
npj | climate and atmospheric science Article
Published in partnership with CECCR at King Abdulaziz University

https://doi.org/10.1038/s41612-025-01183-w

Unequal spatio-temporal distribution of
population-weighted pollution extremes
through deep learning
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Exposure to fine particulate matter (PM2.5) poses a significant global health risk, yet extreme
concentration patterns remain underexplored. This study estimates daily PM2.5 concentrations from
1980–2023, validated against the WHO ambient air quality database. An ensemble of deep learning
models (CNN, LSTM, DNN) incorporating meteorological inputs achieved robust predictive accuracy
(RMSE < 17.85 μg/m³, R² > 0.894). Global and regional variations in population-weighted PM2.5

extremes [average annual, annual maximum, 99th percentile, days exceeding the USEPA standard of
35.5 μg/m³ (AQI > 100)weightedbypopulationdensity]were analysed.Results reveal persistently high
PM2.5 extremes in China, India, and Pakistan, contrasted with declining levels in Europe and North
America. Significant variability in African nations like Rwanda and Benin was also observed. 79.7% of
the global population and 66.3% of land areas exceeded the USEPA annual standards (9 μg/m³).
Seasonal disparities underscore region-specific pollution trends. These findings advocate for phased,
locally adaptive air quality strategies, especially in low-income and emerging economies.

Exposure to fine particulate matter (PM2.5) is a major environmental and
public health concern, linked to increased risks of disease and early
mortality1. Outdoor air pollution, which includes ambient PM2.5, con-
tributed to approximately 6.67 million (95% UI: 5.90–7.49) premature
deaths worldwide in 20192. PM2.5 is a compositemixture of various aerosols
and chemical compounds with varying toxicity and mass fractions3. Con-
sequently, the actual health impact of ambient PM2.5 could be greater than
what is estimated by looking at the total PM2.5 mass alone4. Exposure to
ambient PM2.5, whether for a short duration or over an extended period,
poses significant health risks, even at low concentrations5,6. Similarly, the
World Health Organisation (WHO) has updated its air quality guidelines
(AQG) to set new standards for outdoor PM2.5 exposure

7. The revised air
quality standards have lowered the permissible annual mean PM2.5 expo-
sure threshold from 10 to 5 μg/m³, while the 24 h mean exposure criterion
has been adjusted from 25 to 15 μg/m³, reflecting a more stringent reg-
ulatory framework for public health protection. However, still over 99% of
the global population remained subjected to ambient PM2.5 concentrations
surpassing the WHO’s annual AQG threshold, indicating widespread
exceedance of recommended exposure limits2,8.

Estimating global PM2.5 concentrations is essential for assessing
population exposure and evaluating the associated epidemiological and
health risks of air pollution9. Although ground-based PM2.5 monitoring
networks have expanded globally, including those integrated into theWHO

ambient air pollution database, their spatial heterogeneity and insufficient
coverage pose significant challenges in accurately quantifying global PM2.5

exposure8.While early studies reliedon interpolationmethods and chemical
transport models (CTMs) to quantify PM2.5 concentrations

10. However, the
incorporation of satellite-derived aerosol optical depth (AOD) has
enhanced estimation precision by providing higher spatial and temporal
resolution11,12. Ji et al.13 utilised Moderate Resolution Imaging Spectro-
radiometer (MODIS) AOD datasets, validated by AERONET, integrating
multi-source remote sensing and meteorological parameters to predict
PM2.5 concentrations in the Beijing–Tianjin–Hebei region with high pre-
cision. However, Zhang et al.14 introduced an alternative approach using
multi-angle polarised top of atmosphere reflectance observations acquired
from the GaoFen-5B satellite, demonstrating improved retrieval accuracy
over traditional AOD-based methods. Similarly, integrating machine
learning and deep learning (ML/DL) models with satellite data, reanalysis
datasets, ground-based monitoring stations and model simulations, offer
promising opportunities to reduce the uncertainties in global PM2.5

assessments, which further improves the accuracy15–17. These technologies
are increasingly employed for PM2.5 concentration forecasting due to their
high predictive accuracy and capability to handle complex, nonlinear
relationships. Wang et al.18 integrated meteorological variables from the
ERA5 reanalysis datasetwithmachine learning algorithms tomitigateAOD
discontinuities and enhance the spatiotemporal resolution of PM2.5
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estimations in North China. Similarly, Li et al.19 employed a two-stage
regression model with bias correction to compute PM2.5 concentrations
using AOD, further assessing the mortality risk associated with pollution
exposure in Iran. However, DL models, especially convolutional neural
networks (CNNs) and long short-term memory (LSTM) networks, have
shown higher accuracy in spatiotemporal PM2.5 estimation than conven-
tional regression and ML models20,21. Similarly, Koo et al.22 developed a
ConvLSTM-DNNhybridmodel tailored for Seoul, demonstrating superior
performance over traditional Community Multiscale Air Quality (CMAQ)
models by better capturing spatiotemporal patterns. Liu et al.23 further
advanced short-term PM2.5 forecasting by incorporating a complex
decomposition-based CNN-LSTM hybrid framework, optimising feature
extraction and temporal sequence prediction through the combined
advantages of convolutional and recurrent architectures.

