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SARS-CoV-2 has transformed our understanding of respiratory disease transmission, particularly
through aerosols. This systematic review examines studies published up to October 2, 2024 and
focused on filter-based sampling methods reviewing key sampling and molecular diagnostic
parameters to characterise airborne SARS-CoV-2 RNA from filters. A total of 84 studies were
reviewed, yielding 104 datasets from different environments, including 70 studies indoors, 8 outdoors
and 6 sampling both indoors and outdoors. The findings suggest that sampling volume, type of filter
and storage conditions after sampling affect the detection positivity rate of SARS-CoV-2 genetic
material in aerosols sampled near infected individuals indoors. No sampling or analytical parameters
were identified to be associated with detection or quantification. Further experiments are
recommended to ascertain the optimal methodological parameters for characterising SARS-COV-2
RNA in aerosols for environmental surveillance, including early warning systems, non-intrusive
environmental monitoring, managing COVID-19 outbreaks and characterising viral airborne

transmission.

SARS-CoV-2, responsible of the COVID-19 pandemic, has changed the
conception of the routes of transmission of respiratory diseases'. Among the
different ways virus can be transmitted, the airborne route has proven to be
particularly important, especially through aerosols—tiny particles that can
carry the virus and stay suspended in the air for long periods, especially in
enclosed or poorly ventilated spaces™.

The emergence of SARS-CoV-2 greatly accelerated the use of mole-
cular biology techniques for detecting and quantifying viral genetic material
in aerosols’. Nonetheless, despite the rapid accumulation of data, standar-
dized protocols for airborne virus sampling and characterization have not
yet been established*, neither the optimal parameters leading to detection
and quantification of the virus.

A comprehensive review by Pan et al.” -pre-COVID-19 pandemic -
evaluated the aerosol sampling efficiency and virus viability for various
sampling techniques, including filters, impactors, cyclones, liquid impac-
tors, electrostatic precipitators, and water-based condensers. They con-
cluded that no single method could efficiently sample aerosols across a

broad size range (10 nm to >10 pm) while preserving virus viability’. Whilst
selecting a sampling method that preserves viability is crucial to evaluate the
infectivity of the virus® it is not always a requirement. For some environ-
mental surveillance applications, there is no need to collect viable virus, but
to ascertain the presence or abundance of the virus in the environment.
These applications include early warning systems, detection of the virus in
environments with limited clinical surveillance, monitoring viral circulation
in the environment’ or identification of virus free spaces to help outbreak
management'’.

Despite the different available options for aerosol sampling, filter based
methods have been primarily used to detect and quantify SARS-CoV-2 RNA
concentrations in the literature™''. These include through direct filtration,
where particles are captured by interception by forcing the airflow through a
porous medium (filter)'>". It also includes the use of filters to capture particles
via other physical mechanisms such as inertial impaction'*", diffusion'”, and
electrostatic attraction”. Pan et al.” identified that filtration is effective for
collecting aerosols ranging from 20 nm to 10 um or larger, making it one of
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the most promising methods for virus detection and quantification in air.
Other samplers, such as impactors and cyclones, have lower collection
efficiency’, but some incorporate filters in one of their stages, such as the
multistage cyclone developed by the National Institute for Occupational
Safety and Health (NIOSH)"*° or the Sioutas cascade impactor””.

Data reliability for detecting and quantifying SARS-CoV-2 genetic
material in aerosols presents several technical challenges, including varia-
bility in aerosol sampling efficiency, preservation of sample integrity during
collection and storage, efficiency of extraction of genetic material from
filters, and the sensitivity of molecular methods to detect small amounts of
genetic material’. These challenges underscore the need for standardized
protocols that allow for data integration across studies. Given the com-
plexity on the sample collection, preservation and analysis, key parameters
leading to robustness of the methods should be identified to ensure the
utility and comparability of collected data.

To the best of our knowledge, eight reviews have been published
addressing the sampling and analytical parameters of SARS-CoV-2 in air or
aerosols. Birgand et al."® conducted a systematic review of 24 studies on air
contamination in hospital environments published until October 27, 2020,
focusing on RNA detection and infectivity'®, although the sampling para-
meters and molecular analysis were not very detailed. Rahmani and col-
leagues (2020) presented a mini-review covering air detection methods for
coronaviruses, based on 11 studies (9 using filter-based approaches),
highlighting the need for further research to assess the effectiveness of these
methods for detecting SARS-CoV-2 in the air'”’. However, they did not
report the molecular analysis methods, nor data on the quantification and
viability of the coronaviruses. Robotto et al.*’ reported a narrative review
describing the methodological challenges and debates surrounding SARS-
CoV-2 air sampling™, although it was a preliminary approximation. Borges
et al.”' reviewed air sampling methods for detecting SARS-CoV-2 in indoor
environments, drawing on data from 25 studies (15 using filter-based
approaches) published until October, 2020”, but they did not report the
molecular analysis methods. Bhardwaj and colleagues (2021) evaluated the
methods to characterise pathogenic airborne viruses, including 5 studies
focused on SARS-CoV-2 (all using filter-based approaches)". Cherrie and

colleagues (2021) evaluated the presence of SARS-CoV-2 RNA in air and
assessed the quality of the methods used in 35 studies (24 using filter-based
approaches) published until December 24, 2020%, although the sampling
parameters and molecular analysis were not very detailed, nor did they
mention viral viability. Dinoi et al.® published a review comparing indoor
and outdoor environments for detecting and quantifying SARS-CoV-2
RNA in airborne samples, based on 78 articles (53 using filter-based
approaches) published until August 31, 2021°, although the sampling
parameters and molecular analysis were not very detailed. Silva and col-
leagues (2022) compiled aerosol sampling methods for detecting SARS-
CoV-2 in air, based on 76 studies (48 using filter-based approaches) con-
ducted in indoor and outdoor environments published until December 20,
2021% but they did not report the methodology for molecular analysis or the
genetic material quantification. Finally, Dias et al.” described methods for
evaluating exposure to airborne viruses in indoor environments, including
21 studies (9 using filter-based approaches) on SARS-CoV-2 published until
June 30, 2023”, but results of detection, quantification, and viability of the
studies were not reported.

Therefore, to date, there is no comprehensive review assessing the
sampling factors leading to optimal collection of SARS-CoV-2 genetic
material in aerosols using filter-based approaches. Neither exists a review
focused on the molecular analysis, along with reporting results on detection,
quantification, and viability, with a temporal scope extending beyond
mid-2023.

This systematic review aims to examine how sampling and analytical
parameters are related to detection, positivity rate and quantification of
SARS-CoV-2 genetic material in aerosols collected using filter-based
approaches. The review will include studies focused on both indoor and
outdoor environments published from the onset of COVID-19 to Octo-
ber 2, 2024.

Results

A total 0f 499 articles (263 from Web of Science and 236 from PubMed) with
potential interest were identified in the initial search. Figure 1 shows the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses
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Fig. 1 | PRISMA flow diagram for the identification, screening, and evaluation of records included in this systematic review, following PRISMA guidelines™.
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PRISMA)* flow diagram followed to identify and select the reviewed stu-
dies. These studies were combined into a single database, and duplicates
were removed (1 = 155). After removal of duplicates, an initial screening of
titles and abstracts was performed on 344 articles, resulting in the exclusion
of 278. Additionally, 88 articles were identified using the snowballing
method. In the second phase, the full text of 154 articles was reviewed, with
70 excluded. Ultimately, 84 articles were included in this systematic review,
six of which provided data on both indoor and outdoor sampling.

The main characteristics of the studies included in this systematic
review are summarized in Table 1, while Table 2 provides details on sam-
pling parameters, analytical methods, and key results. The 84 studies
included span 27 countries, with the majority conducted in Europe (36%),
Asia (34%), and North America (24%) (Supplementary Fig. 1). USA, Italy,
China, Spain and Iran are the top countries where these studies were con-
ducted, whilst no studies were identified from Africa or Oceania. Of the
84 studies included in this systematic review, 30% were published in 2020,
34% in 2021, 26% in 2022, 8% in 2023, and 2% in 2024, showing that most of
the publications are from the first two years, with a stark production
decrease during the last two years.

