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Interpretable ensemble learning unveils
main aerosol optical properties in
predicting cloud condensation nuclei
number concentration
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Variations in cloud condensation nuclei number concentration (NCCN) significantly influence cloud
microphysics, yet directNCCNmeasurements remain challenging.Here,wepresent anNCCNensemble
learning (NEL) model utilizing ensemble learning and interpretability analysis on aerosol optical
parameters. Validated at two land sites, two ocean sites and one polar site within the Atmospheric
RadiationMeasurement program, themean absolute percentage error range of the NELmodel across
different environments is from 12% to 36%, demonstrating high accuracy. Key findings reveal that
aerosol optical parameters can serve as predictors for NCCN. Aerosol scattering and backscattering
coefficients, absorption coefficient, backscatter fraction (BSF), and Ångström exponent (AE) are
positively correlated with NCCN, while single scattering albedo shows negative correlations. NCCN

prediction at land sites is highly sensitive to BSF, largely driven by the backscattering coefficient, as
fine particles dominate in these sites. At ocean sites,NCCN prediction ismore sensitive to AE, primarily
influenced by the scattering coefficient, due to the higher proportion of larger particles. At the polar
site,NCCN prediction shows sensitivity to both BSF andAE,mainly driven by the scattering coefficient,
as polar sites are cleaner and contain larger particles. These differences reflect the variation in particle
size and number concentration across different environments.

Defined as a mixture of solid and liquid particles suspended in the air,
atmospheric aerosol is a major factor influencing the Earth’s radiation bal-
ance. It can also affect the water cycle through influencing cloud and pre-
cipitation processes1,2. Cloud condensation nuclei (CCN) refer to aerosol
particles that can activate to form cloud and fog droplets under super-
saturated water vapor conditions. Changes in CCN number concentration
(NCCN) can lead tovariations in cloudphysics, further changingprecipitation
and cloud radiation balance3,4. Among the uncertainties in aerosol-related
global climate effective radiative forcing, the aerosol-cloud interaction (ACI)
contributes the most5,6. Therefore, accurately describing NCCN in the atmo-
sphere is crucial, as it will help reduce uncertainties in ACI modeling.

Köhler theory7 provides a fundamental theory linking CCN activity to
aerosol physicochemical properties. Numerous studies have shown that

aerosol particle size, chemical composition, hygroscopicity andmixing state
are the primary factors affecting CCN activity8–12. However, these factors
exhibit significant spatial and temporal variability across the world13,14, and
due to the complexity of measurements and models, such data is not easily
obtained with high accuracy, which adds to the uncertainty of NCCN

prediction.
Aerosol optical parameters are relatively easier to obtain through

observational methods such as lidar and satellites. While utilizing these
parameters to predict NCCN holds significant appeal, it remains a challen-
ging task across diverse environmental conditions15,16. For instance, Jeffer-
son (2010) demonstrated that the uncertainty inNCCN predictions tends to
increase at lower particle concentrations17. Similarly, in the study by Shen
et al. 18, despite the development of several complex models across multiple
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regions, significant errors persisted in some cases, particularly when
supersaturation levels increased18. In contrast, the approach proposed by
Shinozuka et al. 19 revealed even larger errors at lower supersaturation levels,
with errors reaching up to three times the value of the best estimate. These
findings underscore the complexity and variability in the relationship
between CCN and aerosol optical properties19. Additionally, aerosol optical
parameters can partly reflect characteristics such as particle size, shape, and
changes in aerosol hygroscopicity17,19–23. Previous studies have established
relationships between NCCN and single aerosol optical parameters, such as
aerosol optical depth (AOD)20, or employed multiple aerosol optical para-
meters, suchas backscatter fraction (BSF) and single scattering albedo (SSA)
to predict NCCN

17,19,21, achieving promising results. However, most of these
studies are based on single-site measurements with limited variables,
making theNCCN predictionmethods less universally applicable. Therefore,
developing models based on multi-site observations across different
environments is essential to provide more universally applicable NCCN

predictions.
Over the past few decades, the development and use of machine

learning (ML) have been booming, and it has been applied to atmospheric
sciences recently24–27. Previous scholars have studied the application of ML
inpredictingNCCN

24,28,29, specifically using aerosol optical parameters for the
prediction28,29. Theirworkdemonstrated thatMLachievedoverall success in
deriving NCCN under different aerosol physical and chemical conditions.
Notably, ML can extract information such as aerosol size from aerosol
composition and aerosol optical parameters, indicating that the statistical
learning of ML algorithms is rooted in fundamental physical and chemical
principles30. However, the “black box” nature of ML makes it difficult to
interpret how input features influence the output results31. The SHapley
Additive exPlanations (SHAP) algorithm offers a promising solution to this
challenge and has already shown significant progress in studies related to
ozone formation and boundary layer height inversion31–33, which has not
been used to predict NCCN.

