pre-monsoon HWs in India predominantly originate in the
northwestern parts of the country before propagating toward the northeast
or southeast.However, rather than viewing this as a directional propagation,
we argue that the underlying dynamics in the northwest are fundamentally
different from those governing HW events in other regions19,50. This dis-
tinction is evident in the spatial patterns of network degree (Fig. 2).
Moreover, our findings suggest that the synchronization of HW events in
northwest India may be influenced by external factors originating from
West Asia (including the Middle East and Southwest Asia). To gain deeper
insight into the physical mechanisms driving this synchronization, it is
essential to extend our network analysis further northwestward. Figure 3
shows the network degree patterns of the extended region for both historical
climatological periods. In this case, the chosen maximum delay τmax is
increased to 7 days to identify synchronized extreme heat events belonging
to similar atmospheric dynamics even over longer distances. Although, our
results are consistent for τmax ¼ 5 days, as demonstrated inRobustness tests
in “Methods”.

From the spatial connectivity pattern, it appears that the extreme heat
events in northwestern India and Pakistan belong to a larger cluster of
synchronized events that extend to Iran, the northern Arabian peninsula,
andnortheasternAfrica (Fig. 3).We reveal that there is an overall significant
enhancement in the synchronization of heat events in these regions during
P2 compared to P1 (compare Fig. 3b and a, respectively).

In order to confirm this, we compute the partial degree (see equation
(3) under subheading Network measures of ”Methods”) of selected high-
degree regions, namely, northwestern India, northwestern Pakistan, and
Iran, for bothhistorical periods.Thismeasuredecomposes the total network
degree for each region, allowing us to quantify how their connectivity to
other areas has evolved over time (Fig. 4). The use of partial degree thus

offers a finer-grained view of network structure, revealing changes in
regional linkages that are not apparent in the more aggregated degree maps
of Fig. 3.We find that northwest India exhibits high connectivity tomost of
Pakistan, eastern Afghanistan, the southwestern Tibetan plateau, southeast
Iran, andparts of the Indo-Gangetic PlainduringbothP1 andP2(Fig. 4a, b).
However, in P2, this region shows increased synchronization with the
southwestern Tibetan plateau and Pakistan, but reduced connectivity to
eastern India (compare Fig. 4b to a). Similarly, during P2, Pakistan’s con-
nectivity has not only strengthenedwestwards—particularlywith Iran—but
also eastwards, to the Tibetan plateau and northwest India (compare Fig. 4d
to c). Iran’s connectivity has also expanded and amplified, both westward
and eastward, during the later period P2 (compare Fig. 4f to e).

The spatial connectivity pattern of HWs contrasts sharply with the
spatial distribution of the number of extreme heat events (Supplementary
Fig. S2) for both historical periods. This distinction arises because the event
synchronization network identifies regions with similar event profiles, such
as south-central Asia and northwest India, which are likely influenced by
related large-scale land-atmosphere processes. Conversely, the synchroni-
zationpatterns of extremeheat events in eastern and southern India, and the
Horn of Africa (Supplementary Fig. S2), do not emerge prominently in the
network analysis (Fig. 3), presumably because HWs in these areas are
governed by different underlying mechanisms50. This underscores the
abilityof the complexnetwork approach todistinguishbetweenHWregions
based on their driving processes.

The observed changes in HW synchronization patterns between the
two historical climatological periods are likely associated to the shift in the
warming trend after 199041. It is therefore imperative to investigate how
these patterns may evolve under future warming scenarios, which we
address in the following analysis. Figure 5a, c, e shows the number of
projected HW events lasting at least 5 days for the period 2020–2049 under
the SSP2-4.5 scenario, as simulated by three CMIP6 models, namely MPI-
ESM1.2-LR, CNRM-CM6-1, and UKESM1-0-LL. At the regional scale,
MPI-ESM1.2-LR performs moderately well to reproduce large-scale

Fig. 3 | Network degree spatial patterns of syn-
chronous heatwaves over South and West Asia
during March–April–May. Network degree maps
derived from ERA5 daily 2m-temperature, captur-
ing synchronous heatwave occurrences with max-
imum allowed temporal delay of τmax ¼ 7 days for
the span: a 1960–1989, and b 1990–2019. Higher
degree values indicate regions with more frequent
synchronous heatwave connections to other grid
points in the network.

Fig. 2 | Network degree spatial patterns of syn-
chronous heatwaves over South Asia during the
pre-monsoon season. Network degree maps
derived from ERA5 daily 2m-temperature during
March-April-May, capturing synchronous heat-
wave occurrences with maximum allowed temporal
delay of τmax ¼ 5 days for the span: a 1960–1989,
and b 1990–2019. Higher degree values indicate
regions with more frequent synchronous heatwave
connections to other grid points in the network.
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temperature and precipitation patterns over India and South Asia, and has
been used in heatwave assessments24,51,52. Among other CMIP6 models,
CNRM-CM6-1 performs best to represent the spatial temperature patterns
over India while UKESM1-0-LL captures temporal temperature features
better53. The number ofHWevents forMPI-ESM1.2-LR andCNRM-CM6-
1 (Fig. 5a, c) are comparable to those during P2 in ERA5 (Supplementary
Fig. S2b),with increasesHWs in SouthAsia and theMiddle East. The spatial
distributionof the numberofHWevents is similar forMPI-ESM1.2-LRand
CNRM-CM6-1, except the latter severely underestimates HW events in the
TibetanPlateaudue toa large coldbias54.UKESM1-0-LLunderestimates the
number of HW events overall, especially in semi-arid and arid regions
(Fig. 5b).

A qualitative comparison of the model-based near-future network
degree patterns (Fig. 5b, d, f) with the ERA5 based historical networks (Fig.
3b), reveals a noticeable strengthening in HW synchronization over
northern India andPakistan.High synchronizationof extremeheat events is
also observed across south western Tibetan Plateau (except CNRM-CM6-
1), Iran (less apparent in UKESM1-0-LL), parts of the Arabian Peninsula,
and North Africa (except UKESM1-0-LL). However, as the degree of the
climate network is proportional to the total number of nodes of the network
and, hence, the spatial resolution of the underlying dataset, further quan-
titative comparisons are needed for a consistent evaluation. To facilitate

resolution-independent spatial analysis,wenormalize thenetworkdegree of
the ERA5 historical periods and the future period of the three CMIP6
models, by (N− 1), with N representing the total number of nodes. The
spatial patterns of this normalized metric, called degree centrality (Sup-
plementary Fig. S3), are consistent with the findings drawn from the qua-
litative comparisons above.