Most of the studies (61/84 studies, 73%) collected samples in healthcare
settings, primarily in hospitals, especially in areas dedicated to COVID-19
patients such as intensive care units (ICU), COVID-19 wards, isolation
rooms, emergency rooms, patient rooms, medical units, air infection iso-
lation wards, corridors, cafeterias, and medical staff workstations. Six studies
(7%) collected samples in sociosanitary settings, including long-term care
facilities and elderly care homes. In eight studies (10%) samples were col-
lected in transportation settings. Fifteen studies (18%) included aerosol
samples from other indoor environments, including homes with COVID-
19 patients (8 studies, 10%). Three studies (4%) collected samples in edu-
cational settings. Other minor locations included samples collected from
shopping centres, food markets, offices, pharmacies, banks, hair salons,
prisons, and a mink farm (Table 1).

Regarding outdoors spaces, samples were taken in 14 studies (17%)
(Table 1) across different microenvironments such as urban areas (9),
healthcare settings (5), industrial areas (3), public places (2), rural areas (1),
and a livestock farm (1). Sampling points were primarily located on side-
walks, bus stations, supermarkets, shopping malls, residential areas, uni-
versity campuses, and train stations. Additionally, samples were collected in
areas near hospitals, such as outdoor terraces, main entrances, and gardens.
One study collected samples on a mink farm and its surroundings.

Detection, positivity, quantification and viability

SARS-CoV-2 genetic material was detected in a significant number of
studies conducted in indoor environments, with 72% (55/76) the datasets
showing positive results in at least one sample™*'”**”° (Table 3, Supple-
mentary Fig. 2). Detection of SARS-CoV-2 RNA was found in 74% datasets
from healthcare™***, 83% from sociosanitary”'****, and 63% from trans-
port settings'*"***. As regards other indoors, detection was 67% in several
datasets collected from homes'*********%”°  educational settings’, commer-
cial spaces” and farms’®. In outdoor locations, 64% (9/14) of the datasets
were positive” ™ (Table 3; Fig. 2). No statistical differences were found as
regards detection rate according to type of environment.

The frequency distribution of positivity rates (Fig. 3 and Table 2),
understood as the ratio of filters where SARS-CoV-2 is detected com-
pared to the total amount of filters collected in a setting, was calculated in
74 datasets (both indoor and outdoor) that detected SARS-CoV-2
genetic material in at least one sample in all environments™>'*""**",
Figure 3 shows the positivity rate based on the number of samples col-
lected in each study, where SARS-CoV-2 genetic material was detected in
atleast one sample, segmented by sampling environment. Figure 3 shows
that 44% of datasets had a positivity rate between 5 and 25% of collected
Samp1e85,26,32735,/\0,'13,"\4,1(1718,51,53,56,57,5‘),62,()3,65,67,68,72,73,75,7(1,79. A hlgher pOSlthlty
rate (25-50%) was observed in 19% datasets™?*?1124950:5260-6270.74
Likewise, 17% of the datasets reported a positivity rate of
50-75% > 4043900 OTILTIN T gw positivity rate ( < 5%) was found in 12%

of the datasets™**%*>*%7! '\whereas positivity rates > 75% were found
in only 8% of datasets, all from indoor environments'*'”*”*, Datasets
collected in healthcare settings showed a large variability of positivity
rates (1-100%). In contrast, the positivity rate of outdoor datasets ranged
between 6 and 63% (Fig. 3, Table 2).

According to the meta-analysis, the pooled proportion of SARS-CoV-
2-positive samples on air filters (Fig. 4, Supplementary Fig. 3, Supplemen-
tary Fig. 4, Supplementary Table 1) was 15% (95% CI: 11-20%), ranging
14% (95% CI: 9-19%) in healthcare settings to 24% (95% CI: 3-53%) in
transport settings. Statistically significant heterogeneity was observed across
studies (I = 93.03%; p < 0.001), confirmed by the forest plot (Fig. 4). Indi-
vidual detection rates ranged from 0% to 100%, reflecting the diversity of
sampling settings and methodologies across the reviewed studies.

According to the results of the funnel plot (Supplementary Fig. 5) and
confirmed using the Egger test (p-value < 0.001), publication bias could not
be ruled out. The sensitivity analysis yielded a combined proportion
between 0.15 and 0.16 with a percentage of heterogeneity between 92.52%
and 93.10%, thus demonstrating robustness in the results.

The meta-regressions analysis identify that a few variables were
statistically significantly associated with the variability in the detected
proportions. Specifically, the type of environment (Other indoor vs.
Healthcare, p-value = 0.018), sampling volume (p-value < 0.001), the use
of filters other than PTFE (excludes gelatine, p-value =0.033), certain
storage conditions, such as storage at 4 °C (p-value < 0.001), and analysis
within a few hours of collection (p-value =0.001), showed statistically
significant associations.

However, most of the parameters evaluated—including air flow rate
and time, gelatin filter type, and the gene analysed—did not statistically
significantly explain the observed variability. I* values remained high in
several models (up to 57.93%), indicating that a significant portion of the
heterogeneity remains unexplained by the covariates analysed (Table 5).
The distribution of viral concentrations in aerosols collected in filters was
assessed in 35 datasets (Fig. 5, Table 2). Very low concentrations (< 10
copies/m®) were measured in 18% datasets™***>**">%7274737250 A third of
datasets (35%) had concentrations in the range of 10-100 copies/m
range”! V67 0S6BSLEEI2ATT  Higher concentrations were found in 16%
datasets (100-1000 copies/m’)>'*>***6%5737¢ " and  16% of datasets
(1000-10,000 copies/m?)!*!7#6:484954263863737¢ " Qnly 9% datasets had con-
centration in the range of 10,000-100,000 copies/m?>*'**¢#*>%36355 ‘and 6%
datasets had a viral load >100,000 copies/m*****>****” (Fig, 5, Table 2). All
sampling environments showed a large variability of viral concentrations.
The maximum viral load found in outdoor and transport settings was in the
range 1000-10,000 copies/m®. The maximum viral load reported in
healthcare, sociosanitary and other indoor settings was considerably higher
(> 100,000 copies/m?).

Only 29 datasets quantified concentrations in
environments”'*!7#0-5861-636870-7678-81 '35 q 8 in outdoor locations
Whist no difference was observed in terms of detection or positivity
among indoor or outdoor samples, the median concentration of SARS-
CoV-2 RNA was statistically significantly higher (p-value <0.05) in
indOOrSS,10‘17,46730,54758‘61763‘68,70’72776;9)80 than OutdOOI‘S (Table 3)

Most of the datasets were from studies that conducted part or all of
their sampling near diagnosed COVID-19 patients (67/90 datasets, 74% of
studies)'*!70 A HOAEOTERAN0  of which 72% detected the presence of
SARS-CoV-2 RNA in at least one sample'®'"**7** 6455575 and 36%
quantified the viral load'®"7****¢1=*77 T the remaining studies where
sampling was not conducted near COVID-19 patients (23/90 datasets,
269)>* 8400 BICELI0 GARS-CoV-2 genetic material was identified in 16
datasets (70%)>**7***"*! and quantified in 11 (48%)>'****"**" (Table 3).
The results showed a significant association between sampling near
COVID-19 patients and quantifying a high viral load of SARS-CoV-2 in air
samples (p-value < 0.05) (Table 3).

Many studies conducted in outdoor settings provided concentrations
in copies/m® of air”*”*"**" (Table 3). Some others, however, reported con-
centrations in genomic units/Total Suspended Particulates™, ng/uL of

indoor
73-76,78-81
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(CO), PM10,

PM2.5,

temperature,

etc.)

Positivity rate refers to the percentage of filters where genetic material was detected compared to the total number of filters collected

*Additionally, other measurement principles apart from filters are applied

**Data calculated from the reported flow rate, volume, and sampling time

51-53

sample’’ or copies/volume of sample’ ™, which preclude to compare their
concentrations with other studies. One study indicated that two or three
positive targets suggest high viral abundance in aerosol samples, while one
positive target indicated low abundance of viral load in the air®.