The ensemble ML/DL methods, have shown great promise in geos-
patial air pollution prediction1,24–28. The ensemble learning algorithms
combine predictions from multiple models to achieve optimal results29.
Previous studies have shown that ensemble ML consistently achieve higher
accuracy than individualmodels in evaluating environmental exposures30,31.
Di et al.32 developed an ensemble modelling framework by integrating
multiple ML algorithms with diverse predictor variables to quantify daily
PM2.5 concentrations at a 1 km× 1 km resolution across the U.S., achieving
cross-validated R² values of 0.86 for daily estimates and 0.89 for annual
averages. Similarly, Mohammadi et al.33 used meteorological data and four
machine learning models (ANN, RF, SVM, KNN) and ensembles of clas-
sification trees RF to predict PM2.5 levels in Isfahan, finding ANN to be the
most accurate (90.1%) for air pollution forecasting. Nowadays, a more
advanced approach called deep ensemble machine learning model
(DEMLM), which integrates various bases and other parameters to enhance
prediction performance is used to predict atmospheric variables8,34.

Exposure and risk assessment ofmeanPM2.5 and its extremes is crucial,
as its concentration is expected to rise significantly in many regions
worldwide35. ExtremePM2.5 events canbe categorised into short-termspikes,
which occur due to sudden emissions or meteorological conditions lasting a
fewdays, and long-term exposure, which results frompersistently high levels
over months or years35. Recent global studies on PM2.5 concentrations have
emphasised long-term exposure, typically using annual or monthly data.
However, research on short-term PM2.5 exposure, spanning hours to days,
remains relatively limited globally36,37. More studies are now estimating daily
PM2.5 concentrations at regional scales in countries like the United States,
China, India, andEurope5,36,38–40. These studies focus on short-term exposure
and its global spatio-temporal variations. Kelly et al.41 developedNine PM2.5-
Exposuremodels, includingCTMs, interpolation, satellite-derived, Bayesian,
andmachine learningmethods, estimated a 1 μg/m³ average PM2.5 decrease
from 2011 to 2028, with greater reductions in high-emission areas and
reduced exposure inequality among racial/ethnic groups. Similarly, Aunan
et al.42 developed an Integrated Population-Weighted Exposure (IPWE)
method combining ambient and household PM2.5 exposure, estimating 1.15
million annual premature deaths in China, with rural exposure nearly twice
that of urban areas. However, variability in global training datasets and
methodological inconsistencies inPM2.5 estimationhinder the comparability
of regional assessments, complicating efforts to derive a consistent global
exposure profile43. Therefore, it is essential for studies to estimate extreme
ambient global daily PM2.5 concentrations and track their variations over
time and space using consistent study designs, modellingmethods, and data
source15,41. Additionally, advancements in data collection and integration
techniques will be essential in overcoming current limitations and providing
more reliable and actionable insights into air quality management and
policymaking44.

Several challenges remain in global PM2.5 estimation and exposure
assessment. The lack of ground-based observations in developing regions
limits model accuracy, necessitating improved data integration techniques.
Existing models exhibit limitations in accurately predicting extreme pollu-
tion events due to their low frequency and high variability, underscoring the
necessity for more resilient forecasting frameworks. Inconsistencies in

methodological approaches across studies hinder the comparability of
global PM2.5 estimates, underscoring the importance of standardised
modelling frameworks. While deep learning models have shown promise,
their interpretability remains a challenge, requiring the development of
ensemble ML/DL approaches for air quality prediction. This research
introduceskey innovations in extremeair pollutionmonitoring andanalysis
to address these gaps. The primary methodological advancement lies in the
deployment of a DEMLM (hybrid deep leaning CNN-LSTM-DNNmodel)
model for global PM2.5 quantification and prediction at an unprecedented
spatiotemporal resolution of 0.5° × 0.625° and 1 day, respectively, using the
meteorological andgeographic features, spanning1980 to2023andbiases in
the predicted data has been removed using WHO ambient air quality
database. This long-term and high-resolution approach significantly
improves existing models, enabling more precise tracking of pollution
patterns. Furthermore, national and regional population-weighted mean
PM2.5 concentrations were examined, including the number of days
populations were exposed to PM2.5 levels that exceeded the US EPA daily
limit of 35.5 μg/m³ (Air Quality Index > 100 ie;unhealthy for sensitive
groups), maximum one-day pollution and 99th percentile of PM2.5,
respectively. In this context, population-weighted pollution extremes
(PWPE) encompasses four distinct metrics that collectively characterise
severe air pollution exposure: (1) exceedances of the USEPA standard of
35.5 μg/m³ for 24-hour PM2.5 concentrations, representing regulatory
threshold violations; (2) annual maximum daily PM2.5 concentrations,
capturing the most severe pollution episodes; (3) 99th percentile PM2.5

values, indicating recurrent extreme pollution events; and (4) population-
weighted mean concentrations that exceed health-based guidelines, where
all metrics are weighted by population density to prioritise human exposure
assessment over simple spatial averaging. This analysis aimed to reveal the
spatiotemporal distribution of exposure to PM2.5 over the four decades,
providing insights into patterns and trends that could inform public health
strategies and policy decisions. The DEMLM framework represents a sig-
nificant leap forward in environmental health research, offering enhanced
capabilities for capturing subtle spatiotemporal variations in PM2.5 dis-
tribution. This study advances existing knowledge by providing a more
granular, comprehensive view of global air pollution patterns, enabling
better-informed public health strategies and policy decisions. However, the
practical significance extends to identifying regions experiencing extreme
pollution events and temporal fluctuations, thereby facilitating targeted
intervention strategies for air quality management.

