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Toward long-range ENSO prediction with
an explainable deep learning model
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Qi Chen1,2,10, Yinghao Cui2,10, Guobin Hong3, Karumuri Ashok4, Yuchun Pu5, Xiaogu Zheng6,7,
Xuanze Zhang8, Wei Zhong2,9, Peng Zhan1 & Zhonglei Wang2,9

El Niño-Southern Oscillation (ENSO) is a prominent mode of interannual climate variability with far-
reaching global impacts. Its evolution is governed by intricate air-sea interactions, posing significant
challenges for long-term prediction. In this study, we introduce CTEFNet, a multivariate deep learning
model that synergizes convolutional neural networks and transformers to enhance ENSO forecasting.
By integrating multiple oceanic and atmospheric predictors, CTEFNet extends the effective forecast
lead time to 20 months while mitigating the impact of the spring predictability barrier, outperforming
both dynamical models and state-of-the-art deep learning approaches. Furthermore, CTEFNet offers
physicallymeaningful and statistically significant insights through gradient-based sensitivity analysis,
revealing the key precursor signals that govern ENSO dynamics, which align with well-established
theories and reveal new insights about inter-basin interactions among the Pacific, Atlantic, and Indian
Oceans. TheCTEFNet’s superior predictive skill and interpretable sensitivity assessments underscore
its potential for advancing climate prediction. Our findings highlight the importance of multivariate
coupling in ENSO evolution and demonstrate the promise of deep learning in capturing complex
climate dynamics with enhanced interpretability.

El Niño-Southern Oscillation (ENSO) is one of the most prominent modes
of interannual climate variability, characterized by shifts in sea surface
temperatures (SST) across the tropical Pacific Ocean and the weakening of
equatorial trade winds. ENSO exerts profound global influences onweather
patterns, agriculture, and socio-economic systems by driving variability in
precipitation, temperature, as well as extreme events such as droughts and
floods1–3. Traditional statistical and dynamical models have demonstrated
predictive skill within a lead time of about 12 months (where effective
forecast lead time is defined as the period during which the correlation
between the forecasted ENSO index and the observed value remains above
0.50)4–9. However, ENSO prediction remains a formidable challenge due to
the system’s inherent nonlinearity, stochasticity, and multivariate
dependencies5,10–14, with one of the most persistent limitations being the
spring predictability barrier (SPB)15.

Recent advances in deep learning (DL) have demonstrated transfor-
mative potential in ENSO forecasting. Convolutional neural networks

(CNNs) have demonstrated remarkable skill in capturing spatial features,
extending the effective forecast lead time beyond 15 months16,17. Other DL
techniques, such as recurrent neural networks (RNNs)18, convolutional long
short-term memory (LSTM) neural networks19, graph neural networks20,
and transformers21–23, have further enhanced spatiotemporal dependency
modeling, successfully extending forecast lead times to 18 months and
beyond, with some models achieving performance exceeding
20 months23–26. Among these advancements, transformer-based archi-
tectures have emerged as a particularly powerful approach, leveraging self-
attentionmechanisms to capture complex, long-range dependencies across
three-dimensional ENSOdynamics.However, despite these improvements,
no single architecture is universally optimal for ENSO forecasting. For
instance, CNNs and transformers, two of the most widely adopted DL
models in this field, each exhibit distinct strengths and limitations. CNNs,
while adept at extracting spatial features, struggle to capture long-term
dependencies.Meanwhile, transformers, despite their ability tomodel global

1Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China. 2Department of Statistics and Data
Science, School of Economic, Xiamen University, Xiamen, 361005, China. 3MOE Key Laboratory of Econometrics, Xiamen University, Xiamen, 361005, China.
4Centre for Earth, Ocean and Atmospheric Sciences, University of Hyderabad, Hyderabad, India. 5Meituan, Beijing, China. 6Shanghai Zhangjiang Institute of
Mathematics, Shanghai, 201203, China. 7International Global Change Institute, Hamilton, NewZealand. 8Key Laboratory ofWater Cycle andRelated Land Surface
Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China. 9Wang Yanan Institute for
Studies in Economics, Xiamen University, Xiamen, 361005, China. 10These authors contributed equally: Qi Chen, Yinghao Cui. e-mail: zhanp@sustech.edu.cn;
wangzl@xmu.edu.cn