The results of the meta-analysis show that the pooled mean con-
centration of airborne SARS-CoV-2 genetic material quantified on filters
was 48.20 copies/m® (95% CI: -61.39 to 157.80). Although this represents a
mean value, the confidence interval includes negative values that are not
physically plausible, reflecting high imprecision in the pooled estimate. This
imprecision is due to high variability between studies and the low weight of
those with extreme values. Moderate heterogeneity was observed between
studies (I=60.9%), which was found to be statistically significant
(p=0.009), and was confirmed by the forest plot (Supplementary Fig. 6).
The individually reported mean concentrations varied considerably, ran-
ging from 4.8 to 1.50 x 10" copies/m?>, reflecting the wide variability in the
settings, sampling techniques, and quantification methods used in the
included studies. By removing some outliers, the combined mean con-
centration and percentage of heterogeneity remained virtually the same
(Supplementary Table 2). According to results from the Funnel plots
(Supplementary Fig. 7), publication bias could not be ruled out. The sen-
sitivity analysis yielded a combined mean concentration between 45.7 and
4,360 copies/m® with a percentage of heterogeneity between 42.1% and
64.0%, which showed high variability in the results and a lack of robustness
in the overall estimate.

The viability of SARS-CoV-2 collected in filters (Table 2) was evaluated
in 16 studies?*3*¥741:53-556063-65769799.100 ' ¢ \which 6 were able to infect cells
with the virus, showing viability of the SARS-CoV-2 after collection on
filters from aerosol samples™********'°_ In one study, cytopathic effects were
observed in an active sample®™, while another reported the detection of viable
virus after 16 h of sampling®’. Additionally, one study successfully estab-
lished a positive viral culture in one of the three samples analysed”, and
another found viable virus in cells exposed to aerosol collected from 3 out of
18 samples™. Finally, viable virus was also identified in aerosol samples
collected using devices that do not rely on filter-based collection”'”.

Sampling parameters

The most used samplers in the studies were the multistage cyclone
developed by the National Institute for Occupational Safety and Health
(NIOSH)30,32,37,38,48,55,56,65,70,84,85,88,89,99,100 and ﬂle MD8 air Sampler
(Sartoriug)?**6404254607283879093% - Gome  studies used a bespoken filter
sampling collection system in conjunction with other sampling methods
that do not include the use of filters, such as cyclones. No difference was
observed according to the use of different sampling instruments as regards
frequency of detection, or viral load quantified.

Of the 84 studies included in this systematic review, 3 did not clearly
report the airflow during sampling**"”, and another study provided the
airflow of the ventilation ducts but did not use sampling equipment*'. Among
the datasets, 53% (58/110) employed a flow rate of less than
10 L/min](),l7,26,27,31F_32,37,3‘),43,"\5,'16,"]8,‘19,52753,63771,7(1,84,85,88,89,93,97,‘)‘),]O()’ 37% (41/1 10)
used a ﬂOW rate between 10 and 100 L/min5,25,28,29,3l,33,33,36,40,42,47,50,53,54,()0—()2,66,7l,72,
THEIEGEIIAIIISIONIONG “and 10% (11/110) used flow rates greater than
100 L/minZiB1,"]3,56,59,72,8],82,94,101.

Among the included studies, sampling time was not clearly reported
in three studies”"”. Among the datasets, 26% (24/92) conducted
Sampllng for Only a feW minutesl7,26,29,32,3-1,36,40,—12,—18,53755,59,6(),64,72,83,87,‘)0793,96,98,
while a larger portion, 46% (42/92), collected samples over several hours'”
25,28,30,31,35,37-39,45,46,49,50,56,58,61,63-68,70-74,76,82,84-86,88,89,93,95,97,99-102,1 011. Anot}ler group,
representing 18% (17/92), performed 24 h sampling>'***%**#73609717277-81,
19419 "and a limited subset, 10% (9/92), extended their sampling beyond
24 h4-1,52,56,57,62,72,75,76,]03.

Regarding the sampled air volume, 34% (34/101) conducted air sam-
phng Wlﬂ‘l a Volume Ofup to 1 m3 17,26,29-32,36,37,40,45,48,49,53-56,58,60,64,66,67,70,72,83,87,89-92,
%719 while 36% (36/101) collected between 1 and 10m® of air

10,28,31,34,35,38,39,42,43,46,49,50,53,56,59,61,63-66,68,71-74,76,78,79,84-86,88,93,95,101 ,l()2. AnOther 229%

(22/101) performed air sampling with volumes between 10 and
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Table 3| Relationship between sampling parameters with the detection and quantification in air of SARS-CoV-2 genetic material

in all datasets (N = 104 datasets from 84 studies)

Detection® P-value Viral load (copies/ m°) P-value
Environments 74/104* 0.764' 290 (19 -6876), n=35 0.314°
Healthcare 45/61 215 (26 —21,000),n =18
Socio-health 5/6 6016 (3029-7890),n=3
Transport 5/8 2558 (3526-1587), n =2
Other indoor 10/15 2022 (6714-105),n=6
Outdoor 9/14 15(8-222),n=6
Indoor vs Outdoor 64/90** 0.5362 290 (19 - 6876), n =35 0.040°
Indoor 55/76 616 (28 - 8571), n=29
Outdoor 9/14 15(8-222),n=6
Sampling near patients 64/90** 0.820' 290 (19 -8571),n=35 0.019°
Yes 34/49 6010 (286-65,699), n =15
Some, not all 14/18 55 (25 -3450),n=9
No 16/23 17 (8-272),n=11

SARS-CoV-2 concentrations reported as the median (IQR: 25th percentile-75th percentile).
“Number of settings with detection/Number of total settings.

"Fisher’s Exact Test; Chi-Square Test; *Kruskal-Wallis Test; “Mann-Whitney U Test.
*Environments Sampled (n = 104 datasets from 84 studies).

**Indoor and outdoor datasets (90 datasets from 84 studies; i.e. 6 studies include both indoor and outdoor datasets).

60
Detection

No detection

40

Number of studies

20

Socio-health
settings

Healthcare
settings

Transport
settings

Other indoor
settings

Outdoor
settings

Fig. 2 | Number of studies reporting SARS-CoV-2 genetic material detection and
non-detection across different sampling environments.

100 m3 3‘25,27,33,47,32‘56,37,62‘64,69,71,72,74777,79,80,82,101,105) and a Sma]ler Subset, 9% (9/
101), sampled air volumes exceeding 100 m* ***>7>7- 11019 ‘Eour studies
did not clearly report the sampling volume*"***"*,

No significant associations were identified between airflow rate, sam-
pling volume, or sampling time and the detection or quantification of SARS-
CoV-2 in samples collected in air near individuals infected with COVID-19
(Table 4). However, according to the meta-regression analysis, a larger
sampling volume was associated with a higher positivity rate (Table 5).

Different materials were used in the filters for sampling. In 10 studies, two
or more types of filters were used for the sampling'®"*>**%7!7>">7%% Teflon or
polytetrafluoroethylene (PTFE) filters were the most common, used in
33 Studles 10,17,26,28,30,33,35,37,38,43,48,49,58,65-73,76,79,80,84-86,88,89,93,99,1 UU. Gelatlne ﬁlters were
used m 27 Studie829,36,37,40,42,43,50,53757,60,63,64,72,74,83,87,907‘)3,96798,]02) arld quartZ ﬁlters ln
12 studies™'*¥7>77$08LI0L103-1% "The remaining materials were less common:

glass fibre™7 7757 electret filters™**, cellulose™”?, HEPA", polyurethane
foam (PUF)””, membrane™”, polycarbonate”**”"””, aluminium foils®,
polyvinylidene fluoride (PVDF)*', polyvinyl chloride (PVC)*, and polyester™.
In one study, a surgical face mask was used as a sample filter. In five of the
studies, the material of the filters was not specified”*****' (Table 2).