Results
This study presented the spatial distribution of annual mean PM2.5 con-
centrations for the periods 1980–1990 (Fig. 1a), 1990–2000 (Fig. 1b),
2001–2010 (Fig. 1c), and 2011–2020 (Fig. 1d), along with their spatio-
temporal changes (Fig. 1e) and long-term trends (Fig. 1f). The analysis
identified substantial surge in PM2.5 concentrations across Eastern Asia
particularly China where concentrations exceeded 80-100 μg/m³ in many
regions such as Southern Asia including the Indo-Gangetic Plains where
peak concentrations reached similar levels,Western Africa, and the western
regions of North America and Russia. The highest PM2.5 concentrations
(>60 μg/m³)were consistently observed in a continuous belt stretching from
Northern India through Eastern China. Conversely, Europe, Northern
Africa, the eastern regions of North America, and Australia experienced
notable decreases in PM2.5 concentrations, with many areas showing
reductions of 10–20 μg/m³ over the study period. The spatio-temporal
change analysis (Fig. 1e) reveals that while some regions experienced
increases of up to 20 μg/m³, others saw comparable decreases, and the long-
term trend analysis (Fig. 1f) indicates that significantly increasing trends
(shown in red) dominated much of Asia, while significantly decreasing
trends (shown in blue) were more prevalent in Europe and parts of North
America (Fig. 1f). According to US-EPA revised standards, 66.30% of the
global land area (Fig. 2a) and 79.70% of the global population (Fig. 2b) were
subjected to annual PM2.5 concentrations exceeding 9 μg/m³. The results
indicated that 98% of Asia’s population, 86% of Africa’s, 84% of Europe’s,
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83% of North America’s, 60% of Australia’s, and 52% of South America’s
population are exposed to PM2.5 levels exceeding 9 μg/m³ (Fig. 2). However,
based on the WHO revised guidelines in 2019, over 99% of the global land
area and population are exposed to PM2.5 concentrations exceeding
5 μg/m³.

This study also computed long-term seasonal variability of mean
annual PM2.5 concentrations over 44 years (1980–2023) across various
regions and countries (Fig. S1). During the winter months (November to
February), high PM2.5 levels were recorded in the Indo-Gangetic Plain
(55.4–255.5 μg/m³), Niger ( > 255.5 μg/m³), and the northeastern regions of
China (35.5–125.4 μg/m³) whereas, Southern America, significant air pol-
lution was noted in July, August, and September (35.5–55.4 μg/m³). Rela-
tively, the eastern region of North America experienced elevated PM2.5

concentrations during the summer months (35.5–55.4 μg/m³). Northern
Africa showed consistently high PM2.5 levels throughout the year primarily
driven by substantial dust aerosol emissions.

Figure 3 presents a spatial comparison between computed and pre-
dicted PM2.5 concentrations, demonstrating that the DEMLM framework
effectively captures the global spatio-temporal variability of PM2.5 levels at a
representative time steps. The performance metrics for training, validation,
and testing datasets confirm the model’s robustness and generalisation
capabilities. The RMSE values are relatively low across all phases, increasing
slightly from 16.23 μg/m³ during training to 17.36 μg/m³ during testing,
indicating good predictive accuracy even on unseen data (Table 1). Corre-
spondingly, MSE values increase from 263.41 μg/m³ in training to
301.53 μg/m³ in testing. The R² values remain consistently high across all
phases, with 0.922 for training and 0.902 for testing, suggesting strong
agreementbetweenobserved andpredicted values. Similarly, theNSEvalues
drop marginally from 0.920 to 0.889, reaffirming the model’s ability to

replicate the observed dynamics effectively. The PBIAS values are within
acceptable limits, rising slightly from11.28% in training to 12.15% in testing,
indicating a minimal and consistent bias across datasets (Table 1). Despite
the model’s strong performance, a slight decline in accuracy is observed in
the testing phase, suggesting that the model might struggle with general-
isation when faced with unseen data45. The observed decline may be due to
the influence of extreme PM2.5 concentrations or unaccounted regional
variability that was not adequately represented in the training data46.
Additionally, the increased bias in testing suggests a potential systematic
deviation, which might stem from the model’s sensitivity to specific
meteorological or emission-related factors29,47.

Population Weighted Pollution Extremes
Globally, across 195 countries, the PWPM2.5 concentration for 1990-2020
ranges from 28.63 μg/m³ [Coefficient of Variation (COV): 69.25%] to
40.56 μg/m³ (COV: 68.36%), indicating a substantial rise in average pollu-
tion levels, although with a marginal decrease in relative variability. How-
ever, the increase inpopulation-weightedPM2.5D from38days (COV: 62%)
to 44 days (COV: 64%) suggests more frequent exposure to high pollution,
accompanied by a slight increase in variability. The 99th percentile of
population-weighted PM2.5 saw a dramatic rise from 50.94 μg/m³ (COV:
56.97%) to 65.72 μg/m³ (COV: 60.37%), highlighting a concerning increase
in extreme pollution events with more significant relative variability.
Similarly, the maximum one-day PM2.5 levels rose from 56.2 μg/m³ (COV:
68.43%) to 65.11 μg/m³ (COV: 64.11%), indicating higher peaks in daily
pollution, though with a reduction in relative variability.

The mean exposure of different extremes over the regions is shown in
Fig. 4 and represents a comprehensive analysis of population-weighted
PM2.5 and relatedmetrics across six continents from 2000 to 2020 (Fig. S2).

