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Decadal oceanic variability amplified
recent heatwave in the Northern
Hemisphere

Check for updates
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The persistent increase in heatwaves has caused substantial economic and ecological damage.
However, the contribution of decadal oceanic variability to the recent surge in heatwaves remains
unclear. Here, using observations and simulations, we demonstrate that oceanic modulation drives
decadal heatwave swings and trends. We quantify that the decadal component of heatwave
cumulative intensity (HWCI) accounts for 57% of the observed increase in HWCI across the Northern
Hemisphere from2013 to 2021,with 44%attributed to increases in the smoothed component (HWCIS)
and 13% to enhancements in the anomaly component (HWCIA). Notably, decadal oceanic variability
contributed to 63% of the HWCI increase in the Northern Hemisphere during 2013–2021 and to 26%
over 1985–2021. Regionally, oceanic modulation amplified HWCI by 58% in Europe, and contributed
more than 20% in North Africa, southern North America, eastern China, and northern Central Asia
during 2013–2021. The positive-to-negative phase transitions of the Atlantic Multidecadal Oscillation
(AMO) and Interdecadal Pacific Oscillation (IPO) were identified as key drivers of this recent
intensification. Model simulations incorporating AMO and IPO forcings closely align with observed
HWCI decadal oscillations since 1940, further supporting these findings. Our results highlight that
oceanic modulation can significantly amplify or dampen human-induced long-term heatwave trends,
suggesting a potential slowdown in heatwave intensification in the coming decades as oceanic
variability transitions to a new phase.

Heatwaves havehada significant impact onhuman life and causeddisasters.
During 1980–2014, 783 excess deaths related to extreme heat were reported
across 164 cities in 36 countries1. Economically, heatwaves resulted in sig-
nificant losses, with their impacts in Europe estimated to account for
0.3–0.5% of the region’s gross domestic product in the selected years2.
Heatwaves struck many cities in the Northern Hemisphere in the boreal
summer of 20233, with widespread reports of heatwaves in the southwest of
the United States and Mexico, southern Europe, and northern China.
Overall, a long-term increase in heatwaves since the 1950s has been
observed4. Heatwaves are expected to continue to increase in the future5. It
has been suggested that human-induced global warming is the primary
cause of the long-term increase in heatwaves6.

In light of the fact that heatwaves are caused by abnormally high
temperatures, the factors that affect temperature are also responsible for
heatwaves7. Internal climate variability, in addition to the external forcing of
greenhouse gases, regulates regional or global temperatures on short-term
timescales, such as interannual to decadal8–10. Internal climate variability

comprises modes of oceanic and atmospheric circulation variations,
wherein oceanic variability modes exert a remote influence on land tem-
perature by perturbing atmospheric circulation10–12. Atmospheric circula-
tions, such as Rossby waves13,14, blocking15,16, North Atlantic Oscillation17,
and jet streams18, have frequently been associated with heatwaves in the
mid-latitude regions of the Northern Hemisphere.

Therefore, the fundamental causes of heatwaves can be classified as
external forcing and internal climate variability. Internal climate variability
can modulate decadal to multi-decadal climate changes, primarily due to
decadal oceanic variability19–21. For example, it has been extensively
demonstrated that oceanic variability plays a crucial role in regulating the
decadal trends of global average temperature, including its dominant
influence on slowing global warming in the early 2000s8,10,22,23. In terms of
weather extremes, the oceanic variability of the Atlantic and PacificOceans,
such as Atlantic Multidecadal Oscillation (AMO) and Interdecadal Pacific
Oscillation (IPO)24,25, has been suggested to influence the decadal trends of
heatwaves in many regions across the Northern Hemisphere through
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Rossby wave train propagation and ocean-atmosphere coupling
mechanisms26–30. The phase shift of the AMO from cold to warm had
significantly contributed to the increasing trend of European heatwaves
during 1980–2021 by intensifying the mid-latitude North Atlantic jet,
accounting for ~43% of the observed trend31. The IPO has been associated
with variations in surface air temperature and precipitation over Australia
and the southwestern United States32. Moreover, the transition of the IPO
from a negative to a positive phase contributed to the decline and sub-
sequent recovery of the Indian summer monsoon around 199933. The
combination of the negative phase of the IPO and the positive phase of the
AMOhasbeenshown to enhance theEastAsianpolar front jet and suppress
the East Asian subtropical jet during summer, primarily through changes in
the meridional temperature gradient and the Eady growth rate34.

However, it is unclear to what extent oceanic variability has caused
changes in heatwaves over 2013–2023. This study sought to provide an
answer to this query.We examined the variations in Northern Hemisphere
land heatwaves across decadal timescale and corresponding spatial pattern.
The contributions of heatwaves over NorthernHemisphere land areas were
then analyzed across temporal and spatial scales. Using statistical methods,
wequantified the impact ofAMOand IPOondecadalheatwavefluctuations
and explored their underlying physicalmechanisms. To further isolate their
individual contributions and verify the physical mechanisms involved, we
employed pacemaker experiments from the Coupled Model Inter-
comparison Project Phase 6 (CMIP6)35 to investigate the decadal heatwave
fluctuations forced by AMO and IPO.

Results
Heatwave trends, fluctuations, and patterns
Here we identify that heatwave cumulative intensity (HWCI) was mainly
examined in this study. HWCI was defined as the cumulative temperature
exceedance over the threshold for heatwave events fromMay to September

of each year (see Methods). Therefore, HWCI covers not only heatwave
frequency but also heatwave intensity and duration4,18.