Furthermore, we also compare the networks of model future projec-
tions against each model’s own historical simulation for the period 1990-
2014 (Supplementary Fig. S4). An observation consistent across all models
relative to their own baseline is that there is a decrease in connectivity over
Iran, but an eastward extension of high-degree regions penetrating more
towards Pakistan and northern and central India (and Tibetan Plateau,
except in CNRM-CM6).

These findings confirm that regional connectivity has not only
strengthened post-1990 but has also undergone spatial reorganization,
particularly among Iran, Pakistan, and northwest India—likely reflecting
changes in large-scale land-atmosphere processes. The observed eastward
shift in the region exhibiting the strongest synchronization of HWs, from
West Asia towards India and Tibetan Plateau, in the future climatological
period compared tohistorical periods is likely associatedwith changes in the
underlying physical mechanism of such events. We explore this further in
the subsequent analysis.

Fig. 4 | Comparison between the partial degree
patterns for selected regions, derived from the
HW networks corresponding to the two historical
climatological periods shown in Fig. 3. Partial
degree patterns are shown for regions a, b northwest
India, c, d Pakistan, and e, f Iran. The color-shaded
areas show the regions which are linked to the area
enclosed by the rectangular black box due to syn-
chronous occurrence of extreme heat events.

(a) (b)

(c) (d)

(e) (f)

Number of links

Number of links

Number of links
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Identifying potential drivers of synchronized heat events across
periods
We investigate changes in the land-atmospheric processes and circula-
tion patterns related to the high synchronization of extreme heat events
between the key regions identified through the functional network ana-
lysis. The regions identified through the partial degree analysis are sub-
sequently used as key domains in our composite and causal network
analyses: the Iran box (Fig. 4e, f) is labeled as region IR, while the
adjoining domain over Pakistan and northwest India (Fig. 4a–d) is
combined and referred to as region IN. These two selected domains are
representative of the larger spatial pattern (Fig. 3) and allow us to robustly
assess circulation mechanisms associated with regionally synchronized
heat extremes. To quantify the climatic factors, we identify days of high
synchronization (ESIR→IN) using ES (see Identification of synchroniza-
tion days for composite analysis in “Methods”) between the regions IR
and IN, denoted by rectangular black boxes in Figs. 6–8. This yields a list
of time indicesHWt that denote the onset of heat events in IR after which
there is aHWevent in INwithin τmax ¼ 7 days.We center our composite
analysis around HWt. The period from HWt− 5 to HWt captures the
development of land-atmospheric conditions potentially responsible for
triggering HWs in IR. The subsequent evolution (from HWt through
HWt + 5 days) captures how these conditions evolve and propagate,
potentially contributing to the later development of HWs in IN.

The composites of daily T2m anomalies associated with the synchro-
nization between the IR and IN regions for both climatological periods (see
leftmost column of Figs. 6 and 7) reveal distinct patterns of high-
temperature anomalies. In both periods, anomalously high temperatures
develop over South Central Asia a few days before HWt, intensifying over
Iraq and Iran byHWt. Approximately five days later, this high-temperature
anomaly shifts eastward, resulting in an increase in temperatures over
northwest India and Pakistan. However, notable differences emerge
between P1 and P2, particularly over India and the Tibetan Plateau.

During P2, the significance of anomalous high T2m is more pro-
nounced over northwest India on HWt (compare Figs. 6e and 7e). Fur-
thermore, in HWt + 5, while significant high-temperature anomalies are
widespread across India during P1, the regions of strong significance are
more confined to the northwestern parts of India during P2 (compare Figs.
6i and 7i). Another important difference in P2 is the northward shift of
significant temperature anomalies, with an amplified warming over the
TibetanPlateau, further differentiating it from the periodP1. This suggests a
spatial redistribution and intensification of HWpatterns in P2 compared to
P1, particularly in northwest India and the Tibetan Plateau, as also observed
from the network degree patterns in Fig. 3.

Land-atmospheric processes play a crucial role inmodulating the land
surface temperatures. Thermal exchange between land and atmosphere,
along with persistent atmospheric circulation states, can exacerbate

Fig. 5 | Projected heatwave frequency and network
connectivity patterns under the SSP2-4.5 scenario
during 2020–2049. Future projections from
CMIP6 simulations for March–April–May under
the SSP2-4.5 scenario are shown for three climate
models: a, bMPI-ESM1.2-LR, c, d CNRM-CM6-1,
and e, fUKESM1-0-LL. Subfigures (a, c, e) show the
number of heatwave events, while (b, d, f) depict the
corresponding network degree patterns constructed
with a maximum allowed temporal delay
of τmax ¼ 7 days.
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HWs27,55,56. Before the onset of HWs, we observe positive SHF implying
excess energy being transferred as sensible heat due to reduced evapo-
transpiration. This is likely due to arid soil conditions in these regions, as
mentioned in several studies57. This process enhances the temperature of the
atmosphere by diabatic heating58 (Figs. 6a, b and 7a, b). Negative SHF

anomalies are observed at the onset of HWs overWest Asia and southwest
Iran during both P1 and P2 (Figs. 6f and 7f). Increased subsidence during
this phase inhibits upward heat transfer, causing heat to be redirected from
the atmosphere to the surface and depleting soil moisture. Conversely,
positive SHF anomalies appear over northern Pakistan, northern India, and
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Fig. 6 | Composites of daily anomalies of surface 2m-temperature (T2m; first
column from left), sensible heat flux (SHF; second column), outgoing longwave
radiation (OLR; third column), and geopotential height at 200 hPa (Z200; fourth
column) for the climatological period 1960–1989, based on the days of high
extreme heat synchronization (HWt) between Iran (IR) and northwest India-