Fig. 1 | Global mean annual PM2.5 concentrations and their changes over time. Mean annual PM2.5 for the periods a 1981–1990, b 1990–2000, and c 2001–2010,
d 2011–2020 along with e the changes in mean annual PM2.5 per decade and f trends in mean annual PM2.5 during 1980–2023.
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Africa’s PM2.5 levels increased significantly in 2015 (17.26 μg/m³) before a
slight decline in 2020 (16.95 μg/m³) (Fig. S2). Similarly, the continent sawan
increase in PM2.5D and PM2.5x1day, with PM2.5D remaining stable at
53 days in 2015 and 2020 and PM2.5x1day rising sharply to 66.18 in 2020
(Fig. S2). Asia consistently rose in PM2.5 from 20.86 μg/m³ in 2000 to
25.99 μg/m³ in 2015, followed by a slight decrease in 2020 (Fig. S2). The
continent also had significant PM2.5D and high PM2.5x1day and 99th Per-
centile values, indicating severe pollution episodes. Europe, North America,
and Oceania showed lower PM2.5 levels, with Europe and North America
maintaining relatively stable yet low PM2.5D (Fig. S2). Notably, Europe’s
PM2.5 levels and 99th Percentile values declined over the years, suggesting
improved air quality. In contrast, Oceania maintained minimal pollution
with consistent PM2.5D at zero (Fig. S2). South America’s PM2.5 levels were
low, peaking slightly in 2020, with a unique increase in PM2.5x1day to 92.62
in 2015 before falling to 76.47 in 2020. The continents such as Africa and
Asia continue to grapple with rising pollution levels, and Europe andNorth
America show the effectiveness of stringent air quality regulations.

Figure 4 illustrates the global distribution of population-weighted
PM2.5 metrics, highlighting regional pollution hotspots from 2000 to
2020. High PM2.5 concentrations are prominent in South Asia, parti-
cularly India, Pakistan, Bangladesh, and parts of Africa and East Asia,
with China showing significant values. The number of days PM2.5 levels
exceed USEPA guidelines reveals notable hotspots in India, Pakistan,
Bangladesh, and regions in Africa such as Niger and Benin. The max-
imumdaily PM2.5 values indicate severe pollution episodes in SouthAsia,
theMiddle East, and parts of Africa, with Lebanon, Rwanda, and Nigeria

frequently exceeding safe levels. The depiction of the 99th percentile
PM2.5 showcases extreme pollution events in India, Bangladesh, and
Nigeria. However, countries in North and South America, Australia, and
Europe exhibit improved air quality, with their extreme values shown to
be at minimum levels.

This study further identifies and ranks countries based on the highest
population-weighted extreme estimates (Fig. 5), covering the period from
2000 to 2020. The rankings reveal persistent and emerging air pollution
hotspots, emphasising both chronic and acute exposure scenarios. China
dominates the Mean PM2.5 rankings from 2000 to 2010, indicating a pro-
longed period of severe air pollution. However, by 2015 and 2020, Rwanda
surpasses China, reflecting significant changes in pollution patterns and
possible regional industrialisation or urbanisation impacts. Pakistan and
Bangladesh consistently appear in the top three, highlighting their ongoing
struggle with high PM2.5 levels. In the PM2.5D category, Niger consistently
ranked first from 2000 to 2015, signifying continuous exceedances of
USEPA PM2.5 guidelines, with Benin taking over in 2020. This trend
underscores the persistent air quality challenges in these regions. Nepal,
Bangladesh, and China also feature prominently, pointing to frequent safe
air quality level breaches. The 99th Percentile rankings show China leading
from2000 to 2010, reflecting extremely highpollution episodes,while Benin
rose to the top in 2015 and 2020, indicating an increase in severe pollution
events. The PM2.5x1day rankings reveal Lebanon and Rwanda frequently
topping the list, with Qatar emerging in 2020. These countries experience
extraordinarily high daily PM2.5 values, suggesting acute pollution spikes
possibly due to specific events such as wildfires or industrial activities. The

Fig. 2 | Global land area and population exposure exceeding revised PM2.5 air quality standards. aGlobal land areawheremean annual PM2.5 concentrations exceed 9 μg/
m³, and b corresponding population exposure to PM2.5 levels above 9 μg/m³, based on revised USEPA air quality standards.
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presence of countries like Nigeria and Ghana in the top rank’s points to
regional spikes in daily PM2.5 levels, highlighting the necessity for region-
specific air quality control measures.

India’s rankings across these metrics are noteworthy. Consistently
appearing in the top ten for Mean PM2.5 and PM2.5D, India shows a per-
sistently high level of air pollution exposure and frequent exceedance of
USEPA guidelines. India’s ranking in the 99th Percentile and PM2.5x1day
metrics underscores the occurrence of extreme pollution events, likely
exacerbated by rapid urbanisation and industrial activities. These patterns
suggest that while India has made some strides in addressing air pollution,
significant challenges remain, necessitating comprehensive policymeasures
and enforcement to protect public health.

Discussion
This comprehensive study on daily PM2.5 concentrations across a grid
systemoffers a pioneering global outlook onPM2.5 concentrations and their
extremes, examining how population exposure has varied spatially and
temporally from 2000 to 2020. The study developed, tested, and validated
the DEMLMusing computed datasets of PM2.5, meteorological conditions,
and land use factors, demonstrating strong predictive accuracy. Notably,
nations in South Asia, East Asia, and Northern Africa consistently showed
high PM2.5 levels, aligning with previous research.Moreover, the forecasted
PM2.5 values exhibited clear seasonal fluctuations.