This study aims to develop an NCCN ensemble learning (NEL) model
for predicting NCCN and to enhance its interpretability using the SHAP
algorithm. The approach begins by evaluating various models, selecting the
top three for ensemble learning, and then training the ensemblemodel. The
NEL model is subsequently applied to predict NCCN, with SHAP used for
interpretative analysis to quantify the contributions of different aerosol
optical parameters in the prediction process. Finally, the study examines the
importance and interactions of these aerosol optical parameters in pre-
dicting NCCN over land, ocean and polar regions.

Results
Model preparation
In developing the NEL model, eXtreme Gradient Boosting (XGBoost)34,
Categorical Boosting (CatBoost)35, and Random Forest (RF)36 were selected
due to their complementary strengths in addressing the complexities of
environmental datasets. XGBoost and CatBoost utilize gradient boosting to
refine predictions sequentially, excelling at capturing nonlinear relation-
ships and complex feature interactions. In contrast, RF applies bagging and
random feature selection to provide robust generalization and model
diversity by emphasizing different aspects of the input space. Averaging
predictions from these three models allows the NEL ensemble to mitigate
individual model biases and errors, enhancing robustness and predictive
accuracy. This design is particularly suitable for datasets with multifaceted
characteristics, such as aerosol optical properties relevant to NCCN

estimation37,38. Details regarding model construction are provided in the
“Methods” section.

To validatemodel performance, themodels are trained under identical
computational conditions using data from the atmospheric radiation
measurement (ARM) SGP site, employing widely usedML techniques. The
models tested includeDecisionTree (DT), SupportVectorMachine (SVM),
RF, Bagging-SVM, Adaptive Boosting—Logistic Regression (AdaBoost-
LR), CatBoost, Light Gradient Boosting Machine (LightGBM), XGBoost,
and the NELmodel. Further details are provided in Supplementary Text 1,

and simulation results for each model are illustrated in Supplementary Fig.
1.Thepredictionaccuracy is evaluatedusingfivemetrics: RootMeanSquare
Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), Relative EuclideanDistance (RED)39,40, and the coefficient of
determination (R²) (details in the “Methods” section).

Performance evaluation (Fig. 1) shows that XGBoost, CatBoost, and
RF achieve R² values of 0.57, 0.58, and 0.55, respectively, while the NEL
model reaches an R² of 0.63 and the lowest RED (0.32), demonstrating
superior predictive performance. Although the NEL model increases
computational demand compared to individual algorithms, its improved
accuracy and enhanced robustness justify the cost.

The aerosol optical parameters used in the models include scattering
coefficient (σsp), backscattering coefficient (σbsp), absorption coefficient
(σap), backscatter fraction (BSF), Ångström exponent (AE) and single
scattering albedo (SSA). The letters B, G, and R following these parameters
represent measurements at three specific wavelengths: Blue (464 nm),
Green (529 nm), andRed (648 nm). For instance,σsp_B represents theσsp at
the blue wavelength. The AE parameter with letters indicates that it is
computed from the scattering coefficients at twowavelengths. For example,
AE_BR denotes the AE calculated using the blue and red scattering coeffi-
cients. Considering that aerosol optical parameters vary with relative
humidity (RH)41,42, all aerosol optical parameters are measured under dried
conditions to ensure a more comprehensive and accurate analysis. In a
separate study43, the influence of RH on CCN estimation based on aerosol
optical properties was explored, and a corresponding parameterization
method was proposed. Table 1 outlines the specific instruments used to
measure each parameter and explains how these parameters contribute to
the prediction ofNCCN, ensuring a clear scientific basis for their inclusion in
the model.

NEL model performance and analysis of correlation between
NCCN and aerosol optical parameters
As shown in Fig. 1, the establishedNELmodel outperforms othermodels in
predicting NCCN. Figure 2 presents density scatter plots comparing pre-
dicted andmeasuredNCCN values for the test sets across five sites (land sites:
SGP, GUC; ocean sites: ENA, ASI; polar site: MOS). Additionally, line plots
of 500 randomly selected test samples from each site are generated (Sup-
plementary Fig. 2). These results demonstrate a high degree of consistency
between the NCCN predictions from the NEL model and the actual values,
with R² values for the five sites being 0.63, 0.92, 0.70, 0.65 and 0.83. The
model achieves lowMAE and RMSE values, especially at ASI (Fig. 2b) with
larger datasets. However, at SGP (Fig. 2a), the MAE and RMSE are highest,
likely due to the strongest variation inNCCN values at this site. Despite this,
the MAPE and RED remain consistently low across all five sites. Even at
GUC andMOS (Fig. 2c, e), where the sample size is smaller, theNELmodel
demonstrates strong performance, highlighting its robustness across both
large and small datasets.

