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Skilful global seasonal predictions from a
machine learning weather model trained
on reanalysis data

Check for updates
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Machine learning weather models trained on observed atmospheric conditions can outperform
conventional physics-based models at short- to medium-range (1–14 day) forecast timescales. Here
we take the machine learning model ACE2, trained to predict 6-hourly steps in atmospheric evolution
and which can remain stable over long forecast periods, and assess it from a seasonal forecasting
perspective (1–3 month lead time). Applying persisted sea surface temperature (SST) and sea-ice
anomalies centred on 1st November each year, we initialise a lagged ensemble of seasonal predictions
covering 1993/1994 to 2015/2016. Over this 23-year period there is remarkable similarity in the
patterns of predictability with a leading physics-based model. The ACE2 model exhibits skilful
predictions of theNorthAtlanticOscillation (NAO)with a correlation score of 0.47 (p = 0.02), aswell as a
realistic global distributionof skill andensemble spread. Surprisingly, ACE2 is found to exhibit a signal-
to-noise error as seen in physics-based models, in which it is better at predicting the real world than
itself. Examining predictions of winter 2009/2010 indicates potential limitations of ACE2 in capturing
extreme seasonal conditions that extend outside the training data. This study reveals that machine
learning weather models can produce skilful global seasonal predictions and provide new
opportunities for increased understanding, development and generation of near-term climate
predictions.

In recent years a revolution in weather prediction has occurred in which
machine learning-based models can match or outperform physics-based
models over a range of metrics1–5. Learning the 1–6-hour evolution of the
atmospheric state, thesemodels canproduce skilful forecasts for several days
by feeding the predictions back into themselves, as dynamical models do,
known as “autoregressive” forecasting6. Recent studies suggest skilful fore-
casts can be made covering several weeks5,7–9 and very large ensembles can
provide improved estimates of extreme events10. Beyond these timescales,
instabilities can grow, or the predictions blur and smooth, restricting their
application to long-range climate predictions at monthly or seasonal time
scales11. Some models are stable for long autoregressive rollouts and can
capture the climatological state and aspects of interannual variability7,12–15,
however to date, their ability for skilful seasonal predictions has not been
established.

Machine learning predictions at seasonal timescales (1–3 month lead
times) often utilise more direct approaches in learning relationships
between predictors and specific predictands, or resort to using model data

for training. For example, skilful predictionshavebeendemonstrated for the
El Niño-SouthernOscillation (ENSO) as well as some regional scale climate
variability16–22. Understanding the mechanisms underpinning such pre-
dictions can be difficult and developingmethods to provide explainability is
a key topic of research23,24.Withonlyone eventper season, a key limitationat
longer forecast periods is the relatively small sample size available for
training. This restricts the ability to learn complex relationships while at the
same time keeping a suitable number of years separate for testing, as needed
for dynamical models25. One approach to overcome this is to utilise model
data for training19,26,27, but the errors and biases found in physics-based
models are inevitably inherited.

In this study we assess the newly developedmachine learning weather
model ACE213 from a seasonal forecasting perspective. This model predicts
the atmospheric evolution at 6-hourly time steps and can remain stable for
long autoregressive forecast periods, enabling it to provide seasonal simu-
lations even though it was not explicitly trained to provide such predictions.
It is trained only on historical conditions from the ERA5 dataset28. We
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initialise ACE2 during autumn each year from 1993 to 2015 and assess the
seasonal skill of December-January-February (DJF) conditions, a lead time
of 1–3 months. To provide boundary conditions, the SST and sea-ice
anomalies at the time of initialisation are persisted throughout the forecast
period each year. The influence from large-scale drivers such as ENSO are
therefore preserved, but any coupled ocean-atmosphere processes are
missing. We compare the ACE2 seasonal forecasts to those from GloSea, a
leading physics-based coupled ocean-atmosphere ensemble prediction
system29,30.