npj Climate and Atmospheric Science |           (2025) 8:259 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-025-01159-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-025-01159-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-025-01159-w&domain=pdf
mailto:zhanp@sustech.edu.cn
mailto:wangzl@xmu.edu.cn
www.nature.com/npjclimatsci


interactions, often require large datasets and lack the inductive biases
necessary to recognize key local ENSO precursors16,27,28. To address these
challenges, CNN-transformer hybrid models have been introduced in
geoscience29–31, and their application to ENSO forecasting has demonstrated
robust performanceup to 18months across diverse test datasets32.However,
this current approach predominantly relies on an encoder-based, SST-only
architecture, failing to incorporate the critical ocean-atmosphere interac-
tions that govern ENSO evolution33.

In response to these limitations, we introduce CTEFNet (Convolu-
tional Transformer ENSO Forecast Network), a novel hybrid deep learning
model that synergistically integrates CNNs within a transformer encoder-
decoder architecture. By leveraging the complementary strengths of these
architectures and incorporating a comprehensive set of oceanic and
atmospheric variables, CTEFNet effectively captures the multivariate pre-
cursors of ENSO evolution. Our model achieves state-of-the-art forecast
performance, extending the effective lead time to 20 months. Moreover,
CTEFNet successfully mitigates the SPB, underscoring its robustness and
reliability in long-range ENSO forecasting.

Beyond its predictive superiority, CTEFNet enables further physical
interpretability when combined post hoc with a novel gradient-based sen-
sitivity analysis34,35, inspired by the principles of adjoint modeling
techniques36–39. Unlike conventional sensitivity analysis that relies on an
ensemble of forwardmodeling with perturbed inputs16,21, adjoint sensitivity
analysis, widely used in ocean and climate modeling, quantifies how per-
turbations in an objective function propagate backward through the evo-
lutionof a system38.However, adjointmodels are computationally expensive
and often constrained by linearity assumptions, which limit their applic-
ability to complex, nonlinear systems. In contrast, backpropagation gra-
dients offer a computationally efficient and nonlinear assessment of input
influence on the objective, in this case, ENSO evolution. This approach
enables a systematic evaluation of the relative importance of different inputs
across varying temporal and spatial scales25,32,40. While conventional DL
gradient-based methods primarily evaluate how input perturbations affect
predictive performance23, our approach combinesDLgradientswith adjoint
principles to derive a dynamic, spatiotemporally evolving sensitivity ana-
lysis, revealing the physical mechanisms that drive ENSO formation from a
data-driven perspective.

Our sensitivity analysis uncovers physical precursors of ENSO events
consistent with established mechanisms41–49. Furthermore, it reveals new
insights into the development of inter-basin interactions, advancing our
understanding of ENSO’s global influence. By improving both predictive

skill and interpretability, this studyhighlights the critical role ofmultivariate
coupling in ENSO dynamics and underscores the value of deep learning in
climate science. Thesefindings establishCTEFNet as a practical and scalable
solution for long-term ENSO forecasting, bridging the gap between data-
driven predictions and physical understanding of climate variability.

Results
CTEFNet, built upon a novel CNN-transformer hybrid architecture
(MATERIALS AND METHODS), integrates key ocean-atmosphere vari-
ables from the Coupled Model Intercomparison Project Phase 6 (CMIP6)
SSP370 dataset, spanning 2015 to 2100. This dataset, representing a
medium-to-high emissions scenario, incorporates future climate forcings,
providing a comprehensive depiction of ENSO dynamics in a warming
climate. Using a 12-month predictor window, CTEFNet incorporates SST,
heat content (HC), mixed layer depth (MLD), sea surface salinity (SSS), sea
level pressure (SLP), and the zonal and meridional components of ocean
surface current velocity (UO, VO) and wind stress (TAUU, TAUV).
CTEFNet predicts the evolution of the Niño 3.4 index over a 24-month
horizon, and its performance is rigorously assessed through prediction skill
evaluations and sensitivity analysis, utilizing reanalysis data from theGlobal
Ocean Data Assimilation System (GODAS) and the fifth-generation
ECMWF atmospheric reanalysis (ERA5) from 1980 to 2021.