The SHAP method is employed to interpret the outputs of the NEL
model, as illustrated in Fig. 3. It is found that the aerosol optical parameters
with the highest contributions are all related to aerosol scattering para-
meters. During the prediction process at the five sites, it is observed that
higher values of σbsp, σsp, and σap correspond to larger SHAP values,
indicating a positive correlation between these parameters and NCCN. This
correlation likely arises from the fact that these parameters are positively
correlatedwith aerosol number concentration; higher values typically imply
a greater number of particles that can be activated asCCN, leading to higher
NCCN. This finding aligns with previous studies21,44,45. BSF and AE also
positively correlatewithNCCN,which is closely linked to particle size, but the
relationship betweenBSF andNCCN ismore pronounced at land sites, which
is also consistent with an earlier study44. A detailed comparison of the
aerosol physicochemical properties across the five sites is provided in the
Supplement (Supplementary Figs. 3 and 4).

Additionally, SSA shows aminimal contribution (Fig. 3),whichmaybe
due to SSA reflecting the influence of differences in aerosol chemical
composition onNCCN. Theminor contribution of SSA suggests that aerosol
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chemical composition has a limited impact on NCCN, indirectly indicating
that aerosol number concentration and particle size are more significant
factors for predicting NCCN, consistent with previous studies8,11,43.

At most sites, aerosols are predominantly composed of particles in
the Aitken and accumulation modes. These smaller particles exhibit
higher scattering efficiency at shorter wavelengths, making aerosol scat-
tering parameters at the blue wavelength particularly effective predictors
of NCCN. Overall, SHAP values effectively clarify the correlation between
each variable and NCCN during the prediction process.

Importance of aerosol optical parameters to NCCN prediction
An aerosol optical parameter is identified as a major driving predictor for
a specific site type (land, ocean or polar) if its average relative con-
tribution across sites of the same type is 15% or higher. At land sites, the
primary driving predictor is σbsp_B, contributing 20.75% overall, with
SGP at 23.32% and GUC at 18.17% (Supplementary Table 11). This
pronounced influence is likely attributable to the greater complexity and
heterogeneity of aerosol types and morphologies in continental

environments, where fine particles are typically more abundant, thereby
enhancing the sensitivity of σbsp environmental variability.

At the ocean sites, the major driving predictor is σsp_B, contributing
21.22%, with ENA at 20.20% and ASI at 22.24%. NCCN is closely related to
σsp_B, likely becauseNCCN is controlled by Aitkenmode and accumulation
mode particles in ocean regions46, where sulfate aerosols and organic
aerosols are abundant47–51. The aerosol size spectrum at ocean sites is
broader due to the presence of sea salt, which leads to greater variability in
particle size distributions. The substantial presence of coarse-mode particles
promotes the relationship between σsp_B and NCCN.

At the polar site (MOS), the primary driving predictor is σsp_B, which
contributes 18.85% to the model performance. Although the Arctic atmo-
sphere is generally characterized by lower aerosol concentrations52, it is
predominantly influenced by fine particles, with occasional contributions
from sea salt. These conditions enhance the relevance of σsp, which effec-
tively captures the substantial variability in aerosol concentrationdespite the
overall lower loading. This emphasizes that in most environments, the
aerosol number concentration is a key factor in predicting NCCN.

Table 1 | This table outlines all the aerosol optical parameters and meteorological variables used in predicting NCCN, including
absorption coefficient (σap), scattering coefficient (σsp), backscattering coefficient (σbsp), single scattering albedo (SSA),
backscatter fraction (BSF) and Angstrom exponent (AE)

Variable Instruments/Method Role in NCCN prediction

σap Particle soot absorption photometer (PSAP) Reflects the aerosol number concentration, particularly the concentration of absorbing aerosols.

σsp Nephelometer Reflects the aerosol number concentration, especially sensitive to large particles.

σbsp Nephelometer Reflects the aerosol number concentration, especially sensitive to fine particles.

SSA σsp
σspþσap

Reflects the aerosol chemical composition and hygroscopicity.

BSF σbsp
σsp

Reflects the shape and size of particles, more sensitive to fine particles.

AE � log σsp λ1ð Þ=σsp λ2ð Þð Þ
log λ1=λ2ð Þ

Reflects the particle size, more sensitive to large particles.

It specifies the measurement instruments for each parameter and their respective roles in the prediction model.