Results
Skilful data-driven seasonal forecasts
Over the 23-year assessment period the pattern of seasonal skill (1-3month
lead) demonstrated byACE2 closely resembles that of the dynamicalmodel
for mean sea level pressure (MSLP, Fig. 1a, b). This is remarkable con-
sidering ACE2 was designed for stable climate simulations, with no delib-
erate attempt to capture seasonal predictability. While much of the tropical
skill is due to the persistence of slowly evolving processes such as ENSO
from the initialisation of the tropical oceans31,32, ACE2 also exhibits skill
across the tropical land and the extratropics, including the North Atlantic
and North Pacific. Interestingly, ACE2 also exhibits reduced skill over
Eurasia, as seen in the physics-based model GloSea. In most regions the
ACE2 correlation is weaker than that for GloSea. For example, the area-
average correlation across the northern hemisphere extratropics (20°N to
90°N) is 0.39 in ACE2 and 0.44 in GloSea, while over the tropics (20°S to

20°N) the scores are 0.79 and 0.82, respectively. In comparison, a persistence
forecast using October monthly mean conditions scores 0.17 across the
northern hemisphere and 0.52 across the tropics. Subsampling predictions
across years indicatesno evidence that these results are biasedbypredictions
based on initial conditions seen during the training of ACE2 (Supplemen-
tary Figs. 2 and 3).

For temperature (Fig. 1c, d) we continue to see large regions of skill
from ACE2, including South America, Africa, Australia and parts of North
America. As seen for MSLP, GloSea outperforms ACE2 across many parts
of the world with the area-weighted mean correlation across the northern
hemisphere extratropics at 0.41 in ACE2 and 0.45 in GloSea, and 0.68 and
0.77 respectively across the tropics. The skill for both systems is lower for
precipitation, however the ACE2 model (Fig. 1e) once again closely
resembles that of GloSea (Fig. 1f), particularly across the tropics, the Car-
ibbean and east Asia.

These results demonstrate that the ACE2 model can skilfully predict
seasonal variability across many parts of the world with a lead time of 1-3
months.

Predictability of the North Atlantic Oscillation
The NAO is the primary mode of seasonal variability across the North
Atlantic33 and is a key focus for extratropical seasonal prediction34–36. ACE2
can predict the DJF-mean NAO37 with a correlation score of r = 0.47
(Fig. 2a), at a lead time of 1–3 months. This is statistically significant at the
95% level (p = 0.023) and is highly competitive with a range of dynamical

Fig. 1 | Skilful seasonal (DJF) predictions from the ACE2 machine learning and
GloSea dynamical models with a lead time of 1-3 months. Correlation score of
mean sea level pressure (a), surface temperature (c) and precipitation (e) for ACE2

and GloSea (b, d, f) calculated across 1993/1994 to 2015/2016. Stippling indicates
correlations are significantly different to zero (23 years, 95% confidence level).
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models. For example, over a shorter 19-year analysis period (1993–2011)
ACE2 exhibits higher NAO skill (r = 0.42) than 4 operational ensemble
prediction systems36.

It is important to note that only the 9 winters between 2002 and 2010
are fully independent of theACE2 trainingperiod13.Over this shorter period
the NAO correlation remains high (r = 0.6), although with reduced sig-
nificancedue to the smaller sample size (p = 0.07). Skill is also high across an
extended 1981–2022 period (r = 0.52) and a subsampling analysis suggests
that these NAO results are not biased by predictions from years within the
ACE2 training period (Supplementary Figs. 1 and 3).

Interestingly, ACE2 gives a poor prediction of the extreme winter in
2009/2010 (see Section “The extreme winter of 2009/2010” below).
Nevertheless, given the long autoregressive forecasts, the lack of a well
resolved stratosphere, and the use of non-interacting, persisted SSTs, the
ACE2 model skilfully predicts the NAO. This is surprising as both strato-
spheric variability and interactive ocean processes underpin dynamical
model skill38,39.

We also find that the ACE2 and GloSea NAO predictions are not
strongly correlated (r = 0.34, p = 0.11) and so there may be additional value
in combining them. Indeed, an ensemble mean constructed from both
models results in an NAO correlation score of r = 0.65 (p < 0.01), matching
that estimated by GloSea with an extended ensemble size of 127 members.
Furthermore, after removing the climatologicalmean, theACE2andGloSea
NAOpredictions appear to be drawn from the sameunderlying distribution
(two-sample KS-test, 95% confidence). This indicates that ACE2 could also
be utilised to enhance dynamical model ensembles.