Predictive skill of CTEFNet in ENSO forecasting
To assess the forecasting skill of CTEFNet, we utilize the Niño 3.4 index, a
widely used SST anomaly-based metric, to characterize ENSO variability.
CTEFNet exhibits superior forecast skill, significantly outperforming the
North American Multi-Model Ensemble (NMME) dynamical models50, as
well as state-of-the-art DL approaches including CNN16, Geoformer21,
ResCNN24, ResoNet32, and STPNet26. As shown in Fig. 1, CTEFNet
demonstrates markedly higher predictive accuracy in terms of correlation
coefficient, particularly for mid-to-long-term forecasts with lead times
beyond 6 months. It maintains all-season correlation skills above 0.7 for
forecast leads up to 12months, extending its predictive horizonby 3months
longer than existed deep learningmodels, and by over 5months longer than
dynamical models. Additionally, CTEFNet sustains all-season correlation
skills above 0.6 for forecast leads extending beyond 17 months, a 4-month
improvement over existing deep learning models. Although previously
developed DL models exhibit strong forecasting performance on specific
datasets, their forecasting capabilities typically diminishwhen trainedon the
CMIP6 SSP370 data, often limiting their effective lead time to around

Fig. 1 | ENSO correlation skill in CTEFNet and other models. The all-season
correlation skill of the three-month-moving-averaged Niño 3.4 index as a function
of the forecast lead month in CTEFNet (solid orange), CNN(solid deep blue),
Geoformer (solid purple), ResCNN (solid green), ResoNet (solid brown), STPNet

(solid pink), persistent forecast (dash black) and the dynamical forecast systems
included in the NMME project (dash with other colors). The shading around the
lines for the DLmodels denotes the 95% confidence interval, based on the bootstrap
method.The validation period is between 1980 and 2021.
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17 months. One possible reason is that these models may fail to capture
physically meaningful patterns, which can hinder performance on datasets
governed by diverse climate dynamics. To better understand this limitation
—as well as the strong predictive performance of CTEFNet—we present a
sensitivity analysis in the later section. For rigorous benchmarking, we also
compareCTEFNetwith the ECMWFSEAS5-20Creforecast system51 under
matched initializationperiods,whereCTEFNet consistently achieves higher
forecast skill (Fig. S1). Furthermore, to illustrate the ability of CTEFNet to
forecast specific events, we present a case study of the 1997–1998 El Niño.
This analysis demonstrates that CTEFNet achieves more accurate predic-
tions of both the timing andmagnitude of the event relative to othermodels
(Fig. S2).

To further evaluate seasonal variations in forecast performance, Fig. 2a
presents the seasonal correlations skills of ourCTEFNet across different lead
times. The correlation skill remains above 0.5 for over 20months from June
to December, and for 16 months during the boreal spring (March to May),
despite the visible influence of the SPB. Additionally, Fig. 2b, c shows that
CTEFNet significantly outperforms CNN and Geoformer in predicting
both autumn and winter conditions, while also excelling in mid- to long-
term predictions for the boreal spring. These results highlight CTEFNet’s
capability not only in achieving high accuracy but also in mitigating the
challenges of seasonal forecast degradation.

Unveiling ENSO precursors through gradient-based sensitivity
analysis
By computing the backpropagation gradients of themultivariate inputswith
respect to the Ninño 3.4 index, we quantify the relative influence of key
ocean-atmosphere variables across different lead times, a measure we refer
to as sensitivity52–54(Fig. 3, Materials and methods, and Figs. S3–S7).
Through systematic sensitivity analysis based on this novel approach, we
demonstrate that CTEFNet captures the seasonal evolution and propaga-
tion of ENSO signals prior to its maturity. The learned representation of
ENSO’s physical mechanisms by CTEFNet, as revealed through the sensi-
tivity analysis, could be a plausible reason for the model’s enhanced pre-
dictive performance.