The average HWCI in the Northern Hemisphere significantly
increased from1940 to2023 (Fig. 1a, red line). Inparticular,HWCIhas been
rapidly growing since 1985 (black curve), coinciding with rapid global
warming, as illustrated by Fig. SPM.1b in ref. 36. HWCI showed con-
siderable interannual and decadal fluctuations, as indicated by the gray and
purple curves in Fig. 1a, based on Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN) decomposition37.
HWCI increased drastically over the recent decade from 2013 to 2023, with
2023 experiencing the most severe heatwaves since 1940. The decadal
components contributed 71% to the 20.7 °C decade-1 HWCI trend over
2013–2023. Therefore, decadal fluctuations have played a crucial role in the
escalating heatwaves over 2013–2023 in the Northern Hemisphere. In
contrast to thequickHWCI increase for 2013–2023, thedecadal component
ofHWCI (purple curve) showed a decreasing trend for 1940–1985 (Fig. 1a).
The multidecadal down-trending and up-trending in HWCI during
1940–1985 and 1985–2023, respectively (purple curve), combined with the
long-term increasing trend (red line), contributed to the decelerated and
accelerated HWCI increase before and after 1985 (black curve).

Extreme events, such as heatwaves, are primarily driven by both
background temperature state and temperature variability38,39. Therefore,
we decomposed HWCI into a smoothed component (HWCIS) and an
anomaly component (HWCIA) (see Methods). As the decomposition
method applied at the boundaries may result in overestimated values near
the edges, the subsequent analysis excluded the four boundary years (1940,
1941, 2022, 2023) to ensure the robustness of the results. We found that,
from 2013 to 2021, the decadal components of HWCIS and HWCIA
accounted for 44% and 13% of the increase in HWCI, respectively (Fig. 1b).
While the decadal component of HWCI was primarily influenced by
HWCIS, HWCIA still played a substantial role, particularly over 2013–2021.

Fig. 1 |Heatwave cumulative intensity (HWCI) for
May to September at various timescales. a Time
series of HWCI averaged over the Northern Hemi-
sphere land, and its interannual variability, long-
term trend, and decadal variability components
based on CEEMDAN decomposition37, derived
from European Centre for Medium-RangeWeather
Forecasts (ECMWF) Reanalysis version 5 (ERA5)
reanalysis data provided by the ECMWF in 1° × 1°
grids. The slopes of the linear fitting are in units of °C
decade-1. The light and deep shadings indicate the
two periods of 1940–1985 and 1985–2023. b Time
series of decadal component ofHWCI averaged over
the Northern Hemisphere land, and its smoothed
and anomaly components based on Five-point
Smoothing (see Methods). Since this method may
lead to overestimation at the boundaries, the sub-
sequent analysis excluded the four boundary years
(1940, 1941, 2022, 2023). The slopes of the linear
fitting are in units of °C decade-1. The light and deep
shadings indicate the two periods of 1942–1985 and
1985–2021.
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In addition to this temporal increase, spatial heterogeneity in HWCI
trends became apparent, with non-uniform changes across the Northern
Hemisphere (Fig. 2a). For example, southern and eastern Russia exhibited
strong diminishing trends, contrasting with significant increases in six
regions: Southern North America (SNA), Europe, North Africa, Northern
Central Asia (NCA), northern Russia and eastern China (Fig. 2a). HWCIS
dominated the HWCI increase across most of the Northern Hemisphere,
with contributions exceeding 85% inNorthAfrica and northern Russia and
reaching 83%and78% in SNAandNCA, respectively.Notably, over eastern
China, the HWCI increase was almost entirely driven by HWCIS, with
HWCIA contributing negligibly. However, HWCIA remained a significant
driver in Europe, where HWCIS and HWCIA contribute equally, each
explaining about 50% of the HWCI increase (Fig. 2a). These patterns were
consistent with the results based on heatwave frequency (Figs. S1 and S2).

Modulationofdecadalheatwavefluctuationsbydecadaloceanic
variability
Decadal oceanic variability played a significant role in influencing decadal
variability in heatwaves. Here, we calculated the decadal variability of AMO
and IPO based on ERA5 data, applying the method of Enfield et al.40 to
AMO and the approach of Henley et al.41 to IPO. The resulting AMO and
IPO are shown in Fig. S5.

Decadal oceanic variability primarily influenced HWCI trends
through its impact onHWCIS, accounting for 43%of the variance indecadal
component of HWCIS averaged over Northern Hemisphere land (Fig. 3a).
From 1985 to 2021, decadal HWCIS fluctuations induced by oceanic
variability (bars in Fig. 3a) showed an increasing trend of 1.6 °C decade-1,
contributing 26% of the observed 6.1 °C decade-1 trend in HWCI (Fig. 1b).
Of the two dominant modes, AMO and IPO contributed 51% and 49%,
respectively, to decadal HWCIS fluctuations over the period 1942–2021
(Fig. 3b). AMO (red curve) and IPO (green curve) exhibited both multi-
decadal anddecadalfluctuations (Fig. 3bandFig. S5a).Therefore,AMOand

a Total, 2013–2021 Trend (oC decade–1)