No significant association was observed between the type of filter
material used in sampling and the results of SARS-CoV-2 RNA detection
and quantification in samples collected in air near COVID-19 infected
individuals (Table 4). On the other hand, those studies that used filters other
than PTFE or gelatine reported a higher positivity rate according to the
meta-regression (Table 5).

Nineteen studies reported transporting samples to the laboratory
under cold conditions: twelve studies at 4 °C?02533:3565-677275768486 ' fiye with
ice’*"*¥ and two with dry ice’*”.

Some studies analysed the samples immediately upon arrival at the
laboratory*>*>"7#1 within 6 h*******, within 24 hours'***, or within
72 hours***®, Others pre-treated the samples prior to storage at
-80 °C!7HINGIOTLELEILILYT - Other studies directly stored the samples
at _80 ocl3,33,34,38,52,58,76,81,88,90,93,95,987100, _700(:2()) _300(:35’ _250cl()l,103)
_200C5,"|3,'16,'1T,78781LI05) or 4 oC"H,bE,fJS.

Twenty-five studies did not mention the conditions of preservation of the
Sample dllrlng transport and Storagez7,30,31‘36,39,40‘44,48,49,31,53736,5976l,68,69,73,77,83,87,89,104
(Table 2).

No significant differences were found regarding the storage of samples
and the results of SARS-CoV-2 RNA detection and quantification collected
in air near individuals infected with COVID-19 (Table 4). However, the
results of the meta-regression identified that those studies that stored the
samples at 4 °C or those which analysed the samples within hours reported
higher positivity rates (Table 5). The factor that increased the highest the
positivity rate was storing the samples at 4°C.

Some studies gathered data on temperature
relative humidity?®*%#47#7277890190 - concentrations of particulate
matter’>*>*’ aerosol concentrations and size distributions®, and/or
real-time monitoring of particulate matter'”. Other studies also measured
CO,”***, atmospheric pressure”®, irradiance’” and total volatile organic
compounds”. Some outdoor studies obtained meteorological or air
quality data from the nearest monitoring station”**"'**. In two studies,
gravimetric analysis of the filters was also performed’®'* (Table 2).

26,28,33,46,47,49,66,72,77,89,90,100
>
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Fig. 3 | Positivity rates, segmented by sampling

SARS-CoV-2 RNA detection (n=74)
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Fig. 4 | Positivity rates based on the number of samples collected in each study,
where SARS-CoV-2 genetic material was detected in at least one sample, seg-

mented by sampling environment. Forest plots of positivity rates and 95%

confidence intervals of detection of SARS-CoV-2 in aerosol samples collected in (A)

healthcare, (b) sociosanitary settings, (c) other indoors, (d) transport, (e) outdoors.
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Fig. 5 | Distribution of SARS-CoV-2 viral load in air
samples from the studies included in this review,
segmented by sampling environments.
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SARS-CoV-2 viral load range (copies/m?)

Table 4 | Relationship between sampling parameters and molecular analysis methods with the detection and quantification of
SARS-CoV-2 genetic material in aerosols in datasets that collected all their samples near COVID-19 infected people

Sampling parameters in studies with...

Viral concentration (copies/ m®)

Detection No detection P-value Quantification P-value

Air flow sampling (L/min) 9 (4-29.15,n=43 5(3.5-50),n=17  0.882' 5@3.2-15),n=15 8,571 (5251 -126,074), n =15 0.326°
(rho=-0.27)

Volume of sampling 1.2 (0.68 - 1(0.81-1.3,n=16 0.443' 0.8(0.3-3),n=16 126,074 (5627 - 3.9 x 10°,n=16 0.162°
(m® air) 6.6), n =43 (rho=-0.37)
Time of sampling (min) 144 (30 - 180 (20 - 0.179" 210 (90-960),n=17 25,150 (4500 — 145,900), n =17 0.143°

960), n =41 240),n=15 (rho=-0.37)
Type of filter 38/54 16/54 0.3122 6017 (395-106,248),n =13 0.146*
PTFE filter 13/20 7/20 106,248 (4500 - 145,900), n =5
Gelatine filter 12/19 719 6,017 (286 -16,861), n=7
Other type of filter 13/15 2/15 48,n=1
Samples storage 18/30 12/30 0.3602 286 (80-4879),n=7 0.508*
~-80°C 8/13 5/13 53,145 (26,593 - 79,696), n =2
Pretreatment and -80 °C 2/7 5/7 4500,n=1
4°C 2/2 0/2 395 (286 - 3206),n =3
Analysis in hours 4/5 1/5 48,n=1
~-20°C 2/3 1/3 NQ
Target gene 51/73 22/73 0.665° 16,861 (4876 — 145,900), n =14 0.519*
N 22/31 9/31 106,248 (5251 — 145,900), n =7
ORF1 12/20 8/20 7.7x10°(3.9x 10°-

1.2x10"%,n=2

E 12/17 517 16,861 (7929 -1.4x10%,n=4
S 4/4 0/4 48,n=1
UTR 11 01 NQ

SARS-CoV-2 concentrations reported as the median (IQR: 25th percentile-75th percentile).
‘Mann-Whitney U Test; ?Fisher’s Exact Test; 3Spearman’s Correlation; “Kruskal-Wallis Test.
NQ No quantification.

Molecular analysis of SARS-CoV-2 RNA

Incorporating internal controls helps monitor the extraction process and
detect potential inhibitors that may affect downstream analyses. This
practice is crucial for obtaining reliable and reproducible results in envir-
onmental surveillance studies. Despite this, very few studies included an

internal control in their molecular analyses to evaluate the efficiency of
genetic material extraction (10/84, 129%)>'02%#66728010L103.105
Mengovirus was used as the internal control in six studies
with recovery rates ranging from 0.8%" to 58%’. The Infectious Bronchitis
Virus (IBV) was used in two studies, with recovery rates of 20%* and 25%.

5,10,47,80,101,103
>
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Table 5 | Results of bivariate meta-regression models:

association between sampling parameters and molecular
analysis methods with the positivity rate of airborne SARS-
CoV-2 collected on filters

Coefficient (95% SE°  P-value [?
Confidence Interval)
Environments 46.84%
Healthcare Ref.
Socio-health -0.08 (-0.34 0.19) 0.13 0.574
Transport 0.66 (-0.23 1.55) 0.44 0.144
Other indoor 0.28 (0.05, 0.51) 0.11 0.018
Air flow sampling (L/ 2(-9,13) 5 0.696 46.87%
min x 10°%)
Volume of sampling 0.03 (0.01, 0.04) 0.01  <0.001 28.88%
(m? air)
Time of sampling (min  4.29 (-78.4, 69.8) 36.4 0.907 57.93%
x 10)
Type of filter 47.32%
PTFE filter Ref.
Gelatine filter 0.08 (-0.08, 0.23) 0.08 0.340
Other type of filter 0.20 (0.02, 0.39) 0.09 0.033
Samples storage 0%
~-80°C Ref.
Pretreatment -0.05 (-0.25, 0.14) 0.09 0.591
and -80°C
4°C 0.56 (0.16, 0.97) 0.19  0.009
Analysis in hours 0.23(0.10, 0.36) 0.06 0.001
~-20°C 0.10(-0.16, 0.18) 0.08 0.902
Target gene 50.25%
N Ref.
ORF1 0.02 (-0.21, 0.26) 0.11  0.861
E 0.19 (-0.05, 0.44) 0.12 0.112
S 0.08 (-0.36, 0.51) 0.21 0.718
UTR - - -

"SE Standard Error.
“I? Proportion of residual variation due to heterogeneity.

One study employed the 77b fragment of the Equine Arteritis Virus achieving
a 100% recovery rate”. Finally, one study used synthetic SARS-CoV-2
armoured RNA for extraction efficiency, but no recovery rate was reported .