The sensitivity analysis was conducted for 11 El Niño events (1982,
1987, 1991, 1994, 1997, 2002, 2004, 2006, 2009, 2015, and 2018) from 1980
to2021.Theprediction targetswere determinedbasedon theNiño3.4 index
in November of the El Niño year (when El Niño typically peaks) and the
subsequent months (when the index exceeds 0.5), with corresponding
inputs derived from the 12-month period precedingNovember (Fig. 3a). To
identify robust precursor signals, we computed the average sensitivities
across these El Niño events at each lead month, revealing a sequence of
physically meaningful precursor patterns. These sensitivities were statisti-
cally assessed using a Student’s t-test, and only grid points with sensitivities

Fig. 2 | The seasonality and lead-time of CTEFNet’s performance. a Contour plot
of correlation skills for CTEFNet across calendar months during the test period
(1980–2021) at different lead times. The horizontal axis denotes the forecast lead

month, while the vertical axis represents the calendar month. b Same as a, but
showing the correlation skill difference betweenCTEFNet andCNN. c Same as a, but
showing the correlation skill difference between CTEFNet and Geoformer.
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significantly different from zero at the 95% confidence level are retained.
This filtering step ensures that our interpretations are grounded in statis-
tically significant and robust signals, thereby enhancing the reliability of the
identified precursors (Fig. 3b–e). This approach enables a systematic
quantification of both positive and negative sensitivities, providing clear
insights into the distinct impact of each variable on ENSO evolution.
Additionally, the use of normalized input data allows for direct comparison

of variable contributions across different time periods and regions, estab-
lishing a comprehensive framework for understandingENSOpredictability.
To provide a broader perspective, we also conducted a parallel sensitivity
analysis for La Niña events (Fig. S7). While La Niña sensitivity patterns
generally exhibit a spatial distribution opposite to those of El Niño events,
asymmetries emerge in the seasonal evolution of inter-basin interactions
across the equatorial oceans. These findings highlight the potential for

Fig. 3 | The precursors and underlyingmechanisms of ENSO forecasting revealed
by CTEFNet. a Sensitivity analysis periods, with red indicating predicted target
periods and gray representing 12-month input periods. b–e Averaged sensitivities
across multiple El Niño events, retaining only grid point values that are statistically

significant at the 95% confidence level, illustrating the contributions of various
predictors across different months. Colors denote the sensitivities of SST, HC, SLP,
and MLD, while vectors represent those of UO, VO, TAUU, and TAUV. The green
box marks the Niño 3.4 region.
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further investigations into asymmetric ENSO dynamics, which could refine
our understanding of ENSO predictability32.

Our sensitivity analysis reveals that CTEFNet captures the early pre-
cursors of El Niños, particularly through the sensitivity fields of HC and
MLD in the equatorial Pacific observed in November, approximately 11
months before the El Niño peaks (Fig. 3b). These signals align with the
recharge phase of the recharge oscillation mechanism42, where positive HC
sensitivity in the equatorialwesternPacific (WP) indicates the accumulation
of warm surface waters and a deepening thermocline, establishing favorable
preconditions for El Niño development. Concurrently, negative MLD
sensitivity across the tropical Pacific, typically associated with a thickened
ocean barrier layer55,56, suggests a suppression of vertical entrainment and
mixing, facilitating heat retention at the surface and reinforcing conditions
conducive to El Niño initiation57,58.

By April (eight months before El Niño peaks), the El Niño-related
signals are ubiquitous throughout the global equatorial oceans. (Fig. 3c).The
positive sensitivity of HC in theWP intensifies and extends into the central
Pacific (CP), eastern Pacific (EP), and eastern Indian Ocean (IO). This
eastward expansion of the Pacific warmpool coincides with a strengthening
positive SST sensitivity in the tropical EP and an intensified westerly wind
sensitivity over the tropical Pacific, indicating multivariate ocean-
atmosphere interactions preceding El Niño events. These patterns mark
the initiation of the Bjerknes positive feedback mechanism41, wherein a rise
in SST in the EP weakens the zonal temperature gradient, enhancing wes-
terly wind, which in turn amplifies eastward warm water transport, rein-
forcing positive SST anomalies in the EP. In contrast, HC and SST in the
North Tropical Atlantic (NTA) exhibit negative sensitivities (Fig. 3c).
Cooling in the NTA has been shown to suppress convection in the tropical
Atlantic43, which alters the position and intensity of the Pacific Intertropical
Convergence Zone (ITCZ) through air-sea interactions, particularly via
moist static energy feedbackprocesses44,59,60. These atmospheric adjustments
weaken the Pacific trade winds, reduce upwelling, and facilitate the accu-
mulation of warm water in the EP and CP. This sequence of processes
ultimately enhances the eastward propagation of warm Kelvin waves, dis-
rupts the normal Pacific circulation, and establishes a critical inter-basin
teleconnection pathway linking Atlantic variability to ENSO61,62. Addi-
tionally, increased ocean current speeds and enhanced wind stress to the
south in the tropical Atlantic contribute positively to El Niño formation in
our sensitivity analysis. These changes could intensify cross-equatorial heat
transport, modulate surface fluxes, and alter large-scale atmospheric cir-
culation, which may promote adjustments in the Walker circulation and
further amplifying El Niño development.