b Smoothed, 2013–2021 Trend (oC decade–1) c Anomaly, 2013–2021 Trend (oC decade–1)
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Fig. 2 | Spatial variability of the decadal component of HWCI over 2013–2021.
aThe 2013–2021 linear trend in the decadal component ofHWCI. Significant trends
at the 95% confidence level (two-sided P < 0.05), assessed with a random-phase
resampling test55, are marked with dots. The outlined polygons denote some

designated analysis domains. b, c Same as a but for the decadal component of
HWCIS and HWCIA. Proportions of HWCIS and HWCIA in each region, as shown
in the pie chart presented in (a).
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Fig. 3 | Contribution of decadal oceanic variability to decadal HWCIS fluctua-
tions. a Regression of the decadal component of HWCIS (pale red curve in Fig. 1b) using
the decadal oceanic variability, as represented by the decadal components of AMO and
IPO for May–September (Fig. S5). The regression is significant at 95% confidence
(P < 0.05), assessed with a random-phase resampling test55. b Relative contribution by the
individual modes for 1942–2021 and the linear fitting for 2013–2021.
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IPO jointly dominated multidecadal and decadal oceanic variability gen-
erated 26% of the increasing trend in HWCI during 1985–2021 (Fig. 1).

From2013 to 2021,AMOand IPOdrove the trends in decadalHWCIS
by2.9 °Cdecade-1 and7.0 °Cdecade-1, respectively, corresponding to relative
contributions of 29% and 71% (Fig. 3b). Collectively, these two oceanic
modes accounted for 63% of the observedHWCI trend (9.9 °C decade-1 out
of 15.6 °C decade-1, Fig. 1b) during this period. Compared to the 1985–2021
trend, where decadal oceanic variability contributed 26% of the observed
HWCI increase, the influence of decadal oceanic variability was sub-
stantially amplified over 2013–2021. Notably, the individual contributions
of both AMO and IPO to the HWCIS trend during 2013–2021 were
markedly higher than their respective impacts over 1985–2021 (Fig. 3b).
This indicates that decadal oceanic variability played a more dominant role
in driving hemispheric HWCIS growth over 2013–2021 than that
since 1985.

While HWCIS predominantly determined the long-term (1942–2021)
fluctuations of the decadal component of HWCI, HWCIA played an indis-
pensable role over 2013–2021 (Fig. 1b). Both during 1942–2021 and
2013–2021, decadal oceanic variability explained a larger share of decadal
HWCIS changes than decadal HWCIA (Fig. S6 and Fig. 4). However, from
2013 to 2021, decadal oceanic variability made a significant contribution to
increases in the decadal component of HWCIA across some regions, such as
Europe (Fig. 4d). Notably, in northern Russia during 2013–2021, the spatial
patterns of the contributions of decadal oceanic variability to HWCIS and
HWCIA exhibited opposite signs (Fig. 4c, d). This spatial discrepancy arises
because HWCIS is primarily determined by the background temperature
state, whereas HWCIA is co-determined by the horizontal gradient of the
background temperature state and high-frequency circulation variability39,42.
Consequently, these distinct drivers lead to spatially divergent patterns in the
contributions of decadal oceanic variability to HWCIS and HWCIA.

Building on this, we further assessed the role of decadal oceanic
variability in driving HWCI over 2013–2021. In Europe, it was the

dominant driver, explaining up to 58% of the observed rise in HWCI
(Fig. 5). Furthermore, it contributed over 20% to HWCI in regions such as
North Africa, SNA, eastern China and NCA. By contrast, the influence of
decadal oceanic variability on HWCI was minimal in northern Russia
(Fig. 5). Comparing the results of retaining the two boundary years of 2022
and 2023, it was found that the contribution rate of decadal oceanic varia-
bility across all regions was 20–30% higher than when these years were
excluded (Fig. 5 and Fig. S7). This differencewas primarily attributed to two
factors: first, this contribution rate focuses on data with a relatively short

c 2013-2021, HWCIS trend (oC decade–1) d 2013-2021, HWCIA trend (oC decade–1)

a 1942-2021, HWCIS, R2 b 1942-2021, HWCIA, R2

Fig. 4 | Spatial contributions of decadal oceanic variability to HWCIS and
HWCIA. a Explained variance (R

2) of decadal HWCIS in the Northern Hemisphere
based on regression with decadal oceanic variability. c 2013–2021 linear trend in the
time series of the decadal oceanic variability-induced HWCIS. b, d Same as a and c
but for HWCIA. The time series of the decadal oceanic variability-induced HWCIS

and HWCIA were calculated as the regression of the decadal components of HWCIS
and HWCIA at each grid on the time series in Fig. 3a and Fig. S6 for 1942–2021.
Significant regression coefficients at the 95% confidence level (two-sided P < 0.05),
assessed with a random-phase resampling test55, are marked with dots.

Decadal oceanic variability Other factors

HWCI trend (oC decade–1)

Fig. 5 | Contribution of decadal oceanic variability to HWCI changes over the six
regions. Regional mean trends in HWCI for 2013–2021 over the six regions shown
in Fig. 2a, as well as the contribution of decadal oceanic variability, as represented by
regional mean linear trends in the decadal oceanic variability-regressed time series
(Fig. 4c, d). The percentage numbers indicate the contribution ratios of the decadal
oceanic variability.
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time span (2013–2023); second, the most severe heatwaves since 1940
occurred in 2023 (Fig. 1a). Thus, after excluding the two boundary years of
2022 and 2023, the study period was further shortened, and the intensity of
heatwaves was significantly reduced.