In this study, the empirical model is less commonly applied for esti-
mating global PM2.5 concentrations, whereas the DEMLM approach
demonstrates superior predictive accuracy. The prediction of PM2.5 globally
in the fine spatiotemporal resolution with meteorological and land-use
datasets to train a CNN-LSTM model for each independent validation
dataset. Other studies have also quantified worldwide monthly and yearly
average exposure to PM2·5. Hammer et al.48 analysed global assessments of
annual mean PM2·5 levels during 1998–2018 combining satellite data,
ground-based measurements and CTM, achieving R² ranging from 0.90 to
0.92. Shaddick et al.49 employed a global Bayesian hierarchical model
(BHM) integratingmultiple datasets to determine the average annual PM2·5

exposures for 2014, achieving an R² ~ 0.91. Comparing these findings with
previous global PM2.5 estimation studies is challenging due to the limited
availability of research quantifying global mean 24-hour PM2.5 exposure
levels. Additional comparative analyses are therefore necessary. Bont et al.5

conducted a comprehensive time-series analysis across ten Indian cities
during 2008–2019, employing novel spatiotemporal and causal models to
examine the relationship between PM2.5 concentrations and mortality,
identifying significant correlations and estimating the proportion of deaths
exceeding WHO and Indian AQG. The outcomes of this study is closely
matchedwithYu et al.8, who developed an advancedmodel for global PM2.5

estimation by integrating deep learning techniques, CTMs, and meteor-
ological variables, achieving high prediction accuracy. However, Rautela
and Goyal35 analysed trends and slopes of extreme pollution indices,
showing an expected increase in event intensity across most global regions
(Fig. 1), while Kelly et al.41 used nine PM2.5 exposure models to estimate
2011 concentrations and projected a ~ 1 μg/m³ average decrease by 2028
due to regulations. Similarly, Yu et al.8 observed a reduction in population-
weighted PM2.5 exposure in Europe and North America, while it increased
in South Asia, Australia, and Latin America, with over 70% of days in
2019 surpassing the WHO daily limit (Figs. 2 and 4). For region-specific
studies Aunan et al.42 assessed PM2.5 exposure in China using the IPWE
metric, reporting anaverage of 151 μg/m³,with rural populations exposed to
nearly double the levels compared to urban areas, while Jaganathan et al.50

Fig. 3 | Observed and DEMLM-predicted global PM2.5 concentrations. Comparison of observed and predicted PM2.5 concentrations (μg/m³) over the globe using the
DEMLM; Example sets a 31st December 2022(Observed) b 31st December 2022 (Predicted) c 31st December 2023 (Observed) and d 31st December 2023 (Predicted).

Table 1 | Model evaluation parameters of DEML framework

Parameters Training Validation Testing

RMSE (μg/m³) 16.23 17.85 17.36

MSE (μg/m³) 263.41 318.62 301.53

R2 0.922 0.894 0.902

NSE 0.920 0.887 0.889

PBIAS (%) 11.28 12.33 12.15
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highlighted that there is 10 μg/m³ rise in annual population-weighted PM2.5

in India (Fig. 1).
However, high-income countries, including Israel, Taiwan, Qatar and

Kuwait frequently exceeded dailymean PM2·5 levels of 35.5 μg/m³ for ~50%
of the year51–53. However, the countries that lie in lower-middle-income
countries contribute more to air pollution (Behrersam and Heft-Neal54;
Rentschler andLeonova55).Moreover, some regionsover andnear the global
deserts show high air pollution due to the substantial dust aerosol
emissions56. The Indian dust storm (2018)57 and Godzilla dust storm
(2020)58 are themostwell-documented dust storms that increased the PM2.5

concentrations bymore than 10–20 times over the Indian and eastern USA
regions. Similarly, regions, such as IGP, southeast Asia and eastern China
with high population density also contribute to severe air pollution59. PM2.5

concentration variations across space and time are driven by a combination
of human-made emissions from fuel combustion and alterations in natural
sources, with extreme aerosol events such as bushfires and windblown dust
intensifying these fluctuations60. During winter, northeastern China
experiences higher PM2.5 concentrations, likely due to favourable meteor-
ological conditions and increased emissions from fossil fuel combustion for
heating. Conversely, countries in South America, particularly Brazil,

Fig. 5 | Leading countries for population-weighted PM2.5 extremes with economic categorisation. Countries with the highest Population-weighted PM2·5 extremes
during 2000-2020 categorised by economical status.

Fig. 4 | Country-wise distribution of population-weighted pollution extremes. Country level distribution of population weighted a mean annual PM2.5 b PM2.5D,
c PM2.5x1day and d PM2.5 99

th Percentile values.
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experience higher PM2.5 levels in August and September due to human-
driven activities like slash-and-burn agriculture61. Similarly, during winters,
countries like India, Pakistan, Nepal etc. also see and increased PM2.5

concentrations due to agricultural burning combined with temperature
inversions and atmospheric circulation.

The historical trajectory of air quality policies, as illustrated through
global PM2.5 concentration maps, demonstrates the progressive impact
of regulatory interventions on pollution levels (Fig. S3). Major legislative
milestones, such as the U.S. National Ambient Air Quality Standards
(NAAQS) and the Clean Air Act of 1970, followed by the Acid Rain
Programme in 1990, significantly reduced pollution levels in North
America62,63. Similarly, the European Union implemented the Ambient
Air Quality Directive in 1996 and the National Emission Ceilings
Directive (NECD) in 2001, leading to marked improvements across
Western Europe64. Subsequent initiatives, such as the Clean Vehicle
Directive of 2009, reinforced urban air quality improvements65. Sig-
nificant decreases in PM2.5 concentrations have been observed across the
northern hemisphere, especially in North Africa and the Middle East,
where levels dropped from severe pollution (>150.4 μg/m³) in the 1980s
to moderate concentrations (35.5–55.4 μg/m³) by the 2020 s. More
recent interventions, such as the Clean Power Plan (2015), the Air
Pollution Action Plan (2013), and India’s National Clean Air Pro-
gramme (NCAP) (2019), have further contributed to pollution mitiga-
tion, particularly in South and East Asia66–68. High PM2.5 levels in the
Sahara Desert and parts of the Middle East highlight the continued
impact of natural sources such as mineral dust, which are not addressed
by standard regulatory measures.