Pakistan (IN) regions in MAM season. Anomaly values are shown using color
shading, and the synchronization regions are indicated by rectangular black boxes.
Composite anomaly patterns are shown for a–d 5 days beforeHWt, e–h duringHWt,
and i–l 5 days after HWt. Black dots denote statistical significance exceeding 95

th

percentile.
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Fig. 7 | Composites of daily anomalies of surface 2m-temperature (T2m; first
column from left), sensible heat flux (SHF; second column), outgoing longwave
radiation (OLR; third column), and geopotential height at 200 hPa (Z200; fourth
column) for the climatological period 1990–2019, based on the days of high
extreme heat synchronization (HWt) between Iran (IR) and northwest India-

Pakistan (IN) regions in MAM season. Anomaly values are shown using color
shading, and the synchronization regions are indicated by rectangular black boxes.
Composite anomaly patterns are shown for a–d 5 days beforeHWt, e–h duringHWt,
and i–l 5 days after HWt. Black dots denote statistical significance exceeding 95

th

percentile.
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theTibetanPlateau at theHWonset (HWt), indicating thedevelopingphase
of HWs in these areas. As the HW progresses, an increase in the SHF
anomaly is observedover the affected regions, indicating a positive feedback
loop between land and atmosphere which increases the persistence of the
HW (Figs. 6j and 7j). These anomalies reveal spatial differences in HW
progression, inducing distinct regional dynamics in their development.

Although both climatological periods (P1 and P2) show similar HW
preconditions as described above, P2 exhibits a notably higher upward SHF
anomaly during periods of synchronous HWs in the region (see second
column from the left of Figs. 6 and 7). This highlights an intensification in
SHF trends across recent decades, likely due to land use and land cover
changes in the region such as urbanization, deforestation, desertification,
etc26. In P1, two distinct SHF hubs appear during HWt+ 5—one around
southwest of Iran and the northeastern Arabian Peninsula, while the other
over northern India, southwestern Tibetan Plateau and adjacent regions
(Fig. 6j). This aligns with the high synchronicity hub over West Asia in the
network degree pattern of the corresponding period (Fig. 3a), but not over
SouthAsia. In contrast, during P2, a band of enhanced SHF is observed that
extends from West Asia to Afghanistan, Pakistan, northern India, and the
Tibetan plateau. Notably, the patterns of positive composite anomalies of
SHF(HWt+ 5) in P2, bear a high resemblance to the extreme temperature
network degree patterns in Fig. 3, for both P1 and P2. This change in the
SHF pattern is reflected in the corresponding network degree pattern in Fig.
3b. This suggests that SHFwas adominant driverof energy transfer fromthe
land to the atmosphere in West Asia during both periods. However, P2
marked a shift in South Asia, where SHF became a major driver of thermal
feedbackdue to thehigh sensitivity of the atmosphere to land surfacedrying,
potentially prolonging and intensifying HWs. These regions of high SHF
anomaly in north India and Pakistan coincide well with regions of strong
sensitivity of surface energy fluxes to soil moisture deficits during March-
April-May shown in59, further supporting our findings.

The increase in SHF prior to HW onset is associated with enhanced
diabatic warming, as indicated by significant positive Outgoing Long-
wave Radiation (OLR) anomalies and elevated surface temperatures over
both IR and IN (Figs. 6c, 7c). An upward OLR directly translates to
increased heating because it signifies less cloud cover, allowingmore solar
radiation to reach and warm the surface. Consequently, the reduced
cloud-induced cooling effect further intensifies the heat at the surface.
These conditions are especially prominent over India during HWt and
appear more widespread and intense in P2 (Figs. 6g, 7g) compared to P2.
These findings suggest a recent amplification of atmospheric conditions
that promote extreme heat events.

An anomalous anticyclonic pressure pattern extending from north-
western Africa towards the east of India is observed before the onset of the
HWs for both periods (P1 and P2) (Figs. 6d and 7d). Significant positive
instantaneous correlations are observed between SHF and Z200, as well as
betweenOLR and Z200, over regions of high SHF (Supplementary Figs. S5a
and S6a). This supports a physically consistent relationship in which
surface-driven heating contributes to upper-tropospheric height increases18.
Over the next few days, a persistent strong ridge develops in the mid-to-
upper tropophere over SouthWestAsia (seeZ200(HWt) andZ500(HWt) in
Figs. 6h, 7h and Supplementary Fig. S7e–f), which later extends eastward to
Pakistan and northwest India (Figs. 6l and 7l). Notably, the region of
strongest positive correlation between SHF and Z200 shifts northeastward
toward the Tibetan Plateau as the lead time progresses fromday 0 to day+4
(Supplementary Fig. S5a–c), aligning with the evolving structure of the
regional anticyclone during heatwave development (Figs. 6d,h,l and 7d,h,l).
This fosters a conducive environment for the genesis of ‘dry heat wave’60,61.
This high-pressure system contributes significantly to the development and
persistence of HWs by trapping warm air, preventing its dissipation. This
induces subsidence, which compresses and warms the air near the surface,
further increasing the temperature27,45,55. In turn, the subsidence and heat
entrapmentmodify surface energybalances, regulating subsequent SHFand
creating a positive feedback loop that sustains the extreme heat conditions
(Supplementary Fig. S5d, e).

Although the spatial extent of observed heatwaves in South Asia (Figs.
6i and 7i) exceeds the narrow northwest-southeast high SHF anomaly band
in north India-Pakistan regions (second columns of Figs. 6 and 7), these
regions closely aligns to regions of positive temperature advection at
850 hPa during the pre-monsoon season62. This further suggests that
anomalous horizontal advection, associated with large-scale circulation
patterns can transportwarmair into regions outside the SHF anomaly zone.
Thus, we interpret the SHF anomaly band as a land-atmosphere coupling
hotspot that may act as a local trigger for heatwave development, with
atmospheric feedbacks and heat transport processes facilitating the broader
spatial manifestation of heatwaves beyond this core zone.