The most frequently targeted regions of the SARS-CoV-2 genome in

: 5,10,25,29,31,37,39,41,46,47,54-56,59,60,63-65,68,73,76-78,84,87,90,93,101,103
the studies were E )

N]7,25,26,28,32,33,38,/\I,"\6,57,()0,63,6(1,70,71,75,77,88792,95,11il,HiZ,lOS N15,10,_§O,38,‘1_3," 7:49,52,53,58,69,71,72,
>

78,79,38,104 26,27,31,33-35,39,65,
, RdR;

and ORFab***>0009748L82849096102 T egq frequently targeted regions included
Sss,al,ﬁz,w,mz’ ORFbmso,k)zms) N3w|9,sx’ ORFI(’Z'”, IPZ“S, IP468, and UTRY. Addi-
tionally, some studies did not clearly specify which gene was targeted in the
molecular analysis techniques™®****%61678865455

No significant association was found between the targeted gene and
the detection or quantification of SARS-CoV-2 RNA in air near indi-
viduals infected with COVID-19 (Table 4). In addition, no clear pattern
about which target gene was best suited to detect and quantify the viral
load was observed among those studies that used several target genes
(Supplementary Table 3). The meta-regression analysis did not show
any differences across target genes either as regards positivity rate
(Table 5).

In quantitative PCR (qPCR) assays, the cycle threshold (Ct) value—the
number of cycles required for the fluorescent signal to cross a predetermined
threshold—is commonly used to determine whether a sample is positive. In

,50,71,72,88,99,100,104

,77,79,83,87,90,95,101,103 5,10,30,38,43,44;:
, N2

most studies reviewed, the criterion for determining a positive sample was
based on Ct Values 10wer than 405,l0,2(),27,30,32,37,38,44,46—43,()2,()5,7l,72,73,80,88,97,1Ol,l()S.
Some studies specified slightly different thresholds to consider a sample
positive, such as Ct below 35°"%1%, 36%, 376775102, 3424238829 393675 4() 8577,
44.257, or 45™,

Two studies considered a sample positive if there was amplification
Another study defined strong positive results (low Ct value, <32) and weak
positive results (high Ct value, >32)”. Finally, one study considered a
sample positive when the two replicate QRT-PCRs resulted in a Ct below
40, or when at least one replicate had a Ct below 38°%. The rest of studies
did not specify the Ct value used to define a positive
sample] 7,25,28,29,33,35,36,3‘)741,43,-15,50752,54,55,59761,64,66,67,70,74,76,77,81,83,85,86,89,91,92,94,95,987100,103‘

Twenty studies reported the limit of detection(LoD) or the limit of
quanti_ﬁcation (LOQ)5,25,30,3'1,3(1,38,50,5] ,53,54,56,58,71,74,80,88,96,1 Ul,](J3,1U5. SOIne Studies
reported the limits in copies per sample volume or reaction™***%?!>»34367450.
§8961011% " ranging from 0.1 copies/uL* to 1,241 copies/mL”. Other studies
reported the LoD using different units: 536 (N1), 443 (N2), and 63 (E)
copies™; 2.18 copies (ORF1ab)™; or 0.04 ng/uL’". Finally, only five studies
provided these limits in viral copies per air volume’*****'*’, ranging from
1.04 copies/m? of air” to 2,200 copies/m’ **,

84,90

Discussion

This systematic literature review compiles studies using filter-based meth-
ods for aerosol collection that report detection and quantification of SARS-
CoV-2 RNA across various indoor and outdoor environments.

It is noteworthy that, while research on the detection of SARS-CoV-2
RNA in aerosols experienced a marked surge in scientific output during the
early stages of the pandemic, it was followed by a progressive decline in
subsequent years. This downtrend coincides in time with the resolution of
key scientific questions. For instance, airborne transmission of SARS-CoV-2
was acknowledged by the WHO on the 23rd of December 2021'"'*. Tt also
coincides with a decrease in research funding for SARS-CoV-2'""" from
the financial year 2022 onwards.

Nonetheless, the body of evidence generated in this short period
deserves to be critically evaluated to identify the sampling and analytical
methodological parameters associated with a high detection and positivity
rate that could guide in the definition of standardized methods to detect
SARS-CoV-2 in aerosols. Likewise, the identified parameters could be useful
to conduct further research of airborne pathogens or developing environ-
mental surveillance systems.

This review has identified 84 studies conducted both outdoor and
indoors, including healthcare, sociosanitary, transport, residential, and
educational settings. Much of the attention of the scientific community
centered in detecting and characterising viral load in aerosol samples col-
lected from healthcare settings (Fig. 2). However, the results of this sys-
tematic review highlight that, despite receiving less attention, SARS-CoV-2
genetic material was detected also in non-healthcare spaces. Moreover, no
statistical differences in detection or positivity rate were observed across all
the settings reviewed (p-value > 0.05) (Table 3; Fig. 2; Supplementary Fig. 2).

Sociosanitary centres, such as elderly care homes, represent a high-risk
environment due to the vulnerability of their residents and the challenges in
implementing strict control measures in these settings'’. Similarly, public
transportation and educational spaces could be critical points due to the
high density of people and the potential for prolonged exposure in areas with
limited ventilation’. However, these microenvironments received less
attention compared to healthcare spaces despite being potentially critical
spaces for viral transmission in public community spaces™’.

Most of the studies (74%) focused on collecting aerosol samples in
locations with known cases of COVID-19. However, SARS-COV-2 could be
present in the air of environments frequented by asymptomatic cases''"'"”.
Very few studies have focused on characterising viral load in environments
where no prior evidence or knowledge of COVID-19-infected individuals
existed to evaluate the prevalence of the virus on those locations. Infor-
mation on the detection rate, positivity rate and concentrations measured in
these locations could shed light on the importance of the silent spread of
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COVID-19 through airborne transmission. This is of relevance since the
presence of asymptomatic cases''' can represent 0.25% of the total popu-
lation, and 40% of COVID-19 cases' . This review found that several studies
detected SARS-CoV-2 RNA even in areas where no prior evidence or
knowledge of COVID-19-infected individuals existed™*******’**'_ This
reinforces the recommendation to characterise viral airborne levels in public
community spaces in future epidemics, with independence of the knowl-
edge of the presence of cases in these environments.

A few studies reporting the detection of SARS-CoV-2 RNA in filters
found positivity rates below 5% in healthcare settings™*******”" or educa-
tional settings’, while others reported positivity rates as high as 100% in
healthcare™, transport'’, and residential settings'’. However, its interpreta-
tion should be cautious, especially in studies with small sample sizes. For
instance, studies with only 1 or 2 samples'**"” are highly susceptible to
variability and may not be representative, potentially yielding inflated
positivity rates if even one sample tests positive. This can introduce bias, as
results may reflect chance or characteristics specific to a small sample®.

The positivity rate - i.e. the percentage of filters where viral load is
detected compared to the total number of filters collected - is an important
metric for assessing the prevalence of SARS-CoV-2 RNA in the environ-
ment surveyed. No differences were observed across different micro-
environments according to the meta-regression analysis.

However, differences were observed in airborne viral load. Median
viral concentrations in aerosol samples collected indoors were 40 times
higher and significantly different (p-value < 0.05) than outdoors (Table 3).
This could be primarily attributed to ventilation'. In outdoor environments,
increased air circulation facilitates the rapid dispersion of the virus'“. In
contrast, indoor environments with limited ventilation lead to aerosol
accumulation contributing to higher viral loads in the air'"”. The finding of
higher viral load indoors than outdoors align with previous studies indi-
cating that poor ventilation is a key determinant in the transmission of
COVID-19". It can also be related to a larger presence of intense sources (i.e.
the number of COVID-19 infected individuals) indoors than outdoors, such
as in healthcare locations'".

On the other hand, no differences were observed as regards detection
and positivity rate in the presence or absence of known cases of COVID-19.
This is consistent with results from Birgand et al."*, who found low positivity
rate in samples collected in various hospital sites where patients were present
at the time of sampling'’. However, there was a stark difference in the
concentrations of SARS-CoV-2 in aerosols, yielding median RNA con-
centrations 350 times higher across the reviewed studies when samples were
collected near COVID-19 patients than when the presence of a case was not
known (Table 3). This might be related to the fact that aerosols that yield
high concentrations were collected in close distance to a patient (<2 m)
yielding higher RNA concentrations' than those sampled at larger dis-
tances. It might be also associated with the fact that samples were collected in
small rooms where patients were isolated”*”’, hence facilitating concentra-
tion of the viral load in a small space. It could also be related to the fact that in
some studies sampling was collected in the presence of several patients, such
as in the ICU*, hence increasing the potential emissions sources of viral
shedding into the air'.