In terms of spatial patterns, both the positive AMO and the negative
IPO exerted significant influences on HWCIS across the Northern Hemi-
sphere, with the positive AMO playing a dominant role (Figs. 3a and 6a, c).
This dominance arose from the strong alignment of the positive AMOwith
HWCIS on multidecadal timescales (Figs. 1b and 3b). In particular, the
positive AMO influenced HWCIS over SNA and North Africa more sub-
stantially than the negative IPO. Over Europe, both the positive AMO and
negative IPO contributed substantially and similarly to HWCIS, with
regionally averaged correlation coefficients of 0.25 and −0.28, respectively
(Fig. 6a, c). In contrast, HWCIS over eastern China was predominantly
governed by the negative IPO, with a regionally averaged correlation coef-
ficient of -0.27, whose strength (in terms of absolute value) was greater than
that of the positive AMO (r = 0.17, Fig. 6a, c). For HWCIA, the AMO
exhibited a significant positive correlation (r = 0.23) in the eastern SNA
region, while showing a significant negative correlation (r =−0.19) in the
central SNA region (Fig. 6b). However, its influence was less pronounced in
other regions, where correlations were generally weak ( | r | < 0.15) and
statistically insignificant (Fig. 6b). Conversely, the IPO still demonstrated a
significant negative correlation with HWCIA over Europe (r =−0.16,
Fig. 6d).

To further investigate the underlying mechanisms through
which the positive AMO and the negative IPO influence Northern
Hemisphere heatwaves, the 200hPa geopotential height anomalies
and associated wave activity fluxes induced by the positive AMO and
the negative IPO were calculated using composite analysis (Fig. 7 and
Fig. S8). Driven by the positive AMO, the Rossby wave activity fluxes
propagated eastward along a mid- to high-latitude circumglobal
waveguide that originated in the North Atlantic. The main branch
traversed Europe, NCA, and East Asia, then entered the northern
North Pacific, extended across northern North America, and finally
returned to the North Atlantic, thereby closing a circumglobal

teleconnection (CGT) loop (Fig. 7a). Meanwhile, two low-latitude
branches emerged: one plunged directly from the North Atlantic
source region into North Africa, whereas the other dived from East
Asia into the tropical North Pacific via eastern China and then con-
tinued toward SNA (Fig. 7a). The Rossby wave train excited by the
negative IPO originated over the North Pacific, extended eastward to
SNA, and subsequently entered the tropical North Atlantic (Fig. 7b).
There, it bifurcated: the main branch propagated into the mid-
latitude North Atlantic, swept across Europe, NCA, and eastern
China, and ultimately closed over the North Pacific, forming a CGT
wave train (Fig. 7b). The secondary branch continued downstream
toward North Africa (Fig. 7b).

Overall, Europe, NCA, and eastern China were persistently influ-
enced by the primary CGT wave train during both the positive AMO and
the negative IPO (Fig. 7). Europe exhibited the most pronounced
impacts, as both the positive AMO and negative IPO significantly
increased HWCIS there (Figs. 6 and 7), a result consistent with the largest
contribution of decadal oceanic modes to European HWCI shown in Fig.
5. For the NCA region, the influence of the wave activity fluxes from both
modes was relatively weak. This region was primarily characterized by
low-pressure geopotential height anomalies (Fig. 7a, b), where HWCIS
was lower than under high-pressure conditions. In contrast, increased
HWCIS over eastern China was more strongly associated with the
negative IPO, whose primary wave train extended directly towards
eastern China before returning to the North Pacific (Fig. 7b). SNA and
North Africa were primarily influenced by the positive AMO through the
East Asia–tropical North Pacific branch and a direct southward branch
from the North Atlantic, respectively (Fig. 7a). However, the negative
IPO also contributed to these regions: for SNA, through the initial
downstream extension of its main CGT wave train; and for North Africa,
through a secondary Atlantic branch forming downstream (Fig. 7b).
Unlike the five regions analyzed above, northern Russia remained
entirely unaffected by teleconnections from either the positive AMO or
the negative IPO (Fig. 7), with decadal oceanic variability exhibiting the
lowest contribution to HWCI here (Fig. 5).

a Obs, AMO, HWCIS b Obs, AMO, HWCIA

c Obs, IPO, HWCIS d Obs, IPO, HWCIA

Oceanic Index & HWCI correlation coefficient
Fig. 6 | Patterns of decadal HWCI fluctuations tied to decadal oceanic variability.
a, c Correlation coefficients between AMO and IPO for May–September and the
decadal components of HWCIS for 1942–2021, respectively. b, d Same as (a, c) but for

thedecadal componentsofHWCIA. Significant correlations at the95%confidence level
(two-sided P < 0.05), assessed with a random-phase resampling test55, are marked
with dots.
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Implications of AMO and IPO on heatwaves
The effects of AMO and IPO on heatwaves were investigated further using
the CMIP6 historical experiment (HIST) and pacemaker experiments,
which set “pacemaker” in the Atlantic and Pacific Oceans by restoring the
observed historical SSTs in the AMO (resAMO) and IPO (resIPO)
domains43, respectively. Hence, the resAMO and resIPO experiments have
the same historical external forcing as the HIST experiment, but with
stronger signals forced by the historical AMO and IPO evolutions.