A phased approach to implementing air quality standards in these
regions could involve setting initial, achievable targets that progressively
become more stringent, considering economic limitations for a feasible
advancement69. Moreover, from the study findings and the previously
discussed air pollution prevention policies (Fig. S3), we can craft a
comprehensive approach for low-income, lower-middle-income, and
emerging economies such as Niger, Pakistan, Bangladesh, Benin,
Nigeria, India etc. (Fig. 5). These countries encounter significant
obstacles in adopting effective air quality management strategies due to
resource constraints, fast-paced urban growth, and conflicting devel-
opmental priorities70. For low-income countries, the focus should be on
developing foundational air quality monitoring systems through cost-
effective sensors and community-driven data collection, alongside
promoting cleaner cooking technologies tomitigate indoor air pollution,
a significant health risk70–72. Lower-middle-income countries should
focus on gradually implementing air quality standards, enforcing
emissions regulations for key pollution sources such as industries and
vehicles, and investing in targeted interventions like urban greening and
cleaner public transportation73. Emerging economies with more finan-
cial and technical capacity should adopt advanced pollution control
measures, integrate smart air quality monitoring with policy frame-
works, promote sustainable urban planning, and strengthen regional
cooperation for transboundary pollution mitigation74–76.

This study underscores the pressing global challenge of PM2.5 pollu-
tion, particularly the rise in extremes across densely populated and rapidly
urbanising regions. Through the integration of deep learning models,
especially DEMLM (CNN-LSTM-DNN), it provides robust spatiotemporal
predictions of PM2.5, revealing significant exposure disparities across
countries and regions. The findings highlight persistent pollution hotspots
in South Asia and parts of Africa, emphasising the urgent need for region-
specific air quality management strategies. Population-weighted analyses
show that a large share of the global population remains exposed to PM2.5

levels far exceeding health-based standards, amplifying health risks and
socio-economic inequalities. However, limitations related to data sources,
model generalizability, and spatial resolution suggest the need for improved
data integration, hybrid modeling, and localised assessments. Future
research should focus on refining prediction accuracy, incorporating health
and socio-economic dimensions, and strengthening international

cooperation to effectively address air pollution and support sustainable
development goals.

Methods
Data sources
The present study usesModern-Era Retrospective analysis for Research and
Applications, Version 2 reanalysis datasets for surface mass concentrations
of anthropogenic aerosols (sulphates, black andorganic carbon) andnatural
aerosols (dust and sea salts)with a spatiotemporal resolutionof 0.5° × 0.625°
and 1 h respectively, during 1980–202377. Further, the concentration of
PM2.5 was assessed using the Global Modelling and Assimilation Office
(GMAO) (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/FAQ/) model
and correlated with the WHO datasets (version 5) (https://www.who.int/
data/gho/data/themes/air-pollution/who-air-quality-database/2022) for
the year 2011, 2014, 2016, 2018 and 2022 with a correlation coefficient and
coefficient of determination of 0.87 and 0.75, respectively17,78. Furthermore,
satellite-based meteorological data with a spatial resolution of 0.25° × 0.25°
were obtained from the ERA5 dataset to enhance the modelling process79.
This dataset provided comprehensive information on precipitation, tem-
perature, and wind speed, crucial for accurate and detailed meteorological
analysis and modelling. Daily data were determined by averaging 24 h of
observations, beginning each day. Additionally, the population density data
has been acquired from Gridded Population of the World (GPW) for the
years 2000, 2005, 2010, 2015 and 2020 (https://cmr.earthdata.nasa.gov/
search/concepts/C1597159135-SEDAC.html).

Methodology
We employed the DEMLM framework (Fig. S4) to predict daily PM2.5

concentrations at a global scale by integrating CNNs, LSTM, and DNN.We
initially investigated the association betweenPM2.5 levels andmeteorological
variables. Utilising datasets for PM2.5 concentrations, precipitation, tem-
perature, and wind speed for 1980-2023, we ensured proper alignment and
integrityof thedata.Eachdatasetwasupscaled to auniformspatial resolution
of 0.5° × 0.625° using bilinear interpolation to ensure consistency with the
PM2.5 grid for accurate cell-based analysis (Fig. S4)51. Missing values were
handled using forward fill, backward fill, andmedian imputation techniques
to avoid potential bias imputation could be introduced. We introduced
multiple time-lagged features, includingPM2.5 data shifted by oneday (PM25

lag1), and enhanced feature engineering with seasonal indicators (day of
year, month, season) to capture temporal dependencies. After imputing
missing values, thedatasetwas partitioned into training (80%), testing (20%),
and validation (integrated into training through validation split = 0.2) sub-
sets using time-series splitting to preserve temporal order where applicable,
ensuring reproducibility with a random state for 1980-202380,81.