Previous studies have associated quasi-stationary Rossby wave trains
with the occurrence of HWs over northwestern India14,63. Our analysis also
reveals a similar wave train in composites of upper-level meridional wind
(V200) anomalies extending from the Atlantic entry point of the African jet
to South Asia during the occurrence of synchronous HWs in the region for
both historical periods (Supplementary Fig. S7a, b). This wave train is
indicative of the circumglobal teleconnection (CGT) pattern, which is
known to facilitate the propagation of Rossby waves and link weather
extremes across continents, contributing thus to the synchronization of
HWs in South Asia16,64.

Although the regional anticyclonic conditions in the upper tropo-
sphere are similar in both historical periods, the atmospheric state over the
North Atlantic associated with the synchronous HW pattern
(HWt ± 5 days) differs significantly. While in P1, a mid-upper troposphere
cyclonic state is observed over the North Atlantic, in P2 the negative pres-
sure anomalies extend to the Eurasian region (compare the rightmost col-
umns of Figs. 6 and 7). This has been linked to theweakening of the polar jet
stream21.Moreover, inP2, a significant anticyclonicflow isobservedover the
Greenland region, which is absent during P1. This interdecadal change in
the atmospheric state over theNorthAtlantic sector is known to increase the
variability of the Eurasian jet, as also seen from the shift in the zonal wind
pattern (Uwnd) at 200 hPa over Europe andWest Asia duringHWt

65 (refer
to Fig. S7c, d in Supplementary Information).

A similar composite analysis is performed for the future climatological
period based on the extreme heat network (Fig. 5) derived from model
projections from CNRM-CM6-1 (Fig. 8 and Supplementary Fig. S8), MPI-
ESM1.2-LR (Supplementary Figs. S9 and S10) and UKESM1-0-LL (not
shown). The results reveal a high SHF anomaly pattern and local upper-
tropospheric anomalous high-pressure system, similar to P2 (Fig. 8; Sup-
plementary Figs. S9a and S10). The evolution of the SHF anomaly pattern
from a few days before HW onset over IR to a few days later, when HW
conditions prevail over IN, closely resemble those observed during P2 (left
column in Fig. 8 and Supplementary Fig. S10), albeit with a weaker mag-
nitude. This is likely due to the tendency of CMIP6models underestimating
SHF, as they often struggle to capture energy flux patterns associated with
land cover changes and soil moisture variability, particularly over the
Tibetan Plateau and arid regions likeWest Asia24,66,67. While a detailed SHF
bias evaluation for CNRM-CM6-1 is not available and beyond the scope of
this study, these general tendencies may contribute to the muted surface
temperature signal in this model, as is evident from the low number of HW
events and network degree. In contrast, the strong biases in turbulent heat
fluxes within MPI-ESM1.2-LR do not significantly impact the surface
temperature response, as the opposing biases in latent heat flux and SHF
partially offset each other68.

Furthermore, a wave train associated with synchronous future pro-
jected HWs over Iran and South Asia is also observed in the upper-level
meridional wind (V250) anomaly patterns (Supplementary Figs.
S8 and S9b). Although the local circulation pattern in the future period is
consistent amongmodelswith that of P2, the remote factors, the influenceof
remote drivers, particularly the atmospheric state over the North Atlantic-
Greenland sector, remains uncertain. An anomalous European low, along
with anomalous anticyclonic circulation over theNorthAtlantic-Greenland
sector can be seen in the network-derived Z250 composites of both CNRM-
CM6-1 andMPI-ESM1.2-LR, resembling the pattern observed in P2 (right
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column of Fig. 8 and Supplementary Fig. S9a). However, the high over the
Greenland region is not statistically significant in MPI-ESM1.2LR projec-
tions, unlike CNRM-CM6-1. This discrepancy likely reflects broader
CMIP6 uncertainties in simulating jet stream responses to future warming
scenarios and model-specific differences in representing North Atlantic
dynamics65,69.

Therefore, from the network-based composite analysis, we identified
changes in possible local and remote factors of synchronous HWs in South
Asia that occurredover the recentdecades.Changes in local factors include a
shift in the post-1990 period to SHF being the dominant driver of heat
exchange between land and atmosphere over South Asia, which enhances
diabatic warming, thereby increasing not only surface temperature but also
modulating local high-pressure anomalies. The increased synchronization
of South Asian HWs to West Asia, particularly Iran, during P2 suggests a
change in large-scale circulationpatterns. These include the role ofCGTand
dynamical changes over the North Atlantic-Greenland sector as identified
above. In the following, we evaluate whether the causal relationships among
these plausible actors have indeed undergone a transformation in recent
decades.

Changes in causal mediators of South Asian temperature
variability
In order to understand the intricate interplay of the factors identified
through the network-based composite analysis, that drive the spatio-
temporal coherence and evolution of South Asian HWs from P1 to P2, we
employ the causal network analysis70 (see Causal network analysis in
“Methods”). To resolve causal directionality, while avoiding the multiple
testing problem, we study the intraseasonal interactions among the factors
at a weekly time resolution. Thus, the time series representing the nodes are
resampled to 7-day averagesbefore the calculationof standardized anomaly.
The nodes of the causal network consist of anomalous MAM temperatures
over Iran (TIR, averaged over IR region), anomalous MAM temperature
averaged over northwest India and Pakistan (TIN, averaged over IN region),

CGT index derived fromZ200 anomaly of the area 35°–40°N and 60°–70°E
following16,71, and North Atlantic atmospheric state represented by Z200
anomaly averaged over 33°–60°N and 75°W–25°E.

From the results of this causal network analysis shown in Fig. 9, we
uncover that the mutual relationship between regional temperatures over
Iran (TIR) and northwest India-Pakistan (TIN) has evolved from P1 to P2.
During P1, the influence of TIR on TIN existed but was relatively weak
(MCI = 0.122) and sporadic, with longer-lag effects suggesting slower
adjustment timescales (MC1 = 0.251 at lag −1 week and −0.163 at lag
−2 weeks). In contrast, during P2, not only does the instantaneous influence
of TIR on TIN become stronger and more significant (MCI = 0.209), but also
the positive lagged influence at−1 week has increased. This aligns well with
our partial degree analysis (Fig. 4), indicating that hot extremes in these
adjacent regions are increasingly co-occurring, consistent with recent find-
ings on compound HW dynamics across South Asia and the Middle East.
This shift likely reflects intensified regional land-atmosphere interactions due
to enhanced surface warming, reduced soil moisture, and stronger thermal
gradients under recent climate change as discussed in the previous section72.