FromApril toAugust (threemonths beforeElNiñopeaks), the positive
SST sensitivity field in the EP progressively expands westward into the CP
and WP, while westerly wind stress sensitivity in the WP intensifies and
negativeMLD sensitivity in the EP andCPbecomesmore pronounced (Fig.
3d). These shifts align with the canonical evolution of El Niño, highlighting
the complex multivariate interactions driving ENSO development. The
evolving SST pattern alters atmospheric pressure systems, further weak-
ening the tradewinds, which in turn amplifies warmSST anomalies across a
broader region of the Pacific. As the trade winds weaken and SST variations
intensify, shoaling MLD in the EP and CP reduces heat exchange between
the deep ocean and surface waters, accelerating the warming of surface
waters. During this period, the negative SST sensitivity field in the NTA
propagates southward, encompassing the entire tropical Atlantic. This
cooling suppresses convectionand strengthensdescendingmotionsover the
Atlantic, reinforcing the descending branch of the Walker circulation and
leading to compensatorywesterlywind anomalies over the tropical Pacific46.
Additionally, wind stress sensitivities associated with this Atlantic cooling,
characterized by easterlies off Central America and over South America,
further strengthen the teleconnection between the Atlantic and Pacific,
establishing a robust link between Atlantic variability and ENSO
dynamics45,46. Simultaneously, negative SST sensitivities emerge in the
eastern IO, influencing the intensity and spatial configuration of the Indian
Ocean Dipole (IOD). This shift in the IOD modulates the Walker

circulation, generating compensatory westerly wind anomalies over the
tropical Pacific, furtherpromotingElNiñodevelopment47,49. The interaction
between the IO and Pacific SSTs further strengthens the ocean–atmosphere
feedback mechanisms driving the intensification of El Niño events.

By October (one month before El Niño peaks), SST sensitivity in the
tropical Pacific continues to increase as El Niño conditionsmature (Fig. 3e),
further amplifying ENSO’s ocean-atmosphere feedback loop. Simulta-
neously, wind stress sensitivity and ocean surface current sensitivity indicate
that strengthening westerly wind stress and intensified westward ocean
current velocity transport warm water from the WP to the CP and EP,
leading towarmwater accumulation in theEPandacorrespondingdecrease
in HC in theWP. This results in contrasting HC sensitivities: while theWP
experiences a negative impact, the EP exhibits a positive response. More-
over, negativeMLD sensitivivty field across the tropical pacific suggests that
shoaling of mixed layer further enhances surface heat accumulation, rein-
forcing the positive feedback loop driving El Niño development. Con-
currently, negative SSTsensitivitypersists in the tropicalAtlantic, alongwith
basin-wide negative sensitivity fields over the northern and equatorial IO,
the South China Sea, and off the northern Australian coasts. Notably,
cooling in the IO induces divergence and westerly winds over the western
tropical Pacific Ocean, a process consistent with the Matsuno–Gill
response63,64. This dynamic adjustment triggers the eastward propagation of
downwellingKelvinwaves, which further reinforcesElNiñodevelopment48.
The resulting SST sensitivity patterns are accompanied by notable negative
SLP sensitivity fields in the EP and CP, alongside positive SLP sensitivity
fields over the Atlantic and Australian regions. This pressure pattern
modulates large-scale wind fields and strengthens ocean current sensitivity
toward the easternPacific, further amplifying the transport ofwarmwater to
the CP and EP, reinforcing El Niño intensification.

The identified precursor signals and sensitivity patterns derived from
CTEFNet align closely with the canonical evolution of El Niño, demon-
strating that our model effectively represents key physical processes
underpinning ENSO development and propagation.