Fig. 1 | Performance comparison of different models. The performance com-
parison of different models using statistical parameters of a Root mean square error
(RMSE), bmean absolute error (MAE), cmean absolute percentage error (MAPE),

d relative euclidean distance (RED) and e determination coefficient (R2), where
smaller RMSE, MAE, MAPE, and RED, and larger R2 indicate a better model
performance.
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The mean relative contributions of each aerosol optical parameter at
three wavelengths across five sites are determined (Fig. 4 and Supplemen-
tary Fig. 5). The results indicate that the relative contributions of BSF and
σbsp are higher at land sites compared to other sites. Specifically, BSF at the
SGP site contributes 21.33%, which is more than twice the contributions at
other sites. Over land, aerosols originate from diverse sources such as bio-
mass burning and urban pollution, resulting in fine particles with irregular
shapes53. The σbsp effectively captures the scattering behavior of these irre-
gular fine particles, indicating that their number concentration plays a
critical role in CCN activation in continental environments. Previous stu-
dies indicate BSF is more sensitive to smaller particles, while AE responds
more to larger ones54,55.

In contrast, the relative contributions ofAEand σsp are greater at ocean
and polar sites due to larger-sized particles prevalent in these regions. The
elevated contribution of AE underscores the pivotal role of particle size
distribution in governing NCCN levels over ocean and polar environments.
Unlike land sites dominated by complex organic aerosols, the ocean and
polar atmosphere contain a higher proportion of regularly shaped
particles56, thereby diminishing the enhancement of BSF typically caused by
particle shape irregularity. Additionally, at ASI andMOS, σbsp also proves to
be particularly influential, likely because aerosols are primarily composed of
long-range transported fine particles, with occasional contributions from
sea salt aerosols52,57,58.

Notably, the relative contribution of σap is higher at the GUC site, likely
due to the prolonged wildfires nearby during the observation period, which
generated substantial amounts of black carbon and brown carbon aerosols59.
These aerosols can become CCN after undergoing aging and growth
processes60. High relative contributions of σap are also observed at SGP and
ENA, likely due to the presence of carbonaceous aerosols from biomass
burning at SGP53. ENA, with its large population of permanent residents,
experiences significant contributions of fresh black carbon from both traffic
and daily activities47. Additionally, the relative contribution of SSA isminimal,
with only slight variations between land and ocean sites. However, a deeper
analysis of the impact of aerosol optical parameters on aerosol activation rate
(AR), defined as the ratio ofNCCN to the total aerosol number concentration,

reveals a significant contribution of SSA to AR (Supplementary Figs. 6, 7,
and 8), with an average contribution of 21.46%. This indicates that SSA
indirectly influencesNCCNbyaffectingAR,although its contribution is limited.

Furthermore, our results indicate that the contribution of aerosol
optical parameters, such as SSA and BSF, to themodel’s performance is not
the most significant. This suggests that minor errors in these parameters
from remote sensing data are unlikely to substantially affect the overall
model performance. However, uncertainty in σbsp may introduce errors in
predictions for land sites. For example, the uncertainty in σbsp from satellites
is approximately 30%61, which could lead to 7% error in the NEL model’s
predictionofNCCN. Similarly, uncertainties inAEcould also lead to errors in
theNCCNprediction for ocean sites. To achievemore accurate predictions, it
may be necessary to apply more precise estimation algorithms to satellite
data or rely on accurate ground-based observational data.

In summary, the differences in aerosol physicochemical properties
among different sites lead to varying contributions of aerosol optical para-
meters toNCCN prediction. TheNELmodel, combinedwith SHAP analysis,
effectively captures these differences, enabling a detailed assessment of their
relative contributions across different sites.

Interaction effects between aerosol optical parameters
To further investigate the interaction effects between aerosol optical para-
meters on NCCN prediction, this study utilizes SHAP dependency plots to
analyze the main effects of individual variables and their interactions
(Figs. 5 and 6). Detailed interaction processes are illustrated in Supple-
mentary Figs. 9–13. Specifically, given the significant differences in AE and
BSF between different sites, the interactions between the aerosol optical
parameters with the largest contributions, σbsp_B for land sites, σsp_B for
ocean sites and σsp_B for polar sites, are analyzed alongside AE_BR and
BSF_G, which have the highest contributions at most sites.

At land sites (SGP and GUC), the dispersion of the blue sample dots
above the y-axis zero line in Fig. 5a, b shows that when σbsp_B is less than
2Mm−1, a low BSF_G amplifies the positive impact of σbsp_B, resulting in an
increase in NCCN (high SHAP value). In the range of 2 to 4Mm−1, a low
BSF_G causes σbsp_B to have a negative contribution. When

Fig. 2 | Comparison of NCCN predictions and observations at five sites. Density
scatter plots of NCCN predicted by the NEL model are shown in (a–e), representing
the results for SGP, ASI, GUC, ENA, and MOS, respectively. The horizontal axis
shows the observed NCCN at 0.4% supersaturation, while the vertical axis shows the

model-predicted NCCN at 0.4% supersaturation. The black dashed line denotes the
fitted line for the ideal case, and the red solid line is the actual fitted line. The point
colors indicate density, with representing higher point density.
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σbsp_B < 2Mm−1, it typically reflects low aerosol loading conditions. In this
regime, a low BSF_G indicates a dominance of larger particles. The con-
tribution of σbsp_B is associated with enhanced activation of these larger
particles, thereby contributing positively toNCCN (as shownbypositive SHAP
values). In contrast, a high BSF_G (with smaller particles) points to the pre-
valence of smaller particles, implying that the contribution of σbsp_B may
result fromparticles too small tobe efficiently activatedasCCN,which leads to
aweakeror evennegative effect onNCCN (as shownbynegative SHAPvalues).