The information reviewed in the present study provides some insights
on the selection of the sampling parameters that enables to capture viral
genetic material of SARS-COV-2 present in aerosols. In this regard, the
results of detection, positivity rate and quantification have been examined as
regards the type of filter used, flowrate, sampling volume, sampling time and
preservation conditions during storage of collected samples.

Filters have been identified as the most effective sampling method for
capturing particles smaller than 10 pm™*, despite presenting some diffi-
culties to maintain viability of the virus due to dehydration during the
filtration process’.

The global analysis of the datasets where sampling was conducted near
individuals infected with COVID-19 reveals that there is no association
between the type of filter and the detection or quantification of SARS-CoV-2
(Table 4). However, using filters different from PTFE or gelatine were more

effective in detecting viral genetic loads, as suggested by the results from the
meta-regression of the positive rates (Table 5). This suggests a preference for
using quartz, HEPA or other type of filters different from Teflon or gelatine
to characterise SARS-CoV-2 RNA concentrations in aerosols. This is con-
sistent with a previous study that compared the sampling collection effi-
ciency of several filters and found no differences between gelatine and
Teflon filters to characterise the influenza virus'"”.

No significant differences on SARS-CoV-2 detection, positivity rate or
quantification according to different sampling flowrates were observed
(Table 4, Table 5). This contrast the findings of Raynor et al.'"®, who
observed that low-flow samplers provide more accurate measurements of
airborne influenza concentrations than high-flow samplers, although the
underlying reasons for this remain unclear'.

No association was observed between the volume and the detection or
load of SARS-CoV-2 in the datasets collected near individuals infected with
COVID-19 (Table 4). However, the meta-regression analysis indicated that
higher volumes increased the positivity rate (Table 5). This is consistent with
the results of Dubey et al.”', which compared air samples collected with three
different volumes—0.09 m®, 1 m? and 1.6 m*>—using the same sampling
duration. Their results showed an increase in positivity rate with larger
sampling volumes, rising from 28.6% with 0.09 m® to 45.2% with 1 m?, and
reaching 54.8% with 1.6 m®. In contrast, studies like Passos et al.”*, which
used very high sampling volumes (up to 120 m?), did not detect SARS-CoV -
2 RNA in filters collected from environments near COVID-19 patients.
Robotto and colleagues (2021) proposed an appropriate range of sampling
volumes in their review, ranging from several hundred litres to tens of cubic
meters”. According to the results on the positivity rate of the current review,
larger sampling volumes would be preferable.

The current results indicate that the sampling time does not have a
direct impact on the detection or quantification of SARS-CoV-2 in the air.
This is supported by the absence of any observed association between
sampling time and the detection, positivity rate or abundance of SARS-
CoV-2 genetic material in datasets where sampling was conducted near
individuals infected with COVID-19 (Table 4, Table 5). In contrast, a study
by Chen et al."” using impingers (instead of filters) reported that the longer
the sampling duration, the lower the viral titers could be recovered'".

No differences were observed in the detection or quantification of
SARS-CoV-2 RNA in air near individuals infected with COVID-19 con-
cerning sample preservation conditions during storage in the reviewed
studies (Table 4). On the other hand, the meta-regression analysis indicated
higher positivity rates for filters stored at 4 °C or analysed within hours after
collection (Table 5). In contrast, Conte et al.'”" suggested that storing filters
at -25°C may be appropriate'”".

A few studies (23%) have examined whether several environmental
Conditi0n526’28’33’46’47’49’32’53’55’66’67’72’77'78’89’90‘100’104’103, SuCh as temperature, rela_
tive humidity, irradiance, and wind could affect detection, positivity and
abundance of SARS-COV -2 collected on aerosol samples®. The low number
of these studies focusing on a specific parameter precluded analysing the
effect of these on airborne SARS-CoV-2 characterisation in this review.

In addition, other variables, such as the density of COVID-19-infected
individuals at the sampling site'"*, their proximity to sampling devices'",
and activities performed by patients during sampling (e.g. talking'”,
singing'”’, coughing'”', or sneezing'*’), can influence the amount of viral
particles released into the air, thus affecting the detection and
quantification*’. These parameters were not accounted for in the analysis,
which is a limitation.

Further studies should evaluate the effect of these factors on the
detection, positivity rate and abundance of viral load in aerosols.

Regarding the molecular analysis of air samples, no association has
been observed between the target genes and detection, positivity rate or
quantification of genetic material extraction (Table 4). A further compar-
ison was conducted on those studies that used several target genes (Table $4)
reaching the same conclusion. Thus, all target genes could be recommended.

Internal controls in the extraction of genetic material are essential to
verify the efficiency of the extraction process. The absence of such
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information compromises the ability to assess the analytical quality of the
reported data'”’. Very few studies employed an internal control standard to
assess recovery efficiency (10/84, 129%)>!**54707350101103103 ywhich represents
a significant limitation in the validation of the results. In fact, some studies
have failed to detect SARS-CoV-2 RNA, even when sampling took place
near individuals infected with COVID-19%""". Of these latter studies, none
included an internal control to assess the efficiency of genetic material
recovery during extraction, making it impossible to rule out that negative
results may have been due to low recovery efficiency. This highlights the
importance of including recovery controls in environmental studies, par-
ticularly when evaluating the presence of the virus in low concentrations or
in high ventilation conditions.

Reporting the LoD and LoQ values is necessary to assess the quality and
reliability of the reported data'*, as information on the analytical sensitivity
is especially critical in environmental studies where viral loads are often near
the detection limit. Only a quarter of the studies have reported the LoD or
LOQ (20/84, 24%)5,25,30,31,36,38,50,5],53,5'1,5(1,58,71,7'1,80,88,96,101,]03,105’ and Only ﬁVe stu-
dies provided these values in terms of RNA per unit of air volume™>****'*,
The lack of LoD and LoQ data hinders the accurate interpretation of viral
detection results in air. Moreover, when results are expressed as genomic
copies per volume of air, it is essential to report LoD and LoQ in terms of
RNA per volume of air”’, rather than by RT-PCR well.

Whilst most studies that report Ct values, use a cutoff of 40, the Ct
threshold ranged between 35 and 45. Typically, a sample is considered
positive when its Ct value is below a threshold of 40, as higher Ct values may
indicate nonspecific signals or reduced assay sensitivity. Therefore, setting a
Ct cutoff of 40 is standard practice in many laboratories to balance sensi-
tivity and specificity in PCR detection. This threshold helps minimize false
positives that could arise from nonspecific amplification at higher Ct values.
Setting the Ct threshold below 40 might imply that some environmental
samples where SARS-CoV-2 RNA might be present, are not considered
positive, becoming a false negative. Low Cts, in the range of 17 and 32 are
typically defined in clinical samples as at these concentrations the virus is
assumed to be infectious'**'*°. Cts higher than those set in clinical samples
are more common in environmental samples as shown in this review.

Standardizing the units used to report viral load in air is crucial for
comparability. While most studies present results as genetic copies per
volume of air (or equivalents), other studies report different units, such as
genetic copies per reaction volume® ™, genomic units per total particles in
suspension’, or nanograms per reaction volume’. This variability com-
plicates comparisons across studies. The homogenization of these metrics
would greatly enhance data interpretation. The recommendation is to
present the concentration (i.e. viral load), as well as the LoD and LoQ, in
terms of genomic copies of RNA per volume of air. This is to account for the
volume of air in which the genetic load has been quantified. Detailed cal-
culations for expressing the results in genomic copies per unit volume of air
are provided in Supplementary Note 1.