Discussion
Recent advancements in DL have revolutionized ENSO forecasting,
offering a powerful data-driven framework capable of capturing its highly
nonlinear dynamics. However, despite these significant strides, challenges
persist in achieving robust and interpretable multivariate ENSO predic-
tions. To address these gaps, we introduce CTEFNet, a novel CNN-
transformer hybrid model designed to effectively capture the coupled
spatiotemporal interactions governing ENSO evolution. Compared to the
CNN-transformer model proposed by Lyu et al.32, which relies on an
encoder-based architecture to process only SST through separate CNN
and Transformer modules, CTEFNet employs a distinctive encoder-
decoder framework. A key advantage of this design lies in its sequential
prediction capability, which enables CTEFNet to dynamically capture the
evolving multivariate interactions at each time step. This architecture
makes CTEFNet particularly well-suited for sequence generation and
long-range forecasting. To systematically assess the importance of the
model design and input features, we performed ablation studies com-
paring CTEFNet with CNN-based and Transformer-based models16,21,
and evaluating different input combinations (using only SST, SST plus sea
variables, SST plus air variables, and all combined) (Fig. S8). Results show
that both the hybrid architecture and keymultivariate inputs are essential
for CTEFNet’s superior forecasting skill. CTEFNet’s predictive perfor-
mance is further enhanced through training on an ensemble dataset from
CMIP6, allowing it to account for subtle differences in physical
mechanisms across multiple climate models. This ensemble-based
learning approach significantly improves CTEFNet’s ability to capture
implicitmultivariate ENSOdynamics, whichmaynot be fully represented
in a deterministic dynamical model. As a result, CTEFNet achieves
effective long-lead ENSO forecasts up to 20 months while significantly
reducing the SPB, outperforming both traditional dynamical models and
state-of-the-art DL models.

https://doi.org/10.1038/s41612-025-01159-w Article

npj Climate and Atmospheric Science |           (2025) 8:259 5

www.nature.com/npjclimatsci


Beyond its superior predictive performance, CTEFNet contributes to
improved interpretability of deep learning-based climate forecasting when
coupledwith a post hoc gradient-based sensitivity analysis.We propose this
gradient-based approach as a practical alternative to conventional adjoint
models, to identify global ENSO precursors and their underlying mechan-
isms. Unlike traditional adjoint methods, which are often computationally
prohibitive and constrained by linearity assumptions, our gradient-based
approach offers a more flexible and nonlinear representation of ENSO
dynamics. This method overcomes the common challenge of inadequately
managing nonlinear responses in physical oceanography and climate sci-
ence, providing amore faithful representation of complex systemdynamics.
Meanwhile, a major strength of our approach is its efficiency, derived
naturally as a byproduct of the DL model, eliminating the need for addi-
tional computationally intensive integration steps. This inherent efficiency
makes it highly scalable and well-suited for large-scale climate simulations.
The integration of thismethodology represents a step forward in enhancing
the robustness andapplicability of climate sensitivity analysis, particularly in
scenarios where nonlinear interactions are significant. Our sensitivity ana-
lysis with CTEFNet reveals physical precursors to El Niño events that are
consistent with some established mechanisms. Specifically, the sequential
buildup of heat in the WP and its eventual release to the CP and EP aligns
with the recharge-oscillation mechanism. Additionally, the positive feed-
back loop in the tropical Pacific, characterized by rising SSTs in the CP and
EP and the amplification of westerly winds, strongly reflects the Bjerknes
feedbackmechanism. Notably, our analysis also highlights the role of inter-
basin interactions in ENSO variability, revealing that cooling in the tropical
Atlantic and Indian Oceans influences large-scale wind patterns and
atmospheric circulation, ultimately modulating El Niño formation through
cross-basin teleconnections. In parallel, our analysis for La Niña events
reveals generally opposite spatial sensitivity patterns, with asymmetries in
their seasonal evolution and inter-basin interactions, suggesting event-wise
complexity in ENSO dynamics.

In this regard, another recent approach using Swin Transformer65

could achieve comparable predictive performance of Niño 3.4 index with
good computational efficiency. However, it exhibits less stable gradient-
based sensitivity analysis than CTEFNet, suggesting that it fail to con-
sistently produce physically meaningful attribution patterns under limited
data conditions (Fig. S9). This limitation likely stems from the absence of
strong inductive biases, which are inherently provided by the CNN com-
ponent in CTEFNet. CNNs enable robust feature extraction, maintaining
stability even in the presence of noisy data66–68. While Swin Transformer
incorporates spatial localization through its hierarchical structure and
sliding windows, its inductive biases are weaker and less explicitly defined
compared to those of CNNs. Consequently, Swin Transformer may exhibit
instability when trained on limited datasets, leading to gradient fluctuations
and reduced reliability in sensitivity analysis69,70.