TIR, TIN, and CGT have an instantaneous (within a week) triangular
relationship with each other in both periods. This relationship is due to the
presence of the common persistent mid-to-upper tropospheric anticyclone
over the area (Figs. 6d, h, l and 7d, h, l). The lagged causal relationship
TIR→ TIN discussed earlier at lag−1 to−2 weeks may signify the eastward
propagation of a high-pressure system towards India along the subtropical
jet via CGT. The positive causal relationship from TIR(−1 week)→CGT
has strengthened in the later period (MCI = 0.178 in P1 whereas 0.314
during P2). The feedback from regional temperatures (TIR andTIN) to CGT
has become stronger and more temporally consistent since post-1990. This
indicates enhanced land-atmosphere coupling likely due to the abnormal
land surface warming over West Asia in the recent decades during spring,
which triggers anomalous Rossby waves by diabatic heating downstream,
facilitating the intensification of early summer CGT18,73. The strengthening
of the instantaneousCGT− TIN relationship in P2 alignswith the increased

Fig. 8 | Composites of daily anomalies of sensible
heat flux (SHF; left column) and geopotential
height at 250 hPa (Z250; right column) for the
climatological period 2020–2049 under the SSP2-
4.5 scenario from the CNRM-CM6-1 model.
Composites are based on days of high extreme heat
synchronization (HWt) between Iran (IR) and
northwest India-Pakistan (IN) regions during the
MAM season. Anomalies are displayed using color
shading, and rectangular black boxes highlight the
synchronized regions. Panels show composite
anomalies for a, b 5 days before HWt, c, d during
HWt, and e, f 5 days after HWt. Black dots indicate
statistically significant anomalies at the 95th

percentile level.
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influence of springtime CGT in facilitating April-May extreme heat events
over the southern Tibetan Plateau74. This is consistent with our network
analysis, which showed an increase in HW connectivity over this region
(Figs. 2b and 4b,d). Additionally, several longer-lagged causal links present
in the earlier period (e.g., TIN (−5 weeks)→CGT, CGT(−2 weeks)→TIN)
are absent in the later period, suggesting a shortening of feedback timescales.
Interestingly, CGT also has a weak negative influence on TIR during P2,
which was absent during P1.

Besides the complex interrelationship among CGT and regional
anomalous temperatures over West and South Asia, the influence of the
North Atlantic (NA) atmospheric state on this region has also undergone
notable changes. The significant instantaneous relationship between the
CGT and NA in P1, disappears in P2. On the other hand, a new causal link
between regional temperature anomalies of Iran (TIR) and NA emerges in
P2. Furthermore, a new lagged positive influence (MCI = 0.153) fromNAat
lag −3 weeks to CGT appears in P2, potentially indicating a delayed
downstream response of CGT to Atlantic sector dynamics71. This may be
associated with altered jet stream or waveguide pathways in recent decades,
consistent with recent findings that highlight the increasing influence of
North Atlantic variability on the Eurasian westerly jet65. Tables S1 and S2 in
the Supplementary Information summarize the quantitative differences in
causal relationships among the key variables between P1 and P2.

Although the causal analysis employed here is based on anomalous
climate time series, it is assumed that the mechanisms that drive anomalies
over a multi-day period will contribute to or exacerbate extreme heat
conditions, as the HW events will typically be embedded within periods of
sustained high anomalies. Furthermore, by analyzing 7-day averages, we
capture the persistent atmospheric or climatic conditions that contribute to
extreme events. Hence, our findings from the causal network analysis
validate the observed changes in HW synchronization patterns over South
Asia, reinforcing the changes in land-atmospheric processes identified
through the network-derived composite analysis. They further highlight the
evolving influence of large-scale circulation patterns in driving synchro-
nized heat events across the region.

We restrict the causal network analysis to the historical periods only
because, as discussed earlier, the uncertainties in the representation of
atmospheric circulation, particularly over the North Atlantic-Greenland
sector in CMIP6models, make it difficult to draw reliable causal inferences
about futureHWpatterns75,76.Addressing thesediscrepancieswould require
a more comprehensive, model-specific assessment of CMIP6 circulation
responses, which is beyond the scope of this study.

Discussions
In this paper, we explored changes in the spatiotemporal coherence pattern
of South Asian heatwaves (HWs) over two historical (1960–1989 and

1990–2019) and one future 30-year climatological periods (2020–2049).
Our findings highlight significant changes in the processes driving syn-
chronouspatternsof SouthAsianHWsover thesedecades and their broader
climatic impacts as discussed below. The event synchronization-based
complex network analysis revealed that there is a substantial increase in
synchronous spring HW events between northwest India and Pakistan
region and Iran in the later historical climatological period. An overall
eastward shift of the region with the strongest spatial synchronization from
West Asia (before 1990) to Pakistan, northwest India, and the southwestern
Tibetan Plateau region by mid 21st century is projected under a realistic
warming scenario.

This increasing node centrality in South Asia post-1990 warming is
found to be related to the enhanced surface sensible heat flux (SHF) in this
region. The spatial pattern of the upward SHF anomaly obtained from the
composite analysis of synchronous HW events between Iran and northern
India-Pakistan regions resembles greatly the network topological structure
of the region. This emphasizes the pivotal role of SHF in driving land-
atmospheric feedback processes in the recent decades and in increasing
diabatic heating. This not only increases surface temperatures but also
contributes to the strengthening of local anticyclonic conditions over West
and SouthAsia. Therefore, the anomalous upward SHF forms the backbone
of the extreme temperature climatenetwork, reflecting theheat vulnerability
of the region which could be important for a heat risk assessment.