The detection of SARS-CoV-2 RNA in air samples emerges as a pro-
mising indicator for understanding viral presence in different environ-
ments, with potential applications for environmental surveillance. The
studies reviewed reveal substantial variability in viral loads across envir-
onments, including healthcare, transport, residential, and outdoor spaces.
Nonetheless, viral load has been detected and quantified in a wide range of
public common spaces. The presence of SARS-CoV-2 RNA in environ-
ments without prior knowledge of infected individuals underscores its
potential as a tool for environmental surveillance™****. This could
include monitoring viruses as early warning systems, which would be useful
to detect clusters or outbreaks of infections’. Early warning could facilitate
reducing the spreading of infectious diseases by allowing public health
officers to implement appropriate preventive measures on a timely
manner'”"*. For instance, some studies using wastewater tracking were
able to detect increases in SARS-CoV-2 RNA in environmental samples
several days prior to clinical surveillance'””. A similar approach could be
conducted with aerosol sampling in frequently used common public indoor
spaces. According to the results of this review, suggested locations for

environmental surveillance could be enclosed main public transport sta-
tions, hospital accident and emergency departments, city libraries, or indoor
markets among other public common spaces.

In line with this application, some studies have recommended
bioaerosol sampling as an early warning system for emergent or novel
viruses. For instance, routine aerosol sampling in live animal markets
combined with metagenomic analysis was suggested as an early warning
screening tool system for novel viruses**'*". Positive aerosol samples could
be followed by swabs in animal or cages, thus helping to back-trace to
specific farms and contributing to controlling the spread of viruses'".

Another application of viral characterisation in aerosol samples could
be to monitor the prevalence and temporal trend of circulation of the virus
in the population in a non-intrusive way’. This could complement the
existing epidemiological surveillance systems*'”, as already suggested
from results of wastewater surveillance systems'*.

The ability to detect genetic material in filters suggests that air sam-
pling could also complement traditional epidemiological methods to
manage COVID-19 outbreaks in residential locations in a non-invasive
manner'******% Tt could have the potential utility of sampling the air in
different locations within a building for identifying areas at risk of spreading
the virus, or virus-free safe spaces. This application was successfully
implemented and helped public health officials to manage and control
COVID-19 outbreaks in several nursing homes and a merchant ship".

Public health containment and preventive measures are based on the
mode of transmission of infectious diseases'”. The detection of viral genetic
material in aerosols could contribute to understanding the possible airborne
transmission of infectious diseases. Accordingly, appropriate preventive
measures to reduce or stop viral airborne transmission, such as ventilation of
indoor spaces'*'”® could be implemented.

Overall, these potential applications highlight the role of detection and
quantification of SARS-CoV-2 RNA from aerosols samples in environ-
mental surveillance. These tools should be developed further to increase the
capabilities for pandemic prevention and surveillance following recom-
mendations of the Pandemic Agreement (Article 4)"*° and consistent with
the International Health Regulations (Article 5)'7.

On the other hand, very few studies have shown positive results for
viral viability in filters™*>***. In line with this, Pan et al.” argued that fil-
tration was not a good sampling method for evaluating viable viruses.
During the filtration process, viruses are exposed to dehydration, which may
inactivate them, and reduce their ability to remain viable’, representing a key
limitation for conducting infectivity studies. Similarly, Tang et al.”* pointed
out that current air sampling technologies do not accurately reproduce the
actual processes associated with human respiratory infection through
inhalation'*, This is because the natural airflow rates during human
exhalation and inhalation differ significantly from the conditions used by
existing sampling techniques. Therefore, studies aiming at collecting aerosol
samples to test viability of the virus should consider alternative sampling
methods, such as cyclones™, or impingers'”. In addition, Chang et al."”’
suggested that prolonged collection of aerosols on liquid samples could not
guarantee viral viability, although it was useful for molecular diagnostics (i.e.
detection and quantification). They suggested collecting samples over a
short period to maximise viral viability'”. Notwithstanding, whilst the
detection of viral RNA in air samples does not necessarily guarantee the
presence of viable viruses, its identification can be an indicator of the pos-
sible existence of viral particles capable of infecting™’.

The characterisation of SARS-CoV-2 RNA load in aerosol samples
highlights the need for a multidisciplinary approach combining aerosol
scientists, microbiologists and epidemiologists (among others) to address
the complexities of studying viral detection in air. The experience gained
during the COVID-19 pandemic through the synergy of these inter-
disciplinary teams should be exploited further to advance the knowledge
and develop environmental surveillance tools for airborne respiratory
viruses relevant for public health.

As the characterisation of viral genetic material in aerosol samples is a
relatively emerging field, the lack of a standardised methodology is
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noticeable. This makes it difficult to respond quickly in a coordinated
manner during outbreaks, as variations in the methods used by different
teams can result in inconsistent or non-comparable data. Establishing
sound and common protocols would allow for better integration of the
information, facilitating both early detection and the implementation of
more effective control measures.

Establishing the optimal sampling and molecular RNA analysis con-
ditions is also essential to maximise collection and recovery of viral genetic
material from aerosols samples. This is critical when sampling in environ-
ments where viral aerosol concentrations may be low, such as in locations
that could be integrated in a viral environmental surveillance network.
Further method development is recommended to optimise the sampling
and analytical parameters under controlled experimental conditions.

Regarding molecular analysis, it is recommended to incorporate
quality control and quality assurance measures, such as internal con-
trols, LoD and LoQ. It is also recommended to report abundance of
SARS-CoV-2 (i.e. concentrations) in terms of genetic copies of RNA per
volume of air.

The heterogeneity of all the studies involved in the analysis for each of
the sampling and molecular analysis parameters represents the main lim-
itation of this study, which might have affected the identification of the
optimal choice for maximizing SARS-CoV-2 genetic material detection.
Furthermore, although statistical analyses were employed to assess differ-
ences among the datasets where sampling was conducted near individuals
infected with COVID-19, the following factors were not controlled for in the
analysis. Distance of the sampler inlet from the patients was not taken into
consideration, whereas there is evidence that samples collected in close
distance to a patient (<2 m) yield higher RNA concentrations'*. The
number of patients present in the room was not taken into consideration,
whilst the number of patients shedding titers into the air would increase the
viral load in the air'"*. Information on the volume of the sampled space has
not been accounted for. The smaller the environment, the higher the
potential concentration of viral load in the air, in the absence of effective
ventilation. The day post-infection of the patients was not taken into
account. The amount of infectious viral shedding would be higher between
the 3rd and 7th day post infection, with the intensity of the shedding varying
depending on the SARS-CoV-2 variant'*’. The volume of infectious units
exhaled by the patients is also unknown, whilst there is evidence on the
variability of the viral load exhaled by different patients'". There could be
also super spreader patients that could contribute to elevated viralload in the
aerosol collected'”! in some studies, but this information was unknown.
Information on the use of facemask was not considered in the analysis,
which might have attenuated the shedding of viral load into the air'*.
Therefore, it is recommended to conduct independent experimental eva-
luations for each of the parameters, where as many variables as possible can
be controlled to determine the optimal sampling and analysis parameters.

Another limitation is the exclusion of sampling methods other than
those that use filters. On the other hand, to the best of our knowledge, this is
the first study to evaluate critically sampling and molecular analysis para-
meters in relation to the detection, positivity rate and quantification of
SARS-CoV-2 genetic material.

This review was conducted using two databases, one targeting spe-
cialized coverage in biomedical sciences and another with a broad multi-
disciplinary scope, including additional references via backward
snowballing method. It also focused only on articles published in English,
being the predominant language in international scientific literature.
Despite not including more than two databases and restricting the review to
English-only studies, this review included the largest number of studies,
84 studies, all focused on filter-based methods for sample collection, that
yielded 104 different datasets to review. Finally, the review has used statis-
tical analysis, including meta-analysis, to compare differences among
parameters in the detection and quantification of SARS-CoV-2 load in
aerosol samples.

In conclusion, this systematic literature review found that several
sampling factors increased the positivity rate of detection of SARS-CoV-2

RNA in aerosols collected using filter-based methods. A meta-regression
analysis identified that larger volumes, using filters other than PTFE or
gelatine, storing filters at 4 °C post sampling and analysis within a few hours
of collection increased the positivity rate. On the other hand, no differences
were observed as regards detection or quantification of SARS-CoV-2 RNA
in datasets collected near individuals infected with COVID-19. Given some
of the limitations identified in this review, it is highly recommended to
perform further methodological development experiments to optimize
sampling and analytical conditions under controlled conditions.