Furthermore, CTEFNet’s sensitivity analysis reveals new insights into
El Niño’s seasonal evolution, particularly regarding inter-basin influences.
For instance, we identify a persistent cooling signal in the tropical Atlantic
from spring through autumn, with easterly wind anomalies near Central
and South America strengthening the teleconnection between the Atlantic
and Pacific Oceans. In the Indian Ocean, sensitivity fields extend from the
eastern basin in summer to the northern and equatorial regions by autumn,
underscoring the evolving nature of inter-basin interactions. These findings
paint a more dynamic picture of ENSO’s seasonal progression than con-
ventionalmodels suggest, indicating that inter-basin interactionsmay be far
more critical in driving ENSO’s peak-phase characteristics than previously
recognized.

Despite its strengths, CTEFNet’s current implementation remains
focused on predicting the Niño 3.4 index, limiting its direct application to
ENSO diversity71–73. A natural extension of this work would involve
enhancing the model’s capability to differentiate between Modoki and
canonical ENSO events, which exhibit distinct climatic impacts. Addi-
tionally, while CTEFNet has demonstrated significant improvements in
mitigating the SPB, it remains a formidable challenge. The persistent decline

in model performance during spring is typically attributed to the complex
dynamics of the tropical climate system, including shifts in wind patterns
and ocean currents that are not well-captured by existing models.
Addressing this limitation requires a concerted effort to dissect the under-
lying mechanisms of SPB and to develop refinedmodeling approaches that
can account for these intricate seasonal variations. Innovative methodolo-
gies, possibly integrating higher-resolution data and advanced machine
learning techniques, could improve predictions during this challenging
season. Such advancements would not only enhance the accuracy of climate
models like CTEFNet but also broaden their applicability in real-world
climate strategy and policy-making, where understanding and anticipating
climate variability is crucial.

Methods
Data and processing methods
The performance of DL models is largely determined by both the quantity
and quality of training data. However, the observation data for extreme
climate events, such as ENSO, is often insufficient to provide adequate
sampling. To address this limitation, simulation data from 18 CMIP6 cli-
mate models (2015–2100) are utilized for model training (Table S1). While
CMIP6 models are known to exhibit certain biases in simulating ENSO
evolution74,75, recent studies have demonstrated that they nevertheless
provide sufficient physical information to enable deep learning models to
achieve strong predictive skill16,76. For model evaluation and selection, rea-
nalysis datasets from the Ocean Reanalysis System 5 (ORAS5) and ERA5
(1958–1978) are used as validation sets. To further evaluate the model’s
generalization ability, it is tested using data from GODAS and ERA5
(1980–2021).

Before inputting the data into CTEFNet, a uniform preprocessing
procedure is applied. First, monthly anomalies for each input variable are
calculated by removing long-term trends and climatology, and this opera-
tion is performed separately for each CMIP6 model. The data are then
standardized to a uniform spatial resolution of 1° × 2° through linear
interpolation, covering the spatial domain from 60 °S to 60 °N in latitude
and 0° to 360° in longitude. Grids corresponding to land areas (except for
wind stress and sea level pressure) and missing data are assigned a value of
zero. The processed fields are then normalized and concatenated along the
layer axis to form datasets comprising nine layers.

The input data includes SST, HC, MLD, SSS, SLP, UO, VO, TAUU,
and TAUV from the current and previous eleven months. These variables
are combined in an overlapping manner, resulting in a data format of size
[12 × 9 × 120 × 180], where the four dimensions represent the temporal
duration of the input data, the numberof variable types, and the latitude and
longitude grids. The target variable for training CTEFNet is the Niño 3.4
index for the subsequent 24 months, with the corresponding data format
being [24 × 1].