We employed three advanced neural network architectures for the
model development phase: CNNs, LSTMs, and DNN82. The CNN model,
consisting of several convolutional layers followed by fully connected layers,
was developed to extract and learn spatial patterns in the data. It included32
filters with a stride of (1,1), kernel size of (3,3) and valid padding to handle
border regions (Table 2).TheReLUactivation functionwasused, alongwith
max pooling to reduce spatial dimensions. A dropout rate of 30% was
applied tominimise overfitting. The LSTMmodel, structured withmultiple
sequential LSTM layers followed by dense layers, efficiently processed the
temporal dependencies in the time-series data, capturing underlying pat-
terns. It featured 32 and 16 LSTM units, with 2 stacked LSTM layers (Table
2). The tanh activation function was used, along with a recurrent dropout
rate of 0.3 and an overall dropout rate of 0.30. The Densemodel, consisting
of fully connected layers with L1/L2 regularisation, served as a baseline for
comparisonwith 64, 32, and 16 hidden units respectively. Bothmodels were
optimised using the Adam algorithm with a learning rate of 0.001 with
ReduceLROnPlateau callback, employingmean-squared error (MSE) as the
objective function for loss minimisation. The model was trained for 100
epochs with adaptive batch size (minimum 64). Early stopping was
implemented with patience = 15 to prevent overfitting and learning rate
reduction with factor = 0.5 and patience = 7 (Table 2).
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To enhance the robustness of our predictions, we ensembled the CNN,
LSTM, andDNNmodels byweighted averaging based on the inverse RMSE
performance of their predictions. This ensemble method aimed to leverage
the unique strengths of each model, reducing overfitting and improving
generalisation capabilities34. The ensemble weights were calculated dyna-
mically based on individual model performance, with better-performing
models receiving higher weights. The ensemble model’s performance was
rigorously evaluated using the testing dataset, and key metrics such as
training, validation, and testing losses were analysed to themodel’s learning
process and computational efficiency24. Additionally, bias correction was
implemented using real-world city PM2.5 data from geocoded locations to
adjust systematic prediction errors. Themethodmatches each grid point in
themodel predictions to the nearest citymonitoring station usingEuclidean
distance based onWHO ambient air quality database for years 2011, 2014,
2016, 2018 and 2022. For each matched pair, it calculates the bias as the
difference betweenobservedannualmeanPM2.5 concentrations andmodel-
predicted values at that location. A global mean bias is computed from all
matched city-station pairs and uniformly applied to all grid predictions.
This approach assumes spatially homogeneous bias patterns and provides a
first-order correction by leveraging high-quality observational data to
reduce systematicmodel errors across the predictiondomain. The ensemble
approach demonstrated improved performance, effectively capturing spa-
tiotemporal dependencies, and underscored the efficacy of combining
CNN, LSTM, and DNN architectures for predicting PM2.5 concentrations
based on meteorological data. Further, the ensemble modelling framework
is employed for global-scale prediction of PM2.5 concentrations.

Statistical analysis
The spatiotemporal generalisation and reliability of the DEMLM frame-
work were assessed using multiple model efficiency parameters, including
MSE,RootMeanSquaredError (RMSE),Coefficient ofDetermination (R²),

Nash-Sutcliffe Efficiency (NSE), and Percentage Bias (PBIAS)83 to quantify
predictive accuracy and systematic bias. RMSE, computed as the square root
of MSE, quantifies the average magnitude of prediction errors, where lower
values indicate higher model accuracy84. MSE, while similar, provides an
unscaled measure of error, making it useful for comparing different
models84. quantifies the proportion of variance in PM2.5 concentrations
accounted for by the model, with values approaching 1 signifying higher
predictive accuracy and model reliability85. NSE assesses the predictive
power of the model relative to the mean observed values, where an NSE
above 0.5 suggests acceptable model performance and values close to 1
indicate excellent agreement86. PBIAS evaluates the model’s tendency to
overestimate or underestimate observed values, with an acceptable range
typically within ±25% for hydrological and air pollution studies87. The
metrics were calculated separately for the training, validation, and testing
datasets to comprehensively assessmodel performance across different data
partitions. Their selection provides amulti-faceted assessment of themodel,
addressing both absolute error and predictive reliability, ultimately
strengthening confidence in DEMLM’s spatiotemporal applicability.

Computation of decadal and month-wise change in PM2.5

concentrations
We systematically assessed the global distribution of PM2.5 concentrations,
examining their spatiotemporal variability across decadal and monthly
timescales to quantify long-term trends and seasonal dynamics88. This
assessment provided critical insights into how air quality changes over time
across different regions, allowing for a nuanced understanding of pollution
dynamics. The Mann-Kendall test was applied to detect monotonic trends
in annual PM2.5 concentrations without assuming data normality, while
Sen’s slope quantified trend magnitude through robust median-based cal-
culations resistant to outliers. The selection of monthly averages over a 44-
year period, along with decadal means, was intended to account for both

Table 2 | Hyperparameters for CNN-LSTM-DNN Model

Category Hyperparameter Description Values

CNN Number of Filters Number of feature detectors 32

Kernel Size Size of the filter window 3,3

Stride Step size of the filter 1

Padding Handles border regions valid

Activation Function Introduces non-linearity ReLU

Pooling Type Reduces spatial dimensions Max

Dropout Rate Prevents overfitting 30%

LSTM Number of LSTM Units Size of the hidden state 32, 16

Number of LSTM Layers Stacked LSTMs 2

Dropout Rate Prevents overfitting 30%

Recurrent Dropout Dropout between time steps 0.3

Activation Function Used in LSTM cells tanh

Bidirectional Whether LSTM processes both directions True

Dense Hidden Units Size of dense layers 64, 32, 16

Dropout Rate Prevents overfitting 30%

Regularisation L1/L2 regularisation L1 = 1e-5, L2 = 1e-4

General Training Batch Size Samples per training batch 64 (Adaptive)