The historical phase evolution ofAMOand IPOwas better simulated in
thepacemaker experiments compared to theHIST experiments (Fig. S9, Figs.
S10, S11 and S12). Specifically, in the resAMO and resIPO experiments, the
AMO and IPO phases simulated by the MRI-ESM2-0 model showed high
agreement with observations, with correlation coefficients of at least 0.63 for
AMOand0.49 for IPOacross all ensemblemembers (Fig. S9c, d). In contrast,
the HIST experiment exhibited significantly lower correlation coefficients,
ranging from 0.12 to 0.45 (Fig. S9a, b). Conversely, the BCC-CSM2-MR
model produced opposite results, with AMO and IPO phases in the pace-
maker experiments showing even lower correlations than those in the HIST
experiments (Figs. S9 and S12).

Building on this, we analyzed the observed oceanic modes AMO and
IPO in relation toHWCIS andHWCIA from three experiments. Among the
four ensemble members of the resAMO experiment, the first ensemble
member of MRI-ESM2-0 performed best (Fig. 8a–d). It successfully simu-
lated the impact of the positive AMO phase on HWCIS in Europe and its
partial contribution over SNA, as evidenced by close alignment with
observations (1942–2012) (Fig. 8a and Fig. S13a). This further supported
Europe as the region where heatwaves were most strongly modulated by
decadal oceanic variability (Fig. 5). The first MRI-ESM2-0 ensemble
member also captured the enhanced HWCIS over NCA and North Africa

under the positive AMO phase (Fig. 8a and Fig. S13a). For the HIST
experiment, while the first two ensemble members of MRI-ESM2-0 also
simulated the signal of the positiveAMOenhancingHWCIS acrossmultiple
NorthernHemisphere regions, their simulationof themagnitude ofHWCIS
on specific local areaswas less accurate than that in the resAMOexperiment
(Fig. S14a–d and Fig. 8a–d). This result was consistent with the fact that this
member had the highest AMO-phase correlation coefficient (0.76, sig-
nificant at the 95% level) across both the resAMO and HIST simulations
(Fig. S9).

Regarding the resIPO experiment, comparisons with observations
(1942–2012) showed that the simulated relationship between the negative
IPO and HWCIS largely failed to reach statistical significance across most
Northern Hemisphere regions (Fig. 8e–h). However, the second and third
ensemble members of MRI-ESM2-0, which best simulated the IPO phase,
produced the spatially most consistent patterns with observations
(1942–2012) (Fig. S13c and Fig. 8f, g). Other members showed some
resemblance in certain areas but exhibited opposite modes elsewhere
(Fig. 8e, h). Furthermore, the four ensemble members of the HIST experi-
ment largely failed to match the observed patterns (1942–2012)
(Figures S14e–h). Overall, these phenomena indicated that the ensemble
members in the resAMO and resIPO experiments with better-simulated
AMO and IPO phases produced more accurate HWCIS simulations. Since
HWCIA was simulated poorly compared to HWCIS in the CMIP6 models
(Figs. S15 and S16), HWCI due to HWCIS should be focused on in future
research to improve the simulation. Consequently, incorporatingAMOand
IPO forcings improved the agreement between model-simulated and
observed HWCI.

To determine whether this improved agreement arose from physical
mechanisms, we evaluated the capability of both the resAMO and resIPO

b IPO- minus IPO+ 200hPa WAF a AMO+ minus AMO- 200hPa WAF 

AMO IPO

Eastern Asia Europe AMO Northern 
Central Asia  AMO

North Atlantic
Southern IPO North Atlantic

North Africa

 Europe Northern 
Central Asia Eastern China

IPO

c AMO and IPO WAF Path

Northern
North Pacific

Northern 
North America

Southern 
North America

Tropical
North Pacific

North America
Tropical

Eastern ChinaNorth Africa

Fig. 7 | Mechanisms linking decadal HWCI fluctuations to decadal oceanic
variability. a Composite 200 hPa geopotential height (Z200) anomalies and wave
activity fluxes for the positive AMOminus the negative AMOphases for 1942–2021.
The white dots indicate significant correlations at the 95% confidence level (two-
sided P < 0.05), assessed with a random-phase resampling test55. The arrows

represent the pathways of Rossby wave trains linking the positive AMO to Northern
Hemisphere heatwaves, based on T-N wave activity flux54 (see Methods) and as
shown in Fig. S8. b Same as a but for the negative IPOminus the positive IPOphases.
c Schematic of wave activity flux pathways induced by the positive AMO and the
negative IPO.
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experiments to simulate the observed mechanisms linking the positive
AMO and negative IPO phases to Northern Hemisphere heatwaves
(Fig. 9). For the positive AMO phase in the resAMO experiment, the first
and second MRI-ESM2-0 ensemble members demonstrated the highest
skill in replicating the 200 hPa geopotential height anomalies and the
associated Rossby wave propagation pathways identified in observations
(1942–2012) (Fig. 9a, b and Fig. S17a). They accurately captured the wave
flux influence pathways over North Africa (direct southward branch),
Europe, NCA, eastern China (main CGT branch), and SNA (East
Asia–tropical North Pacific branch), including local 200hPa geopotential
height anomalies, the primary circumglobal waveguide, and its two
downstream low-latitude branches (Fig. 9a, b). The third MRI member
captured the spatial coherence of the broad wave flux path but exhibited

deviations in the magnitude and positioning of local geopotential height
anomalies (Fig. 9c). And the BCC-CSM2-MR ensemble member per-
formed poorly in replicating these features (Fig. 9d).