Additionally, the study reveals a change in the influence of atmospheric
conditions over the North Atlantic-Greenland sector on the synchroniza-
tion pattern of South Asian HWs in the later climatological period. The
altered atmospheric state of theNorthAtlantic is found to have an increased
positive causal influence on the early-summer circumglobal teleconnection
(CGT). Furthermore, the feedback from regional temperatures inWest and
South Asia to CGT has also strengthened post-1990, as revealed by the
network-derived composite and causal analysis. This anomalous strength-
ening of the early-summer CGT in recent decades is primarily driven by a
significant increase in spring diabatic heating (enhanced SHF) over West
and South Asia, coupled with dynamic changes in the North Atlantic-
Greenland sector.Although it iswell established thatCGTplays a key role in
influencing theAsianmonsoon andheat extremes in East Asia during June-
July-August18,64,77, its modulation of spring anomalous temperature over
South Asia due to its earlier intensification, is an important finding.

In light of recent studies showing a trendofdepletionof soilmoisture in
South Asia due to global warming57, our findings on the central role of SHF
in driving synchronous patterns of South Asian HWs in recent decades as
well as in future projections, clearly indicate an increasing sensitivity of the
atmosphere to land surface drying. Studies have shown that although
forecastmodels struggle to represent the soilmoisture feedback regime, their
performance in predicting extreme heat events is more effective in the

Fig. 9 | Causal effect networks of identified factors influencing SouthAsianMAM
temperature anomalies during two historical periods. Causal effect networks are
shown for a 1960–1989 and b 1990–2019. The nodes of the network represents
identified atmospheric subprocesses and are denoted by colored circles. Directed
links between nodes indicate statistically significant causal influences, with colors

representing the strength of the influence (measured by Momentary Conditional
Independence, MCI). Numbers on the links denote the time lag in weeks. Node
colors reflect the strength of self-influence (auto-MCI), while link colors denote the
magnitude of causal impact between subprocesses.
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hypersensitive regime, when soil moisture is sufficiently low, such that SHF
becomes the dominant driver of energy transfer from the land to the
atmosphere78. This potentially explains the high predictability of the
2022 springHWs in northwest India andPakistan28. A detailed temperature
budget analysis, which can provide further quantitative insights into the
thermodynamic processes underlying heatwave formation in South Asia, is
an important direction for future research to complement the broader
patterns presented in this study.

This study not only uncovers persistent local and remote atmospheric
conditions in the recent period, which can enhance the HW forecast skill,
but also provides valuable information to understand HW predictability in
subseasonal to seasonal time forecasts. These findings highlight the critical
need for high-quality observations of energy andwater fluxes in the soil and
at the land surface, particularly in regions such as South Asia, which are
undergoing significant land use and land cover changes. Such observations
are essential for advancing our process understanding of land-atmosphere
feedbacks and improving parameterizations of surface fluxes in models.
These improvements will enhance prediction in regions where land cover
changes may amplify climate feedbacks, having significant implications for
heat risk assessment and climate resilience planning in a warming world.

Our reanalysis-based findings on the enhanced influence of the North
Atlantic atmospheric state on SouthAsianHWs viaWestAsia and theCGT
highlight the need for a rigorous model-based analysis, taking into account
model differences in heat fluxes, North Atlantic SST variability, air-sea
coupling strength, internal variability, and the representation of remote
teleconnections. Given the uncertainties in the representation of the North
Atlantic circulation in CMIP6 models75,79, a future direction of this work
wouldbe to focusonassessingprojectionsof these critical interactionsunder
changing climates and their impacts on climate extremes.

Methods
Data
We divide our period of analyses into two historical and one future 30-year
periods to compare the spatiotemporal patterns of extreme heat conditions
in these periods, namely, 1960–1989 (P1), 1990–2019 (P2) and 2020–2049.
For thehistorical periods,weuse thedaily 2m-temperature (T2m)data from
ERA5 at the spatial resolution of 1∘ × 1∘ for the time period 1960–201980.
Furthermore, we employ results from the CMIP6 concentration-driven
simulations of the projected evolution of the 2m-temperature (tas) for the
period 2020–2049 by the MPI-Earth System model, CNRM-CM6 and
UKESM. The model configuration MPI-ESM1.2-LR81 used here has a
coarser spatial resolution of ~200 km.We used the mean projected T2m of
the 10-member ensemble simulations for the more realistic scenario SSP2-
4.5 (Shared Socioeconomic Pathways) with an additional radiative forcing
of 4.5W/m2 by the year 2100 representing the medium pathway of future
greenhouse gas emissions given current policies and assuming modest cli-
mate protection measures are being taken82. Additionally, for the model
CNRM-CM6-1,weuse the ensemblemeanof the 5-member simulations for
the SSP2-4.5 scenario83. This model configuration has model horizontal
resolution is about 1.4∘ at the equator (~155 km). Similarly, the ensemble
mean of the 6-member simulations for the same forcing scenario from the
UKESM1-0-LL model is used, which has a spatial resolution of
1.25∘ × 1.875∘84. Using the SSP2-4.5 scenario allows us to make more plau-
sible future projections of the spatiotemporal connectivity pattern of
extremeheat events as opposed to projecting SSP5-8.5, which represents the
worst-case scenario85.

We investigate the interdecadal changes of HWs covariability patterns
across tropical and subtropical regions of South-Central and West Asia
(0∘–40∘Nand30∘E–100∘E),with aparticular emphasis on theHWsoccurring
in the Indian subcontinent (5∘N–40∘Nand70∘E–100∘E).Aswe are interested
in continental HWs, we limit our analysis to grid points on land only.
Moreover, we primarily focus on the extreme heat events occurring during
the pre-monsoon period (March-April-May, MAM), when the region
normally experiences a strong diabatic heating, which facilitates the onset of
the Indian Summer Monsoon in June.

In order to unravel the atmospheric circulations modulating the
temperature conditions over the area under study, we use geopotential
height (Z), zonal (Uwnd) and meridional (Vwnd) components of wind,
sensible heat flux (SHF), and outgoing longwave radiation (OLR) from the
corresponding datasets of the different periods at the same spatial and
temporal resolution as for temperature. The convention for SHF is positive
upwards (from the land into the atmosphere). OLR is derived by reversing
the sign of the ERA5 variable mean top net long-wave radiation flux, as the
ERA5 convention for vertical fluxes is positive downwards.