Learning Rate Step size for optimiser 0.001

Optimizer Algorithm for weight updates Adam

Loss Function Measures prediction error MSE

Number of Epochs Complete training cycles 100

Early Stopping Stops training if no improvement True (patience=15)

Learning Rate Reduction Reduces LR on plateau factor=0.5, patience=7

Validation Split Portion used for validation 20%
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intra-annual fluctuations and long-term trends in PM2.5 concentrations.
Monthly averaging facilitates the identification of seasonal variations in
PM2.5 concentrations, providing insights into the influence of meteor-
ological dynamics, emission patterns, and atmospheric transport processes
on air quality over annual cycles. A key component of our analysis included
determining the proportion of global and regional land areas, as well as the
population exposed to PM2.5 levels, in accordance with the revised USEPA
guidelines, which now set the annual PM2.5 standard at 9 μg/m³ to enhance
public health protection68. This updated threshold aligns more closely with
the WHO’s recommended guideline of 5 μg/m³, emphasising the need for
stringent air quality control measures89. By examining these exposure
metrics, we aimed to systematically assess air quality trends and quantify
associated health risks, enabling the identification of high-risk regions that
require targeted pollution control interventions.

Computation of population-weighted pollution extremes
To assess air pollution levels and the population affected in each region, we
identified several key metrics: Population-weighted PM2.5 (PWPM2.5),
population-weighted exposed days (PWPM2.5D) where daily PM2.5 con-
centrations exceeded the USEPA standard of 35.5 μg/m³, population-
weighted annual maximum PM2.5 (PWPM2.5x1Day), and the population-
weighted PM2.5 99th percentile. These metrics collectively offer a multi-
dimensional perspective on pollution intensity and exposure scale, where
PWPM2.5 provides an estimate of the average exposure level, PWPM2.5D
highlights the frequency of severe pollution days, PWPM2.5x1Day captures
the highest PM2.5 concentration recorded in a year, and the 99th percentile
reflects extreme pollution events, helping to identify regions with recurrent
hazardous conditions35. The rationale for selecting these population-
weighted pollution extreme indices stems from their ability to integrate both
pollution severity and population density, ensuring that the analysis is not
just focused on absolute pollution levels but also on human exposure risks.
The population-weighted PM2.5 different extremes were identified as8:

Population� weighted PM2:5 ¼
Xn

i¼1

Pi

P
× PM2:5i

� �
ð1Þ

Population� weighted PM2:5D ¼
X365

i

Xn

i¼1

Pi

P
× PM2:5Dij

� �
ð2Þ

Population� weighted PM2:5x1Day ¼
Xn

i¼1

Pi

P
× PM2:5x1Dayi

� �
ð3Þ

Population� weighted PM2:599
thPercentile ¼

Xn

i¼1

Pi

P
× PM2:599

thPercentilei

� �

ð4Þ

In this analysis, PM2.5i represents the daily mean concentration of PM
in a grid cell (i). PM2.5Dij is a Boolean indicator, signifyingwhether the daily
mean PM2.5i on a specific day j within a year in a specific grid cell (i) exceeds
35.5 μg/m³ (Dij = 1) or not (Dij = 0). PM2.5x1Dayi denotes the annual
maximum PM2.5 concentration observed in grid cell (i), while PM2.5 99

th

Percentilei refers to the 99th percentile of PM2.5 concentrations within that
grid cell. The variable pi represents the annual average population within a
given grid cell (i), and P denotes the total population within a specified
region, computed as the aggregate sum of pi across all grid cells.

The study regions were delineated according to the regional and
national groupings defined by the UN Statistics Division, covering 195
countries.We assessed global, regional and national PWPM2.5, PWPM2.5D,
PWPM2.5x1Day andPM2.5 99

th percentile exposure for the years 2000, 2005,
2010, 2015, and 2020 respectively. Countries were ranked by their exposure
levels, with labels indicating their income group based on the World Bank
classification.Monthlymean PM2.5 concentrations were computed for each
grid cell globally over a 44-year period to analyse seasonal variability. This

approach provided a comprehensive view of both global, regional and
national trends in PM2.5 exposure, highlighting areas with the highest
pollution levels and seasonal variations in air quality. Additionally, we
reviewed existing policies implemented globally and regionally to combat
pollution. Through an evaluation of policy effectiveness, we identified key
strategies andbest practices that havedemonstrated success inmitigating air
pollution. Based on this analysis, we formulated region-specific policy
recommendations to enhance air qualitymanagement.Our objectivewas to
provide data-driven insights that support the implementation of targeted
measures for pollution reduction and environmental health improvement.

Data availability
The datasets utilised in this study are publicly available from reputable global
sources. Aerosol surface mass concentrations were obtained from the
MERRA-2 reanalysis dataset provided by NASA's Global Modelling and
AssimilationOffice (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/FAQ/).
The ground-based observations of PM2.5 for the global cities were obtained
fromWHO Air Quality Database version 5 (https://www.who.int/data/gho/
data/themes/air-pollution/who-air-quality-database/2022). Meteorological
variables such as precipitation, temperature, and wind speed were sourced
from the ERA5 dataset with 0.25° spatial resolution. Population density data
were obtained from theGridded Population of theWorld (GPW) for selected
years between 2000 and 2020 (https://cmr.earthdata.nasa.gov/search/
concepts/C1597159135-SEDAC.html). The DEMLM estimated PM2.5 data-
sets can be downloaded from https://zenodo.org/records/16670675.

Code availability
The code will be made available online on a reasonable request to the
corresponding author.
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