When σbsp_B > 2Mm−1, the overall aerosol number concentration is
likely higher, and its influence onNCCN becomes more pronounced. In this
context, for a given σbsp_B, a lower BSF (indicative of a greater fraction of
larger particles) generally corresponds to a lower particle number con-
centration, thereby reducing NCCN. Conversely, a higher BSF suggests a
greater abundance of smaller particles, which increases the number of
potential CCN and thus enhances NCCN. Notably, when σbsp_B exceeds
4Mm−1 and BSF_G is below 0.14, indicating a strong dominance of larger
particles, the interaction effect between these variables tends to plateau,
suggesting a diminishing marginal impact on NCCN.

Overall, at land sites, the contribution of σbsp_B, whether positive or
negative, fluctuates with changes in BSF_G. In contrast, the contribution of

σbsp_B is minimal when influenced by AE_BR (Fig. 5c, d). These findings
suggest that the NEL model effectively captures the roles of aerosol number
concentration and particle size, as reflected by σbsp_B and BSF_G, in influ-
encing NCCN.

In contrast, at the ocean sites (ASI and ENA), when σsp_B is below ~
10Mm−1, higherAE_BR is associatedwith a decrease inNCCN (Fig. 5g, h).
This is likely because smaller particles (indicated by higher AE_BR) are
less likely to activate as CCN, while a greater presence of larger particles
(lower AE_BR) enhances CCN activation.When σsp_B exceeds 10Mm−1,
the effect reverses, possibly due to severe pollution leading to a higher
number concentration of larger particles, which typically exhibit greater
scattering ability and higher activation potential. This effect is similar to
that of land sites. Overall, NCCN increases are strongly influenced by
particle size when σsp_B is below 10Mm−1, whereas number concentra-
tion becomes more significant when σsp_B exceeds 10Mm−1. Addition-
ally, the contribution of σsp_B is minimal when influenced by BSF_G
(Fig. 5e, f).

At the MOS site (Fig. 6), the variation in σsp is significantly influenced
byAE andBSF, especially undermore polluted conditions (σsp > 18Mm−1).
Under cleaner conditions (σsp < 18Mm−1), although the positive and

Fig. 3 | The positive and negative correlations between aerosol optical parameters
and NCCN, as well as the importance of aerosol optical parameters. In predicting
NCCN, the SHAP values for each feature are denoted as follows: a–e represent SGP,
GUC, ASI, ENA, and MOS. The letters B, G, and R following these parameters
represent measurements at three specific wavelengths: Blue (464 nm), Green
(529 nm), and Red (648 nm). For instance, σsp_B represents the σsp at the blue
wavelength. The AE parameter with letters indicates that it is computed from the
total scattering at two wavelengths. For example, AE_BR denotes the AE calculated

using the blue and red total scattering values. The mean of the absolute values of the
SHAP values indicates the importance of each variable to NCCN prediction. In each
plot, feature importance is arranged from top to bottom, with the width of the bars
indicating the sample size. The color of the points represents the value of the cor-
responding variable, with warmer colors indicating higher values and cooler colors
indicating lower values. Full variable abbreviations can be found in Supplementary
Tables 1–5.
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negative contributions are clearly distinguished, the variation is relatively
gentle. These further highlight that aerosol number concentration is the
dominant factor influencing NCCN in polar regions.

These regional differences provide valuable insights into cloud
microphysical processes and associated climate feedback. Over land, the
strong dependence on BSF and σbsp indicates that aerosol shape, size and
number concentration play a dominant role in regulating NCCN, thereby
influencing cloud albedo and lifetime. In contrast, in ocean regions, the
greater importance of AE and σsp suggests that variability in particle size
distribution and aerosol number concentration are the primary drivers of
NCCN, potentially altering clouddroplet formation and subsequent radiative

properties. In polar regions, the aerosol number concentration has a greater
influence on the prediction of NCCN.