Heatwave identification
While several definitions to identify a HW event exist in literature27,86, we
define an event as aHWwhen the daily T2manomaly exceeds one standard
deviation and persists for at least five consecutive days, following14. This
definition provides a climate-sensitive and adaptive approach that captures
both variations in frequency and intensity across different regions. Unlike
fixed percentile-based definitions87,88, which impose a uniform number of
HW events at all locations, this method accounts for local climate
variability89,90, allowing the HW frequency to naturally vary according to
regional warming trends. The temperature anomaly for a study period (e.g.,
1960–1989) is computed by subtracting the climatology of that respective
period. We compute the HWs index for all the grid points according to the
definition above. When a HW event spans multiple days (e.g., a five-day
sequence), it is treated as a single event rather thanmultiple daily events. For
applications involving the complex networkmethod, we assign the event to
the first day of the sequence, which serves as the representative timestamp
for that event.

Further details on the robustness of this definition, including com-
parisons with percentile-basedmethod, are provided under the subheading
‛Robustness tests’ below.

Functional network construction using event synchronization
The constructed HW time series belongs to the category of event-like data,
characterized by irregular sampling91. In order to obtain an objective and
comparable estimate of the synchronization between two event series at
varying time scales, we use event synchronization (ES), as conventional
similarity measures such as linear correlation are unsuitable due to their
non-Gaussian nature31. The measure is preferable in applications to real-
worlddata forwhich there is no validatedknowledge about the relevant time
scales, as it is time-scale adaptive within a range of allowed time delays. In
case of climate applications, the dynamic choiceof delay enables themethod
to take into account a potentially changing density of events, due to varying
scales of the driving atmospheric processes. Owing to its advantages, ES has
been successfully used to unravel the covariability patterns of different cli-
mate extremes, such as extreme rainfall, heatwaves, typhoons, droughts,
etc.32,33,35,37,39,92.

Here, our study employs an improved version of ES, proposed in32, in
our studywhich is definedas follows:Consider two event series fTxμi gμ¼1;...;li
and fTxνj gν¼1;...;lj

where li and lj are events corresponding to the grid points i

and j, fTxμi g denotes the μth event at the grid point i. The waiting time
between two events fTxμi g, fTxνj g is computed as tμ;νi;j ¼k Txμi � Txνj k. We

say events Txμi and Txνj are synchronous if tμ;νi;j ≤ τ
μ;ν
i;j where

τμ;νi;j ¼ minðtμ;μ�1
i;i ;tμþ1;μ

i;i ;tν;ν�1
j;j ;tνþ1;ν

y;y Þ
2 . A maximum temporal delay τmax is used to

avoid unreasonably high delays between events at different locations. Now,
we define ES for each pair of nodes (i, j) as

ESij ¼ jðμ; νÞ : tμ;νi;j ≤ minðτμ;νi;j ; τmaxÞj ð1Þ

where |S| denotes the cardinality of the set S.
The geographical grid points of the climate dataset are considered as

the N nodes of the functional climate network. We construct the climate
network by measuring the interrelations between the event series using ES
for all pairwise combinations of grid points i and j, where i, j∈N. The
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statistical significance of each empirical value is determined on the basis of a
nullmodel distribution. This is numerically obtained by computing ES for a
large number of pairs of surrogate event serieswith li and ljnumber of events
distributed uniformly and randomly within the season under consideration
(here, March-April-May). For each pair (li, lj) of event numbers, the 99th

percentile of the corresponding distribution is determined as the sig-
nificance threshold. Finally, a network link is placed between grids i and j if
ESij is significantly above this threshold at a significance level of 0.01.
Consequently, the corresponding element in the network adjacencymatrix
is set to Aij = 1 if the link is present, and Aij = 0 otherwise. This approach
ensures that potential biases due to increased event counts are effectively
excluded through the use of this statistical threshold.

Network measures
Quantifying thenetwork topologyusing variousnetworkmeasuresprovides
insights into the underlying dynamics of the system across different spatial
scales93. We employ the node-based network centrality measure degree ki,
whichquantifies thenumberof connections anode ihaswith all othernodes
in the network:

ki ¼
XN

j¼1

Aij ð2Þ

Regions with high-degree values represent areas with strong spatial
connectivity, implying that variability at those locations is strongly linked
to multiple other regions. In the particular context of HW networks, the
degree of a node provides information about the number of grid points
where synchronous HWs occur. In the case of extreme events, such as
heatwaves or extreme precipitation, high-degree regions are particularly
important because they often reflect the influenceof large-scale atmospheric
circulation patterns that drive coherent extremes over extended areas94–96.
Conversely, low-degree regions typically indicate localized or isolated
variability97, often governed by small-scale processes or topographic
constraints, and may correspond to regions where extreme events are less
spatially coherent.

To gain further insight into the connectivity of a specific region of
interest R, we also calculate the partial degree of the nodes in the network
connected to the region R. The partial degree, denoted as kRi , yields the
number of links connecting a node i with the nodes j∈ R, i.e.,

kRi ¼
X

j2R
Aij ð3Þ

This measure helps to decompose the total degree spatially, indicating how
strongly each node is connected to the region R (Fig. 4). Importantly, if we
sum the partial degrees from all nodes in the network to regionR, we obtain
the total degree of region R using equations (2) and (3):

XN

i¼1

kRi ¼
XN

i¼1

X

j2R
Aij ¼

X

j2R

XN

i¼1

Aij ¼
X

j2R
kj ð4Þ

This identity ensures consistency between the spatial distributionof links (as
shown in partial degree plots in Fig. 4) and the overall network structure
(Fig. 3). It should be noted that the partial degree is proportional to the
number of nodes in the target region R. The approach is analogous to one-
point correlation maps of climate variables, but identifies regions with
similar underlying dynamics leading to synchronous extreme events39.