For the negative IPO phase in the resIPO experiment, only the second
MRI member reproduced regional geopotential height anomalies linked to
the observed wave train (1942–2012) (Fig. 9f and Fig. S17b). At the large
scale, this member also best simulated the full CGT wave train–originating
in the North Pacific, extending to SNA, bifurcating into the mid-latitude
Atlantic branch (affecting Europe, NCA, and eastern China) and the sec-
ondary North Africa branch–closely matching observations (1942–2012)
(Fig. 9f and Fig. S17b). The third MRI member partially captured the main
propagation route but failed to resolve the pathway over Eurasia clearly
(Fig. 9g). ThefirstMRI-ESM2-0member and the BCC-CSM2-MRmember

Oceanic Index & HWCI correlation coefficient

a resAMO, AMO, MRI-ESM2-0 #1 b resAMO, AMO, MRI-ESM2-0 #2

c resAMO, AMO, MRI-ESM2-0 #3 d resAMO, AMO, BCC-CSM2-MR #1

e resIPO, IPO, MRI-ESM2-0 #1 f resIPO, IPO, MRI-ESM2-0 #2

g resIPO, IPO, MRI-ESM2-0 #3 h resIPO, IPO, BCC-CSM2-MR #1

Fig. 8 | Simulated decadal HWCIS fluctuations tied to observed decadal oceanic
variability. a–d Correlation coefficients between observed May–September AMO
and the decadal components of HWCIS for 1942–2012 across two models and the
four ensemble members in the resAMO experiment, respectively. Significant

correlations at the 95% confidence level (two-sided P < 0.05), assessed with a
random-phase resampling test55. e–h Same as (a–d) but for observed
May–September IPO in the resIPO experiment.
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exhibited deficiencies in simulating both local impacts and the large-scale
teleconnection pathways (Fig. 9e, h). Additionally, in the resAMO experi-
ment, allMRI-ESM2-0 ensemblemembers reproduced enhanced signals in
regions where the positive AMO exerted greater influence on HWCIS than
the negative IPO (e.g., SNA, North Africa). Similarly, for the resIPO
experiment, the same ensemble members better captured signals in regions
dominated by the negative IPO, exemplified by eastern China. These results
corroborate the distinct dynamical pathways associatedwith the twomodes.
Furthermore, the resAMO experiment better reproduces signals in regions
where the AMO dominates HWCIS, whereas the resIPO experiment more
accurately captures signals in areas primarily influenced by the IPO.

Based on the relationships between decadal HWCIS fluctuations and
oceanic variability, the observed periodic characteristics of decadal oceanic
variability can be utilized to statistically predict near-term decadal

fluctuations in HWCIS. Fourier analysis was used to determine the periodic
decadal oceanic variability. Without taking into account the interannual
fluctuations, thenear-termchanges inHWCIS canbe inferredby combining
the oceanic variability-induced decadal HWCIS fluctuations and the
observed long-term trend (Fig. 10). Using the periodic fluctuations of AMO
and IPO modes, along with their regression relationship with the HWCI
shown in Fig. 3a, the HWCIS was projected to experience down-trending
(purple curve with circles) decadal fluctuations in the coming decade
(Fig. 10). Together with the long-term increasing trend (red line with cir-
cles), theHWCIS increase is expected to slowdown (black curvewith circles)
during the next decade. Although the prediction was not sophisticated, the
results imply that the current accelerated HWCIS increase is expected to
turn slow once the current up-trending decadal oceanic variability swings to
its down-trending phase.

a resAMO, WAF, MRI-ESM2-0 #1

c resAMO, WAF, MRI-ESM2-0 #3

e resIPO, WAF, MRI-ESM2-0 #1

g resIPO, WAF, MRI-ESM2-0 #3

b resAMO, WAF, MRI-ESM2-0 #2

d resAMO, WAF, BCC-CSM2-MR #1

f resIPO, WAF, MRI-ESM2-0 #2

h resIPO, WAF, BCC-CSM2-MR #1

Fig. 9 | Mechanisms linking simulated decadal HWCI fluctuations to decadal
oceanic variability. a–d Composite 200 hPa geopotential height (Z200) anomalies
and wave activity fluxes for the positive AMO minus the negative AMO phases
during 1942–2012 across two models and the four ensemble members in the

resAMO experiment, respectively. Significant correlations at the 95% confidence
level (two-sidedP < 0.05), assessedwith a random-phase resampling test55. e–h Same
as (a–d) but for the negative IPO minus the positive IPO phases in the resIPO
experiment.
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Discussion
This study aided in our understanding of the factors driving heatwave
escalations in recent decades. We found that although HWCIS governed
heatwave fluctuations across the Northern Hemisphere land regions,
HWCIA played a significant role during 2013–2021, both temporally and
spatially. In addition to the long-term increasing trends in heatwaves caused
by anthropogenic greenhouse gas emissions44,45, we demonstrated that the
decadal oceanic variability regulated the heatwave fluctuations over land in
the Northern Hemisphere. The positive AMO and negative IPO influence
the increase in heatwaves across different regions of the Northern Hemi-
sphere through distinct Rossby wave trains, and this teleconnection pattern
explains the spatial heterogeneity of heatwaves induced by oceanic forcing.
Furthermore, pacemaker experiments verify that incorporating both AMO
and IPO forcing improves model simulations of Northern Hemisphere
heatwaves. Specifically, the resAMOexperiment better reproduces signals in
regions strongly influenced by the AMO, while the resIPO experiment
performs better in regions dominated by the IPO.