Discussion
This study employed ARM observational data to apply the NEL model,
developed using a combination of three machine learning methods and
SHAP analysis, to predict NCCN based on aerosol optical parameters.
The model was tested at two land sites (SGP and GUC), two ocean sites
(ENA and ASI) and one polar site (MOS), providing a comprehensive
comparison of aerosol characteristics across diverse environments. The
results demonstrate that the NEL model accurately predicts NCCN

throughout the sampling period, with R² values of 0.63, 0.92, 0.70, 0.65
and 0.83 for SGP, GUC, ASI, ENA, andMOS, respectively. These strong
correlations highlight the model’s capability to predict NCCN under
varying environmental conditions. Overall, σsp, σbsp, σap, BSF, and AE
show positive correlations with NCCN. Although SSA has weaker asso-
ciations with NCCN, SSA indirectly influences NCCN by affecting aerosol
activation ability.

SHAP analysis identified the key aerosol optical parameters influen-
cing NCCN, revealing distinct differences between different environments.
At land sites, σbsp_B emerged as the primary driver of NCCN (20.75%),
particularly at SGP (23.32%) and GUC (18.17%), where local sources such
as biomass burning may elevate the significance of smaller backscattering
particles. In contrast, at ocean sites, σsp_B (21.22%) was the dominant
predictor in NCCN prediction, reflecting the larger particle sizes commonly
found over oceans. At the polar site (MOS), σsp_Bwas the primary driver of
NCCN, contributing 18.85%. All these underscore the importance of aerosol
number concentration as a crucial factor for CCN formation across most
environments.

The study also highlights key differences between different environ-
ments in the contributions of σsp and σbsp, modulated by AE and BSF. In
both land and ocean regions, when the environment is relatively clean, the
contribution to NCCN is primarily driven by particle size. However, as
pollution levels increase, the contribution of aerosol number concentration
toNCCN gradually becomesmore significant. Notably, BSF ismore sensitive
at land sites, while AE has a greater impact at ocean sites. In polar regions,

Fig. 5 | SHAP dependence plots for key aerosol optical parameters, with SGP and
GUCcorresponding to σbsp_B, andASI andENAcorresponding to σsp_B.The x-
axis represents the primary feature, while the y-axis represents the SHAP value of the
primary feature. The color indicates the interaction feature. Thewhole represents the
contribution of themain feature under the influence of the interaction feature. a SGP
and b GUC show the contribution of σbsp_B under the influence of BSF_G. c SGP

and dGUC display the contribution of σbsp_B under the influence of AE_BR. e ENA
and f ASI illustrate the contribution of σsp_B under the influence of BSF_G. g ENA
andhASI depict the contribution of σsp_B under the influence ofAE_BR. Plots a and
b, c and d, e and f, and g and h share a common y-axis label and color bar,
respectively.

Fig. 4 | Themean relative contributions of each aerosol optical parameter at three
wavelengths across five sites, with the color indicates contribution percentage.
This figure illustrates the contribution of different aerosol optical parameters in
various sites to the NCCN prediction. Warm colors indicate a greater contribu-
tion, while cool colors indicate a smaller contribution.
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under polluted conditions, the contributionofσsp toNCCN shows significant
changes due to the influence of BSF andAE, further indicating thatNCCN in
this region is mainly controlled by aerosol number concentration. These
findings indicate that the NEL model has identified differences in CCN
activation across different regions at varying pollution levels.

The findings of this study have several implications for both scientific
understanding andpractical applications. First, the ability of theNELmodel,
combined with SHAP analysis, to accurately predict NCCN across diverse
environments offers a significant advancement in aerosol-cloud interaction
research. DirectNCCNmeasurements are costly and logistically challenging,
particularly over oceans and remote areas, making the development of a
reliable prediction framework crucial. By using commonly measured
aerosol optical properties, the NEL model provides a cost-effective and
scalable alternative to direct measurements, facilitating broader research on
cloud microphysics and climate modeling.

The study’s identification of key aerosol optical parameters and their
interactions in influencingNCCN has significant implications for improving
climate models. Aerosols are crucial in modulating cloud properties, which
affect radiation balance and precipitation patterns. Accurate NCCN predic-
tion is essential for understanding aerosol-cloud-climate feedback
mechanisms. The varying sensitivities of aerosol parameters between land
and ocean environments, as revealed in this study, emphasize the impor-
tance of considering regional and environmental contexts in cloud and
climate modeling. Incorporating these insights into global climate models
could enhance the accuracy of cloud formation predictions and their effects
on climate systems. Furthermore, the study highlights the impact of specific
aerosol sources, such as biomass burning and wildfire events, on local CCN

concentrations, which has implications for air quality and regional climate
forecasting, particularly in wildfire-prone or heavily polluted areas.
Understanding how these events influence aerosol properties and cloud
formation can aid in developing mitigation strategies and improving early
warning systems for climate-related impacts.