In addition to skilful seasonal predictions, the ACE2 ensemble closely
matches the dynamical model in terms of NAO variability. Following
initialisation, we find that the ACE2 ensemble mean error and ensemble
spread increase in line with GloSea (Fig. 2, Equations (1) and (2)). Fur-
thermore, the DJF-mean total standard deviation across all years and
members is 4.3 hPa inERA5, 3.6 hPa inACE2and3.8hPa inGloSea. For the
ensemble mean variability the standard deviation is 1.11 hPa in ACE2 and
1.21 hPa in GloSea. The lagged-ensemble methodology used here therefore
enables sufficient ensemble member spread to develop, but other methods
for ensemble generation are key topics for future research.

In line with dynamical models34,40,41, ACE2 NAO skill also increases
strongly with ensemble size (solid line, Fig. 2c). This is encouraging as it is
much cheaper and quicker, in computational terms, to increase the
ensemble size of data-driven models compared to dynamical models.
However, it can also be seen that when the ACE2 ensemble mean is used to
predict one of its own individual members (so-called ‘perfect model’ skill),
the skill is markedly lower (r = 0.25, dashed lines in Fig. 2c) than the ACE2
skill in predicting the observedNAO (thick solid lines, Fig. 2c). The ratio of
predictable components (Equation (3)) provides ameasure of observed and
modelled predictability and variance. For ACE2 this quantity is found to be
1.6, only slightly less than the 1.8 for GloSea, but still greater than 1 (90%
confidence). This indicates that for ACE2, the ensemble mean variance is
small compared to the total ensemble variance given its skill in predicting
the observed NAO42.

Therefore, despite having been trained only on reanalysis data, the
ACE2 predictions also exhibit a signal-to-noise error which resembles that

Fig. 2 | Skilful predictions of the DJF-mean North Atlantic Oscillation (NAO).
a DJF-mean NAO index, standardised to unit variance, from ERA5 (black), GloSea
(red) and ACE2 (blue). b ensemble mean RMSE (solid) and spread (dashed) for the
NAO (hPa) as a function of lead time during November each year, averaged over all
years. c Relationship between NAO correlation score and ensemble size (solid lines)

and skill in predicting individual withheld ensemble members (dashed lines) based
on 1000 random samples with no replacement. The dashed lines are thickened when
significantly below the corresponding solid line (outside 95% sampling range). The
horizontal dashed grey line indicates the 95% significance level for a sample size of
23 years.
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found in dynamical models34,40,42–44. This is somewhat surprising as it may
suggest that the signal-to-noise error is not restricted to a physical model
error and instead occurs due to some other damping effect on the pre-
dictable signal. For example, weak eddy forcing and feedback are one
hypothesised cause of the error45, however these characteristics are notweak
within the reanalysis used to train ACE2. Further investigation of ACE2
characteristics is needed, but we note that machine learning predictions can
also exhibit damping and smoothing of the kinetic energy spectrum11,46

potentially leading to similar errors in forecast anomaly amplitude. It is
possible that the same qualitative behaviour occurs for different reasons in
the ACE2 and GloSea models, but further research is needed to understand
if this is the case.

ENSO as a driver of seasonal skill
ENSO is the primary mode of interannual climate variability and is a
key driver of seasonal skill across many parts of the world47,48. In this
section we investigate whether ACE2 is correctly capturing ENSO
teleconnections.

Composite differences between El Niño and La Niña years (Fig. 3)
reveal that ACE2 exhibits very similar teleconnection patterns to those seen
in ERA5 and GloSea for bothMSLP and surface temperature. In particular,
we find ElNiño deepens the Aleutian low and influences theNorthAtlantic
jet, extending eastward from the Caribbean. This suggests that ACE2 is
capturing the ENSO relationship on the subtropical jet, an important

mechanism underpinning the global influence of ENSO47,49. In terms of the
surface temperature response, ACE2 also exhibits very similar ENSO tele-
connections to ERA5 and GloSea, particularly over North America, South
America, southern Africa and Australia. These composites indicate that
ACE2 is correctly capturing the regional interannual variability associated
with ENSOacrossmany parts of theworld despite being trained only on the
6-hourly evolution of the atmosphere.