Meanwhile, the study has some shortcomings. For example, the AMO
and IPO exhibit a degree of multicollinearity46,47, which may affect the
interpretability of multiple linear regression results and the reliability of the
regression model48. Although we further isolated the AMO and IPO for
individual analysis using pacemaker experiments, these experiments only
included four model members, three of which belong to the MRI-ESM2-0
model. This constrains the robustness of the overall model results and
introduces substantial uncertainty. Future research should employ
improved statistical methods and incorporate more model members to
conduct a more in-depth analysis of these issues.

Previous research highlighted the role of oceanic variability-induced
global mean temperature fluctuations in accelerating or decelerating global
warming on decadal timescales8–11. Expanding on this, this study further
revealed that the magnitudes of oceanic variability-induced decadal heat-
wave fluctuations could be comparable to those of the human-induced
background heatwave increase during the decadal period. For example, an
empirical prediction can be made using the periodic oceanic variability-
inducedheatwavefluctuations and the long-term trend in observations. The
results indicate that the current heatwave escalations are projected to slow
down in the coming decades once the decadal oceanic variability changes its
phase (Fig. 10).

Ocean modulation-induced heatwave fluctuations will thus sub-
stantially exaggerate (e.g., 2013–2021) ormask the human-induced increase
in heatwaves at decadal timescales, depending on the phase of the decadal
oceanic variability. Ocean modulation-induced heatwave fluctuations are
crucial for understanding the observed variations and predicting the near-
term changes in heatwaves. Moreover, the heatwave patterns modulated by
the ocean are critical. While the AMO and IPO regulate the hemispheric
mean decadal oscillations in heatwaves, heatwavesfluctuate in some regions
at odds with the hemispheric mean or even in opposing trends. Therefore,

whether the ocean alsomodulates thedeclining trends of regional heatwaves
requires further investigation.

Methods
Observational data
The observational hourly 2m air temperature data were based on the
European Centre for Medium-Range Weather Forecasts (ECMWF) Rea-
nalysis version 5 (ERA5) reanalysis data provided by the ECMWF in 1° × 1°
grids from 1940 to the present49 (finally updated in 2023-10-13). The
observational SST dataset was the National Oceanic and Atmospheric
Administration (NOAA) Extended Reconstruction SSTs version 5
(ERSSTv5) provided by theNOAAPSL, Boulder, Colorado, USA, in 2° × 2°
grids from 1854 to the present50 (downloaded in 2023-10-09).

Numerical experiments
The three experiments and twomodels used in this study are introduced in
Table S1. The three experiments include historical (HIST) simulation from
1850 to 2014, Atlantic (resAMO) and Pacific (resIPO) pacemaker simula-
tions from 1870 to 2014. The two pacemaker experiments from the Global
Monsoons Model Inter-comparison Project (GMMIP)43 of the CMIP635

were used to assess the impact ofAMOand IPOforcingon theheatwaves. In
the experiments, “pacemaker” was set in the AMO domain (0°N–70°N,
70°W–0°W) and the tropical lobe of the IPO domain (20°S–20°N,
175°E–75°W) by restoring the observed historical SST within the domain,
respectively, whereas SST in other ocean regions was freely coupled. The
pacemaker experiments used the same external forcing as the HIST
experiment.Only theBCC-CSM2-MRandMRI-ESM2-0models have all of
the variables needed for our investigation. Therefore, we only examined the
outputs from the two models. In all experiments, there were one ensemble
member for BCC-CSM2-MR and three ensemble members for MRI-
ESM2-0.

Heatwave definition, metrics, and trends
Weidentifyheatwaves fromMay toSeptember in theNorthernHemisphere
(10°N–80°N) that meet three criteria: (i) temperature extreme—the daily
maximum 2m air temperature (Tmax) above the 90th percentile4,18,26,51; (ii)
uncomfortable temperature for humans—above 0 °C; and (iii) persistence
of the extreme event—at least three consecutive days exceed the two
thresholds4,18. Previous studies have revealed an artificial discontinuity in
and out of the base period52. Therefore, we chose all the years of the target
period as the base period to determine the percentile. To enlarge the sample
size for a more robust percentile estimation, the centered 15-day moving
window for each day was used18,51. Thus, the sample size for calculating the
percentile for each day is 84 (years) × 15 (days/year) = 1260 for 1940–2023.
In order to mitigate biases arising from the use of a seasonal running win-
dow, the mean seasonal cycle was removed before calculating the extreme
thresholds53. In addition to heatwave frequency, heatwave cumulative
intensity (HWCI)wasmainly examined in this study.HWCIwas defined as
the cumulative temperature exceedance over the 90th percentile threshold
for heatwave events fromMay to September of each year. Therefore, HWCI
covers not only heatwave frequency but also heatwave intensity and
duration4,18.

Decomposition of HWCI
To analyze the driving factors behind extreme events, such as heatwaves,
which are typically influenced by both background temperature state and
temperature variability38,39, we employed a decomposition-based approach
to quantify their respective contributions.