While this study provides valuable insights, it is primarily based on
ground-based observations, which, despite their comprehensiveness, may
not fully capture the vertical and spatial variability of aerosols. Future
research should focus on integrating satellite data, aircraft observations, and
multi-dimensional simulations to improve the accuracy of NCCN retrievals
across different spatial and temporal scales. Additionally, expanding the
NEL model to encompass more diverse environments and varying super-
saturation levels would extend its applicability. Incorporating various cli-
matic and aerosol regimes would allow for further validation and
refinement, advancing the model toward becoming a universal tool for
global NCCN prediction. Aerosol activation schemes, which predict the
number and mass of activated particles crucial for cloud formation and
climate studies, should also focus on mass activation efficiency in future
research to improve estimates of cloud droplet formation. Moreover, this
research offers practical recommendations for enhancing climate models.
Current models often rely on simplified aerosol activation schemes that
overlook environmental variability. We suggest incorporating BSF and σbsp
into parameterizations for land regions, AE and σsp for ocean regions and
σsp for polar regions to improveNCCNpredictions. For example,models like
theCommunityEarth SystemModel (CESM) could integrate environment-
specific weightings of these properties or adopt the NEL model to enhance
simulations of cloud formation and aerosol indirect effects, reducing
uncertainties in climate predictions.

Methods
Data sources and preprocessing
The U.S. Department of Energy (DOE) is responsible for deploying the
Atmospheric RadiationMeasurement (ARM) Climate Research Facility (at
both fixed and mobile sites). In recent years, ARM has measured cloud
condensation nuclei (CCN) and numerous related variables. This study
utilizes observational data from five ARM sites (Fig. 7), each characterized
by distinct aerosol types: Eastern North Atlantic (ENA, a long-term fixed
sitewithmarine aerosols, 39°5’N, 28°1’W),Ascension Island, SouthAtlantic
Ocean (ASI, a mobile site with marine aerosols and long-range transported
biomass-burning aerosols fromsouthernAfrica, 7°58’S, 14°20’W), Southern
Great Plains (SGP, a permanent site with typical rural continental aerosols
over farmland, 36°36’N,97°29’W),Gunnison,CO,USA(GUC, amobile site
with mountain forest aerosols, 38°53’N, 106°56’W), and Arctic Ocean;
Mobile Facility (MOSAiC) (MOS, a mobile site with polar aerosols,
86°37'8“N, 118°6'46“E)47,52,53,57,59,62.

This study collected NCCN data observed by the Cloud Condensation
Nuclei Counter (CCNc) and aerosol optical data measured by various
instruments63. The data spans different periods for each site: ENAdata from
June 2021 to June 2023, SGPdata fromApril 2017 to January 2021,ASI data
from May 2016 to October 2017, GUC data from September 2021 to

Fig. 7 | The geographical distribution of five sites. ENA (Eastern North Atlantic,
39°5’N, 28°1’W), ASI (Ascension Island, 7°58’S, 14°20’W), SGP (Southern Great
Plain, 36°36’N, 97°29’W), GUC (Gunnison, CO, USA, 38°53’N, 106°56’W), MOS
(Arctic Ocean;Mobile Facility, 86°37'8“N, 118°6'46“E). Land sites: SGP, GUC; ocean
sites: ENA, ASI; polar site: MOS.

Fig. 6 | SHAP dependence plots for key aerosol
optical parameters, with MOS corresponding to
σsp_B. The x-axis represents the primary feature,
while the y-axis represents the SHAP value of the
primary feature. The color indicates the interaction
feature. Thewhole represents the contribution of the
main feature under the influence of the interaction
feature. a show the contribution of σsp_B under the
influence of AE_BR. b show the contribution of
σsp_B under the influence of BSF_G.
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October 2021 andMOS data fromOctober 2019 toOctober 2020. The total
number of data points for each site is 519,375 for SGP, 26,741 for GUC,
98,299 for ENA, 125,806 forASI, and 55,163 forMOS. The instrumentation
used across all sites was consistent. Detailed information about the data and
instruments can be found at https://adc.arm.gov/discovery.

After aligning data from multiple instruments based on observation
times, the mean and standard deviation are computed for each site. To
ensure the accuracy of the results, quality control procedures are imple-
mented to screen all data. Any data point exceeding three standard devia-
tions from the mean is considered an outlier and removed, along with any
missing values. Since the majority of NCCN measurements across the sites
are obtained at a supersaturation (SS) level of 0.4%, and SS = 0.4% is more
representative of convective clouds21, only NCCN data at SS = 0.4% are
retained for subsequent analysis, with data at other supersaturation levels
excluded.Variable names, abbreviations, data ranges, andmeans for all sites
(SGP, ENA, ASI, GUC, and MOS) are provided in Supplementary
Tables 1–5.