Architecture of CTEFNet
CTEFNet comprises two primary components: a CNN-based feature
extractor and a Transformer spatiotemporal analysis module (Fig. 4). The
CNN-based feature extractor performs multi-scale downsampling of input
variables, capturing key regional spatial features. The Transformer module
utilizes self-attention mechanisms and parallel processing to model multi-
variable relationships and long-range dependencies in sequential data.
Unlike previous transformer-based models, which predict the entire fore-
cast region21,22, CTEFNet directly predicts the Niño 3.4 index. This design
enables early downsampling within the pipeline, optimizing computational
efficiency. As a result, CTEFNet can process larger, global input data,
improving ENSO prediction while enhancing sensitivity analysis of global
multivariate patterns.

To extract the spatiotemporal features from the input variables, we
employ a stack of three CNN-based blocks. Each block consists of two
convolution layers, two batch normalization layers, two ReLU activation
functions, and one global average pooling layer. The convolution opera-
tions, with their local receptive fields, enable the model to capture critical
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local information while minimizing global context noise. The hierarchical
structure of the CNN blocks also facilitates the extraction of multi-scale
spatial features, making them well-suited for focusing on specific regions.
The Transformer, with its encoder-decoder architecture, excels inmodeling
spatiotemporal sequences. Its self-attention mechanism efficiently captures
long-range dependencies across time steps and spatial locations, enabling
the model to identify and leverage key factors that drive climate change,
regardless of their position in the sequence.

Model training strategy
CTEFNet processes batches of input variables (batch size = 8), where each
batch contains 12consecutivemonthsof data aspredictors, and theNiño3.4
index for the subsequent 24 months as the target predictands. The model is
trained using a rolling prediction strategy21, with the RMSE of the Niño 3.4
index serving as the loss function to quantify the deviation between the
predictions and the target values.

Loss ¼ 1
Tout

XTout

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNino3:4outt � Nino3:4tgt Þ

2
q

where Nino3:4outt and Nino3:4tgt represent the output and target Niño 3.4
index, respectively, which are derived from normalized sea surface tem-
perature anomalies at a depth of 5m. An Adam optimization algorithm is
employed to optimizeCTEFNet during training, with a learning ratewarm-
up technique applied77,78, starting with an initial learning rate of 2 × 10−5.
The computational cost associated with model training and inference is
detailed in the Supplementary Information.

Gradient-based sensitivity analysis
Our sensitivity analysis is grounded in recent explainable artificial intelli-
gence research in climate science. Previous studies35,52–54 have validated
gradient-based explanation methods using synthetic benchmark datasets
with known ground-truth attributions and real-world datasets. These stu-
dies demonstrate that gradient-based techniques can reliably recover feature
relevance in controlled settings, providing both theoretical justification and
empirical support for our approach.

Building on this foundation, we apply backpropagation to compute the
gradient of the predicted Niño 3.4 index with respect to each input variable.

These gradients quantify the local sensitivity of the output to inputs with
backpropagation across layers of the neural network, enablingus to trace the
precursors of ENSO events as a function of spatial location and lead time.

Specifically, we use the Niño 3.4 index from November of the ENSO
years and subsequent months (when the index exceeds 0.5) within the valid
period (1980–2021) as target values for prediction. Gradients are computed
for each target value with respect to the corresponding inputs. The average
gradient values across all target months are then used to determine the
overall contribution of the input variables. This process is mathematically
expressed as follows:

Gradt ¼
∂Nino3:4t
∂Inputs

∣
Inputst

AvgGrad ¼ meant Gradt
� �

where Nino3. 4t and Inputst represent the target predicted Niño 3.4 index
and the input variables at target month t, respectively, Gradt denotes the
gradient value of the input variables obtained at month t through back-
propagation in CTEFNet, and AvgGrad represents the averaged gradients
across all targetmonths, reflecting the overall contributionof input variables
to the Niño 3.4 index.

Data availability
The data sources are listed below: CMIP6: https://esgf-node.llnl.gov/
projects/cmip6/; ORAS5: https://cds.climate.copernicus.eu/datasets/
reanalysis-oras5?tab=overview; ERA5: https://cds.climate.copernicus.eu/
datasets/reanalysis-era5-single-levels-monthly-means?tab=download;
GODAS: https://psl.noaa.gov/data/gridded/data.godas.html. SEAS5-20C:
https://apps.ecmwf.int/ifs-experiments/rd/guxf/. CTEFNet code: https://
github.com/QiChen-7-c/CTEFNet.git.
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