First, the climatology of the two years before and after each year was
removed from the original temperature data T(year). The decomposition is
defined as follows:

TanoðyearÞ ¼ TðyearÞ � 1
5

X2
i¼�2

Tðyear þ iÞ ð1Þ

Year

H
W

C
I (

o C
)

Oceanic variability-induced decadal fluctuations
Long-term trend

Sum

Prediction of HWCIS using its decadal fluctuations and long-term trend

Fig. 10 | Prediction of HWCIS5 over 2022–2040.Near-term prediction of HWCIS
from 2022 to 2040 by combining the Fourier analysis of the oceanic variability-
induced decadal HWCIS fluctuations (bars in Fig. 3a) and the long-term trend in
observations (red line in Fig. 1a).
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where year (1941 < year < 2022) represents the time step. To avoid the
boundary overestimation effect of this decomposition method, data from
the boundary years (1940, 1941, 2022, and 2023) were excluded to ensure
robustness.

Then, the climatologyof theoriginal temperature dataT(year) fromthe
preceding five years was added back to the Tano(year), resulting in the
temperature variability component, Tvar(year).

TvarðyearÞ ¼
1
5

X1944
i¼1940

TðiÞ þ TanoðyearÞ ð2Þ

After decomposing the temperature data, the HWCIA driven by
temperature variability was calculated, and the HWCIS driven by
background temperature state was calculated using the following
formula:

HWCIA ¼ f ðTvarðtÞÞ ð3Þ

HWCIS ¼ HWCI �HWCIA ð4Þ

CEEMDAN
The complete ensemble empiricalmode decompositionwith adaptive noise
(CEEMDAN)37 was used to decompose the variability of time series into
various components at distinct frequencies called intrinsic mode functions
(IMFs). Thefirst IMF, IMF1, has the highest frequency,whereas the last IMF
has the lowest. In this study, the time series of HWCI and heatwave fre-
quency over the Northern Hemisphere land from 1940 to 2023 were first
detrended, followed by CEEMDAN decomposition, which resulted in six
IMFs. The interannual and decadal components in Fig. 1a were the IMF1,
and the sum of IMF2, IMF3, IMF4, IMF5, and IMF6, respectively. The
decadal components of oceanic modes were also the sum of IMFs 2
through 6.

T-N wave activity flux
The propagation of stationary Rossby wave packets is assessed using the
T-NWave Activity Flux (WAF) formula54. This method diagnoses Rossby
wave propagation independent of wave phase and parallel to the local group
velocity under the geostrophic approximation. The formulas are as follows:

ψ0 ¼ g
f :Z0 ð5Þ

W ¼ p cos ϕ
2jUj

U
a2cos2ϕ

∂ψ0

∂λ

� �2
� ψ0 ∂2ψ0

∂λ2

� �
þ V

a2 cosϕ
∂ψ0

∂λ
∂ψ0

∂ϕ � ψ0 ∂2ψ0

∂λ∂ϕ

h i
U

a2 cos ϕ
∂ψ0

∂λ
∂ψ0

∂ϕ � ψ0 ∂2ψ0

∂λ∂ϕ

h i
þ V

a2
∂ψ0

∂ϕ

� �2
� ψ0 ∂2ψ0

∂ϕ2

� �
8>>><
>>>:

9>>>=
>>>;
ð6Þ

where p is the normalized pressure after dividing by 1000 hPa. U and V
represent the basic flow in the zonal andmeridional directions, respectively.
|U | = (u, v) and ψ0 are the horizontal wind and the anomalous geostrophic
streamfunction. ϕ and λ represent latitude and longitude, respectively. a
stands for the Earth’s radius. The prime symbol indicates the anomaly after
removing the zonal mean value.

Linear trend
The linear trend was determined using linear regression based on the least
squares method. The statistically significant linear trend threshold at the
95% confidence level (P < 0.05) is determined from the probability dis-
tribution functions of 1000 instances of the linear trend between two red
noise samples with the same autoregressive characteristics as the original
signals55.

Multiple linear regression
Multiple linear regression was used to detect the relationships between
the decadal components of the HWCI and oceanic variability. As shown
in Fig. 3a, the independent variable was the decadal component of the
HWCI averaged over the Northern Hemisphere land, and the dependent
variables were the AMO and IPO. The statistically significant multiple
linear regression threshold at the 95% confidence level (P < 0.05) is
determined from the probability distribution functions of 1000 instances
of the multiple linear regression among multiple red noise samples with
the same autoregressive characteristics as the original signals55. The
relative contribution of each term to the regressed independent variable
(yreg) was calculated using Equation (14) in ref. 56. The formula is as
follows:

Ri ¼
1
m

Xm
i¼1

T2
i =

Xn
i¼1

T2
i

 !" #
ð7Þ

wherem is the length of data series,Ti ¼ a1X1; a2X2; :::; anXn, the terms in
the equations.

Correlation coefficient
The Pearson sample linear cross-correlation method was used to calculate
the correlation coefficients. The statistically significant correlation threshold
at the 95% confidence level (P < 0.05) is determined from the probability
distribution functions of 1000 instances of the correlation coefficient
between two red noise samples with the same autoregressive characteristics
as the original signals55.

Data availability
ERA5 data are available at https://cds.climate.copernicus.eu/cdsapp#
!/dataset/reanalysis-era5-single-levels?tab=form. ERSSTv5 is available at
https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html. The outputs of
the CMIP6 experiments are available at https://esgf-node.llnl.gov/search/
cmip6/.

Code availability
The codes for data processing and plotting are available at Zenodo, https://
zenodo.org/records/16012371.
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