The extreme winter of 2009/2010
As a final part of our assessment we focus on predictions for the extreme
northern hemisphere winter of 2009/2010, which is part of the independent
dataset withheld during the training of ACE2. This winter is characterised
by a record negative NAO, well beyond the anomalies seen in other years. It
was also subject to a minor and a major sudden stratospheric warming
(SSW), a strong ElNiño and an easterlyQuasi BiennialOscillation (QBO)50.
The winter mean MSLP anomaly (Fig. 4a) exhibits a very zonal negative
NAO which is well captured by GloSea (Fig. 4c). However, the ACE2
ensemble mean prediction does not appear to capture this signal with only
slightly above average pressure across the Arctic (Fig. 4b). This is surprising
given the strong tropical forcing and potentially indicates a limitation of
ACE2 in predicting extreme, out of sample conditions. Exploring this fur-
ther, we find that both ERA5 and GloSea exhibit a weakened stratospheric
polar vortex Fig. 4d, f), while ACE2 exhibits near-normal vortex strength
(Fig. 4e).

Fig. 3 | Influence of ENSO onDJF surface conditions. Composite maps of El Niño
years (n = 8) minus La Niña years (n = 9) for mean sea level pressure (hPa) and
surface temperature (K) anomalies for ERA5 (a, b) ACE2 (c, d) and GloSea (e, f).

Shaded contours show the DJF mean anomaly. Stippling indicates significant dif-
ferences (two-tailed T-test, 95% confidence level).
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In terms of SSWs, the winter comprised of a minor warming in
December 2009 and a major warming in January 2010, reflecting the
increased SSWprobability due to the El Niño and easterly QBO50–53. GloSea
appears to capture this increase, with 81% of members (51 out of 63)
experiencing easterly zonalwinds at 10hPa and60°Nwithin thewinter. This
is significantly higher than GloSea’s climatological probability of 62% (two
proportion Z-test, 95% confidence level). In comparison, only 39%ofACE2
members (25 out of 64) exhibit easterly stratospheric winds in the upper
most model layer (above 50mb), which is not significantly different to the
climatological rate of 40%. This indicates that the ACE2 model is not cor-
rectly capturing the disruption to the stratospheric polar vortex during
winter 2009/2010.

Furthermore, the SSWprobability within ACE2 is relatively consistent
across El Niño (45%) and La Niña (36%) years, neither of which are sig-
nificantly different from neutral years (41%, one-tailed two proportion Z-
test, 95% confidence level). GloSea and ERA5 however exhibit significant
differences between active and neutral ENSO years, with a higher chance of
an SSW during El Niño54–57. This suggests that while the ACE2 can exhibit
sub-seasonal stratospheric variability13 it is not fully capturing the ENSO
teleconnection to the stratosphere despite realistic tropospheric
teleconnections.

Discussion
This study demonstrates skilful seasonal predictions from a machine
learning weather model. Despite being trained only on the 6-hourly
observed evolution of the atmosphere, when assessed from a seasonal pre-
diction perspective (i.e. lead time 1-3 months), the ACE2 model exhibits
significant skill and is competitive with current dynamical systems. A
lagged-ensemble approach is found to generate ensemble spread which
closely matches observations and a physics-based ensemble prediction
system, a characteristic is it not specifically trained on. Themodel produces
realistic ENSO teleconnections in the troposphere, but the stratospheric

pathway isnot in linewithobservations.Thismaybedue to a relatively small
sample of observed events (e.g. slower time scales in the stratosphere and
limited number of SSWs), the training methodology (e.g. loss weightings
applied to different levels or parameters), ormodel architecture. If the latter,
this could potentially be addressed through enhanced vertical resolution in
the stratosphere, a characteristic found to be important in dynamical
models54,58–60, providing an opportunity for improved skill in the future.

Dataset independence is an important part of understanding the
generalization of machine learning models and our results are based on
predictions initialised with conditions both within and independent of the
ACE2 training period. However, we find no evidence of bias within our
predictions at the global or regional scale. This is potentially due to the use of
long (4-month) rollouts and persisted boundary conditions which differ
from the 6-hour loss minimalization and time-evolving conditions within
the ACE2 training. Understanding the sensitivity of seasonal predictions to
different training and test years, particularly over the satellite period, is a key
topic formoving towards real-timepredictionswhichoccurwithin a climate
outside of the training period.