Model framework
The framework of the NCCN ensemble learning (NEL) model used for
predicting NCCN is illustrated in Fig. 8. To prevent overfitting from the
inclusion of excessive variables, this study employs Recursive Feature
Elimination (RFE) combined with manual selection for dimensionality
reduction (Supplementary Text 2). The feature selection process primarily
focuses on the impact of each feature onmodel accuracy, selecting themost
relevant features from the initial dataset64. Ultimately, six aerosol optical
parameters across three wavelengths are chosen as feature variables, with
NCCN as the target for prediction.

The temporal resolution of the data used for training the NEL
model is 1 minute. This high temporal resolution ensures that the
data captures detailed variations in aerosol optical properties and
CCN concentrations over short time intervals, which is important for
accurately predicting NCCN. Such fine-grained data ensures that rapid
changes in atmospheric conditions are reflected in the model, con-
tributing to more precise predictions. Given the large dataset, the
data is split into training and testing sets in an 8:2 ratio, with both

sets shuffled to prevent overfitting and mitigate the effects of time
series data. Five-fold cross-validation and Bayesian optimization are
employed to adaptively adjust model hyperparameters and initial
values, maximizing the coefficient of determination (R²) to enhance
model performance. The optimization process for the five sites is
illustrated in Supplementary Figs. 14–18, with specific model para-
meters listed in Supplementary Tables 6–10. A consistent random
seed of 2024 is used throughout the process. Final predictions are
obtained by averaging the outputs from three models (XGBoost,
CatBoost and RF), forming the NEL model.

The NEL model trains individual models for each site. By training
separate models for different environments, each model is optimized to
account for the unique atmospheric conditions of that site. This approach
ensures that the models can be directly applied to similar environments,
enhancing their applicability and accuracy in predictingNCCN across a wide
range of atmospheric backgrounds. The model’s performance is evaluated
using Root Mean Square Error (RMSE), Mean Absolute Error (MAE), the
coefficient of determination (R²), Mean Absolute Percentage Error
(MAPE), and Relative Euclidean Distance (RED).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðNCCNTruei
� NCCNPredicti

Þ2
s

ð1Þ
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Þ2
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Fig. 8 | The framework of NCCN Ensemble Learning (NEL) model. The figure shows the workflow of the NEL model, including data collection, preprocessing, modeling,
and SHAP analysis.
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RED ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NCCNPredict

� NCCNTrue

NCCNTrue

 !2

þ σPredict � σTrue
σTrue

� �
þ ð1� RÞ2

vuut
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Here, n represents the number of input samples. NCCNTruei
denotes the

measured NCCN value for the ith sample. while NCCNPredicti
represents the

predictedNCCNvalue for the ith sample.NCCNPredict refers to themeanNCCN

value predicted by the model. NCCNTrue refers to the mean NCCN value
measured. σPredict and σTrue indicate the standard deviations of the predicted
and measured NCCN values, respectively. R represents the correlation
coefficient.

After completing the basic training, the SHAP algorithm is
employed to conduct an interpretability analysis on the predicted NCCN

values. SHAP operates by utilizing Shapley values to quantitatively
evaluate the contribution of each feature within a machine learning
model65. SHAP evaluates the contribution of each feature by measuring
how it changes the model’s prediction across all possible combinations
of features. In the absence of any features (e.g., aerosol optical para-
meters), the NEL model outputs a baseline prediction, typically the
averageNCCN value across the dataset.When a single feature, such as σsp,
is added, the model’s prediction may shift. This shift represents the
marginal contribution of σsp. SHAP quantifies this contribution by
computing the prediction difference introduced by σsp across all possible
feature subsets in which it is included. By averaging these marginal
contributions, SHAP assigns an importance value to each feature, pro-
viding a consistent and interpretable measure of how each aerosol
parameter influences NCCN predictions both individually and in com-
bination with others. Further details on the SHAP algorithm are pro-
vided in Supplementary Text 3.

SHAPcanbe influencedbymulticollinearity,where strongly correlated
features may distort the attribution of importance. To address this, feature
selection strategies, such as RFE and artificial selection of aerosol optical
parameters, were employed to reduce redundancy and ensure that the
selected features contribute independently and meaningfully.

Data availability
The U.S. Department of Energy (DOE) initiated the Atmospheric Radiation
Measurement (ARM) program at the end of the 20th century. Over the past
two decades, the program has conducted continuous observational experi-
ments through a network of fixed and mobile sites worldwide. The ARM
program performs long-term comprehensive observations of meteorological
conditions, radiation, ground-based aerosol optical properties, and cloud
condensationnuclei.Thedatacollectedarefreelyavailableonlinetoresearchers
globally, providing a solid foundation for studying the spatiotemporal dis-
tribution and long-term changes in aerosol properties66. ARM data can be
downloaded from the ARMwebsite (https://adc.arm.gov/discovery).

Code availability
The NEL model and Python codes used for performing analyses can be
accessed here: https://github.com/dtnan/NEL.
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