Identification of synchronization days for composite analysis
The aforementioned definition of ES in equation (1) can be modified to
detect days when strong synchronization of extreme events occurs between
two spatially distributed regionswhilemaintaining the temporal ordering of
events. Each region comprises multiple grid points, with each grid point

associated with heatwave (HW) event series, based on the definition
introduced earlier. Let R1 and R2 denote the sets of HW time series corre-
sponding to regions IR (28∘–35∘N, 52∘–58∘E) and IN (25∘–35∘N, 70∘–80∘E),
respectively.We then form the Cartesian productR1 × R2, which consists of
all possible pairs of grid points (i, j) such that i∈R1 and j∈R2. For each such
pair, we evaluate whether aHWevent at grid point i in region IR is followed
by a HW event at grid point j in region IN within a specified time lag τmax.
Formally, we compute

ESμR1!R2
:¼ jfði; jÞ 2 R1 ×R2 : �τμ;νi;j < t

μ;ν
i;j ≤ 0 ^ jtμ;νi;j j≤ τmaxgj ð5Þ

Thus, ESμR1!R2
gives us a daily time series denoting the number of events in

the regionR1 that have a uniquely associable subsequent event in the region
R2 within the maximum allowed temporal delay τmax. We then determine
the specific synchronization days as any day for which ESμR1!R2

> 0, indi-
cating that at least one grid-point pair across the regions exhibits a
temporally ordered HW event within the allowed time lag. The daily time
series of ESμR1!R2

provides a quantitative measure of how strongly the two
regions are synchronized on each day.

Finally, we use the days identified by nonzero values of ESμR1!R2

(denoted as HWt) to compute composite anomalies of relevant climate
variables-such as geopotential height, wind, temperature sensible heat flux,
and outgoing longwave radiation-associated with synchronized extreme
heat events between regions IR and IN.

This approach allows us to isolate instances of coherent, temporally
linked heat extremes, which may be influenced by shared or teleconnected
atmospheric conditions32,39.

Causal network analysis
We employed the Peter and Clark Momentary Conditional Independence
(PCMCI) algorithm to infer causal relationships from observational time
series98,99.Unlike simple correlationor classicalGranger causality,which can
be affected by confounding variables, PCMCI is designed to identify and
remove spurious statistical associations through iterative conditioning. The
algorithm proceeds in two main steps71:

PC-step: This initial step identifies a refined set of potential direct
predictors (‘parents’) for each variable by systematically testing for statis-
tically significant partial correlations while conditioning on other potential
predictors. This helps filter out indirect links and reduces the set of variables
considered in the next step.

MCI-step: The second stage, the Momentary Conditional Indepen-
dence (MCI) test, estimates the strength and direction of the causal links.
The algorithm calculates their partial correlation for every possible pair of
‘actors’ in the system. This calculation is performed by conditioning on the
combined set of potential parents identified in the preceding PC-step. This
rigorous conditioning on the comprehensive set of potential confounders
helps to isolate the direct causal influence between the pair of variables being
tested. After assessing all variable pairs, the final set of causal parents is
identified for each actor. The causal effect coefficient, known as the MCI, is
then calculated for each identified causal link. This is typically done by
performing a multivariate linear regression where the target actor’s time
series is regressed onto the time series of its identified set of causal parents at
their respective causal lags. Importantly, the MCI test assesses whether a
variable Xt−τ provides information about Yt beyond what is already con-
tained in the parents of Y and X. If it does, X is said to be a potential causal
driver of Y at lag τ.

In addition to causal links between different variables, PCMCI also
identifies the time-delayed self-influence of a variable on itself. The strength
of this influence is quantified by the auto-MCI (Xt−τ→Xt). This coefficient
represents how much a variable’s value at a certain past time step directly
affects its value at the current time step. These reflect the persistence or
memory of a variable’s past values on its present state.

The results of the PCMCI analysis are commonly visualized using
Causal Effect Networks (CENs). In a CEN, nodes represent variables, and
directed edges (arrows) indicate the direction of causality identified by the
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algorithm. The color of the edges (arrows) typically represents the strength
of the causal link, corresponding to theMCI,while the color of thenodes can
represent the auto-MCI.

To ensure the statistical significance of the identified causal links,
particularly given the numerous tests performed (especially in causal maps
involvingmanygridpoints), a significance threshold (p–values = 0.05 in this
study) is applied. Furthermore, to control for the increased chance of false
positives from multiple comparisons, the p–values for all tests are adjusted
using theBenjamini-Hochberg false discovery rate (FDR) correction100. This
adjustment helps to ensure that the reported causal links are statistically
robust.

Robustness tests
Here, we show that our statistical analyses are robust to variations of the
different parameter values chosen in the main text. To assess the sensitivity
of our results to the HW definition, we compared our standard deviation-
based approach with a percentile-based threshold (90th percentile)
following88). The overall number of events is obviously lower in the 90th

percentile threshold compared to the standard deviation-based selection of
events, as the former captures only the most extreme values, whereas the
latter typically includes more moderate deviations from the mean (Sup-
plementary Fig. S11a, c). Despite this difference, the spatial and temporal
patterns of HW occurrences-and the resulting network structures-remain
broadly consistent across both methods (see Supplementary Fig.S11). This
supports the robustness of our conclusions. We further tested the effect of
varying the minimum duration for defining HW events. As shown in
Supplementary Fig. S12, the network degree patterns remain broadly con-
sistentwith Fig. 2 evenwhenHWevents are defined as dailyT2manomalies
exceeding one standard deviation for at least 7 consecutive days.

Moreover, our results are only weakly sensitive to different choices of
the maximum time delay τmax used to detect synchronized events; we find
consistent outcomes for both τmax ¼ 5 and τmax ¼ 7 days (see Supple-
mentary Fig. S13).

Data availability
ERA5 data used for this study is freely available and can be downloaded
from https://cds.climate.copernicus.eu/datasets. The CMIP6 simulation
outputs used in this study is also freely available for download via https://
esgf-data.dkrz.de/search/cmip6-dkrz/. The underlying code for this study is
not publicly available, butmay bemade available to qualified researchers on
reasonable request from A.B. and S.G.
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