A significant benefit of machine learningmodels is the relatively cheap
computational cost. For seasonal forecasting timescales, a dynamical model
can take hours on a supercomputer for each simulation. In comparison, the
ACE2 model can complete a 4-month forecast simulation in under 2
minutes on an Nvidia A100 GPU. Opportunities arising from this include
the ability to generate very large ensemble sizes (e.g. over 7000 members10),
much longer assessment periods, rapid testing of new experimental setups
and better exploration of sources of predictability and the signal-to-noise
error44.Machine learningmodels are thereforehighly applicable for seasonal
and climate timescales where large ensembles are needed. Further research
is needed on optimal ensemble generation approaches as well as coupling to
data-driven ocean models61 or ocean-atmosphere-coupled dynamical
models. However, it is clear from this work that the machine learning
models can supplement and support current seasonal forecasting methods.

Fig. 4 | Surface and stratospheric anomalies associated with the extreme winter of 2009/2010.Anomalies from the 1994-2016 climatology ofMSLP (hPa) and zonal wind
at 10hPa (ms-1) for ERA5 (a, d), ACE2 (b, e) and GloSea (c, f). ACE2 stratospheric conditions are model layer 0 (above 50 hPa).
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Overall, these results show that the machine learning revolution is not
limited to short-range weather forecasts and can provide several new
opportunities for advancing near-term climate predictions.

Methods
Datasets
Historical atmospheric conditions are taken from the ERA5 reanalysis28. To
persist SST and sea-ice conditions throughout a forecast we create a sea-
sonally varying climatology based on the 6-hourly atmospheric state, for
each grid cell, using a rolling-mean gaussian filter with a width (standard
deviation) of 10 days. Observed monthly rainfall totals are taken from the
Global Precipitation Climatology Project version 2.3 (GPCP)62.

For comparison with dynamical models, hindcasts (retrospective
forecasts) initialised from 1993 to 2015 are taken from the GloSea opera-
tional ensemble prediction system with GC3.2 configuration29,30,63. A 63-
member ensemble is constructed from 21 members initialised on 25th

October, 1st November and 9th November each year and the ensemble
spread is generated through a stochastic physics scheme64. GloSea simula-
tions cover a forecast period of 6 months with an atmospheric resolution of
approximately 0.5 degrees and an ocean resolution of 0.25 degrees. It has 85
vertical levels in the atmosphere, covering the entire stratosphere and
extendingup to85km(0.01 hPa) aswell as 75 levels in the ocean.TheGloSea
prediction system is one of the top performing dynamical models across
sub-seasonal and seasonal timescales for both the tropics and mid-
latitudes32,36,65,66.

For this studyweuse themachine learning atmosphericmodelACE213.
The model is trained solely on ERA5 reanalysis atmospheric fields and
predicts the evolution of the atmospheric state at 6-hour time steps at a 1°
grid resolution. Importantly, ACE2 autoregressive forecasts are stable over
multiple years hypothesized to be due to its Spherical Fourier Neural
Operator architecture67, use of user prescribed ocean and sea-ice boundary
conditions, and physical constraints on mass conservation, moisture, pre-
cipitation rate and radiative fluxes13.

Of relevance to this study, the 10 years from 2001 to 2010, which lies
within our 23-year hindcast period, are withheld during training of ACE213

and forman independent test period for themodel. The remaining years are
used to train themodel.However, our experiments (seebelow) are initialised
one month prior to the periods of interest and utilise persisted boundary
conditions, while time-evolving boundary data were used for training
ACE2. These specific atmospheric and ocean states will therefore be new to
the model, although the large-scale patterns will have been seen previously.
Combined with this, each forecast involves over 500 autoregressive steps,
over which which errors will grow and result in individual trajectories. This
is demonstrated through the realistic ensemble spread within ACE2 at
seasonal timescales. Quantitative testing of the ensemble (Supplementary
Figs. 2 and 3) at global and regional scales found no evidence of bias within
the ACE2 predictions between training and independent years.

All ERA5 andGloSea data is bilinearly interpolated to the native 1° x 1°
ACE2 grid, except for precipitation, in which ACE2 and GloSea are inter-
polated to the 2.5° x 2.5° GPCP grid.