SARS-CoV-2 has been detected in a wide range of environments (71%
of the datasets surveyed). A higher viral load was observed in indoor
environments compared to outdoors, as well as when the sampling was
conducted near patients. This suggests the role of ventilation and presence of
infected people on aerosol accumulation indoors and the importance of
implementing appropriate prevention measures to mitigate the transmis-
sion risk in indoor environments, especially where cases might be present.
Notwithstanding, the virus was even detected in public indoor spaces where
the presence of COVID-19 cases was not known.

The critical appraisal of the body of evidence generated during the
COVID-19 pandemic provides a solid foundation for advancing environ-
mental surveillance and addressing future challenges related to respiratory
pathogens. Several applications of viral characterisation on aerosol samples
were suggested. These included early warning systems, non-intrusive
monitoring of environmental viral prevalence and temporal trends,
managing COVID-19 outbreaks, and characterising the airborne trans-
mission of viruses.

Methods

Search strategy and eligibility criteria

This systematic review encompasses studies published up to October 2,
2024, across the PubMed and Web of Science databases. Terms such as
“aerosol”, “PM”, “air sample”, “SARS-CoV-2”, “indoor”, and “outdoor”
were used in the search, employing Boolean operators AND and OR to
construct the search syntax for each database: PubMed search algorithm
(n=236) (“aerosol” OR “PM” OR “air sample”) AND (“SARS-CoV-2” OR
“SARSCOV2”) NOT (“model” OR “modelling” OR “modeling”) AND
(“indoor” OR “outdoor”) and ISI Web of Science algorithm (n =263)
(“aerosol” OR “PM” OR “air sample”) AND (“SARS-CoV-2” OR “ SARS-
COV?2”) (All Fields) not “model” OR “modelling” OR “modeling” (All
Fields) and “indoor” OR “outdoor” (All Fields). To refine the results, a
restriction was applied using the Boolean operator NOT for terms such as
“model” or “modelling”. A complementary snowballing strategy was
applied by screening the reference lists of key articles to identify additional
relevant studies.

The inclusion criteria comprised articles published in English; original
scientific research or journal articles on the topic; articles that sampled both
indoor and/or outdoor air; and studies employing direct filtration or any
method that uses filters as the sampling method, such as impactors or
cyclones that include filters in some of their stages. Exclusion criteria
included articles in languages other than English; review articles; studies on
mathematical modelling; on preventive measures or atmospheric pollution;
studies that use sampling methods in which no filter is used; and studies
aimed at virus elimination.

Review and extraction process

The article selection process was conducted using the free tool Rayyan. Two
reviewers (Alfaro, C. and Barberd-Riera, M.) screened all titles, abstracts and
full-text. Discrepancies and queries on selection were resolved by a third
reviewer (Delgado-Saborit, JM).

The included studies were analysed by two researchers (Alfaro, C.
and Barbera-Riera, M.) to extract key data on detection, quantification,
and viability, as well as sampling parameters, such as environments and
microenvironments, proximity to COVID-19 infected individuals, air
volume sampled, sampling duration, airflow rate, filter type, sample
transportation and storage conditions, and the recording of additional
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parameters during sampling. Molecular analysis parameters for SARS-
CoV-2 RNA were also reviewed, including internal controls, targeted
genes, criteria for positive samples, and LoD and LoQ. All airflow rates
were standardized to L/min, and air volumes were converted to m* for
consistency.

Analysis of the reviewed evidence

The results of SARS-CoV-2 genetic material detection have been presented
as detection (yes/no), which refers to those settings where at least one sample
was positive. It also includes the positivity rate, which refers to the per-
centage of filters where genetic material was detected compared to the total
number of filters collected. The results of SARS-CoV-2 RNA quantification
have been reported as the median and Interquartile Range (IQR) (25th
percentile-75th percentile) of the viral load (i.e. concentration), in the units
reported by the original authors.

Fisher’s Exact Test was used to evaluate differences of genetic
material detection (Detection/No Detection) between categorical vari-
ables such as sampling environments (healthcare, socio-health, transport,
other indoor, outdoor), and proximity to COVID-19 infected individuals
among the reviewed studies (Table 3). Differences in concentrations of
genomic copies/m’ of air (gc/ m?, or equivalent metrics reported in some
studies) and sampling environments or proximity to infected individuals
in the reviewed studies were tested with the Kruskal-Wallis Test (Table 3).
The Chi-Square Test and Mann-Whitney U Test were used to assess
differences between indoor versus outdoor sampling with genetic material
detection and concentration reported in the reviewed studies, respectively
(Table 3).

The evaluation of sampling and molecular analysis parameters in
relation to the SARS-CoV-2 detection and viral load, was conducted only
with studies in which sampling was conducted in proximity to COVID-19
infected individuals. This would ensure, in some way, the presence of an
infection source near the sampling point. For associations between sampling
parameters (airflow rate, air volume, sampling duration, type of filter and
sample storage) or molecular analysis parameters (target gene) versus
detection and viral load variables, Mann-Whitney U Test, Fisher’s Exact
Test, Spearman’s Correlation, and Kruskal-Wallis Test were applied as
appropriate (Table 4). Spearman’s correlation coefficient (rho) between the
viral concentration and the flowrate, sampling time or sampling volume was
reported where applicable.

In the case of the positivity rate, a meta-analysis of proportions was
performed using a random-effects model to estimate the pooled proportion
of SARS-CoV-2-positive samples on air filters (i.e. positivity rate), as well as
its 95% confidence interval. Since some studies presented proportions close
to 0 or 1, the Freeman-Tukey double arcsin transformation was applied to
stabilize the variance before performing the analysis.

As regards, the concentrations, a meta-analysis of means was per-
formed using a random-effects model to estimate the pooled mean con-
centration of SARS-CoV-2 genetic material (expressed in copies/m?)
detected on air filters, along with its 95% confidence interval. For each study,
the mean concentration of SARS-CoV-2 in the air, estimated from the filters
analysed, was used as a summary measure. Only studies conducted indoors,
with sampling near COVID-19-infected individuals, and that quantified
viral RNA concentrations were included in the meta-analysis.

Heterogeneity between studies was estimated using the I? statistic and
the DerSimonian-Laird test. The results of the meta-analysis were graphi-
cally represented using a forest plot.

The existence of potential publication bias was analyzed using the
funnel plot and the Egger test. In the case of the positivity rate, since the
proportions were transformed using the Freeman-Tukey double arcsin,
the Egger test was only exploratory, as this transformation does not fully
meet the linear symmetry assumptions required for its formal application.

A sensitivity analysis was performed by repeating the meta-analysis,
successively excluding each of the studies, in order to evaluate the robustness
of the results, both for the positivity rate and the concentrations meta-
analysis.

In the case of the positivity rate, a bivariate meta-regression was also
performed to explore whether sampling characteristics, such as sampling
setting (healthcare, social care, transportation, other indoors, outdoors),
type of setting (indoors, outdoors), and proximity to infected individuals,
explained some of the observed heterogeneity in the positivity rate. This
variable was introduced as a categorical factor, and the transformed pro-
portion and its standard error were used as the dependent measure. The
analysis was weighted by the precision of each study. This analysis included
only studies that sampled near COVID-10 infected people and sampling
conducted indoors.

Statistical significance was defined as a p-value below 0.05. All analyses
were performed using RStudio, except the meta-analysis, which was per-
formed in STATA.

It is important to note that some studies reported results collected in
different environments (e.g. indoors and outdoors); or used several flow
rates, sampling durations and volumes, filter types, or target genes. Each
sampling combination was considered an independent dataset in both
qualitative and quantitative analyses. Thus, whilst only 84 studies were
included in this review, the number of independent datasets is larger,
totalling 104 different microenvironment locations.

Data availability
All data generated or analysed during this study is included in the repository
ZENODO and can be accessed at https://zenodo.org/records/16743764.
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