Indices and metrics
We define ENSO years based on the DJF Oceanic Niño Index68 with a
threshold of ± 0.5K. ElNiñowinters are 1995, 1998, 2003, 2005, 2007, 2010,
2015, and 2016. La Niña winters are 1996, 1999, 2000, 2001, 2006, 2008,
2009, 2011, and 2012.

We define theNAO index37 as the difference inmean sea level pressure
between a southern box (90°W-60°E, 20°N-55°N) and a northern box
(90°W-60°E, 55°N-90°N). The results are consistent when applying a
smaller regional definition40 (r = 0.42, p = 0.048) and a point-based
estimate34 (r = 0.41, p = 0.053).

To calculate the ensemble mean error and spread as a function of lead
time we utilise only ACE2 members initialised between 00:00z on 28th

October and 00:00z on 1st November (n = 20) each year and GloSea
members initialised at 00:00z on 1st November (n = 21). Forecasted daily

NAO values are aggregated into 5-day means (pentads) and the climato-
logical mean removed. The ACE2 values are therefore partly larger than
GloSea’s due to the inclusion of longer lead time forecasts. The ensemble
mean error for a given 5-day average, RMSEp is defined as:

RMSEp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The corresponding average ensemble spread is defined as:

σp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
23

X

2016

i¼1994

σ2ip

v

u

u

t ð2Þ

Where σip is the standard deviation of themodelNAOacrossmembers
for year i and pentad p.

To assess ACE2 andGloSea predictions in terms of signal and noisewe
compute the ratio of predictable components (RPC,43) as

RPC ¼ r
σsig=σtot

ð3Þ

where r is the ensemble mean correlation with ERA5, σsig is the ensemble
mean standard deviation and σtot is the standard deviation across all
members and years. A random resampling procedure is used for sig-
nificance testing43.

ACE2 experimental setup
ACE2 seasonal predictions are generated using a lagged ensemble approach.
An ensemble member is initialised every 6 hours between 25th October and
9th November each year from 1993 to 2015, creating a total of 64 members
per year. The forecast period extends from initialisation through to mid-
March the following year, providing a lead timeof 1-3months. For example,
a forecastmember initialised inNovember 2001 is rolled out over 500 times
until March 2002. Initial conditions for each member are taken from the
ERA5 reanalysis dataset28. Boundary SST and sea-ice conditions are pro-
vided throughout each forecast by calculating the instantaneous anomaly at
initialisation for each grid cell and persisting this throughout the forecast
using the derived ERA5 6-hourly climatology. This is different to the ACE2
training, in which time-evolving boundary conditions are used.

The 6-hourly climatology is calculated using a gaussian filter with a
width (standard deviation) of 10 days, averaged across the 1994-2016period
(23 years). For each initialisation the instantaneous initial condition
anomaly is persistedusing this climatology, e.g. for a given gridcell at time (t)
the SST boundary condition is

SSTðtÞ ¼ SSTð0Þ � climatologyð0Þ þ climatologyðtÞ ð4Þ

Where t = 0 indicates the value at initialisation. The same method is
used to persist sea-ice concentrations, with all values limited to be
between 0 and 1.

Historical downward shortwave radiative flux at the top of the atmo-
sphere and global mean atmospheric carbon dioxide inputs are prescribed
throughout the hindcast period13 as performed for the GloSea simulations.
However, understanding the sensitivity of ACE2 predictions to these
boundary conditions is a key topic for further research. We find that
repeating the hindcast experiment using a climatology derived from
1988–2022 (excluding 1994–2016) produces consistent results (NAO
r = 0.54) as does utilising the previous year’s TOA shortwave flux (NAO
r = 0.43) and using the previous year’s CO2 (NAO r = 0.38). These addi-
tional results are in line with a natural variability test (NAO r = 0.42) where
the initial condition times were manually altered by 6 hours, suggesting a
limited sensitivity of these boundary conditions for this application.
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Data availability
Initial conditions for ensemblemembers are taken fromtheERA5reanalysis
dataset28. CO2 and solar irradiance forcing data are available at https://
huggingface.co/allenai/ACE-2-ERA5. The data used for the figures is
available at https://doi.org/10.5281/zenodo.15025230.

Code availability
The trainedACE2-ERA5model checkpoint used in this study is available at
https://huggingface.co/allenai/ACE-2-ERA5. The ACE2 code is available at
https://github.com/ai2cm/ace.
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