Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nonhuman primate species as models of human bacterial sepsis

Abstract

Sepsis involves a disordered host response to systemic infection leading to high morbidity and mortality. Despite intense research, targeted sepsis therapies beyond antibiotics have remained elusive. The cornerstone of sepsis research is the development of animal models to mimic human bacterial infections and test novel pharmacologic targets. Nonhuman primates (NHPs) have served as an attractive, but expensive, animal to model human bacterial infections due to their nearly identical cardiopulmonary anatomy and physiology, as well as host response to infection. Several NHP species have provided substantial insight into sepsis-mediated inflammation, endothelial dysfunction, acute lung injury, and multi-organ failure. The use of NHPs has usually focused on translating therapies from early preclinical models to human clinical trials. However, despite successful sepsis interventions in NHP models, there are still no FDA-approved sepsis therapies. This review highlights major NHP models of bacterial sepsis and their relevance to clinical medicine.

This is a preview of subscription content, access via your institution

Access options

Fig. 1

Similar content being viewed by others

References

  1. Singer, M. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA : the journal of the American Medical Association 315, 801–810 (2016).

    CAS  PubMed  Google Scholar 

  2. Gaieski, D. F., Edwards, J. M., Kallan, M. J. & Carr, B. G. Benchmarking the incidence and mortality of severe sepsis in the United States. Critical care medicine 41, 1167–1174 (2013).

    PubMed  Google Scholar 

  3. Iwashyna, T. J., Cooke, C. R., Wunsch, H. & Kahn, J. M. Population burden of long-term survivorship after severe sepsis in older Americans. Journal of the American Geriatrics Society 60, 1070–1077 (2012).

    PubMed  PubMed Central  Google Scholar 

  4. Iwashyna, T. J., Ely, E. W., Smith, D. M. & Langa, K. M. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA : the journal of the American Medical Association 304, 1787–1794 (2010).

    CAS  PubMed  Google Scholar 

  5. Ferrer, R. et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Critical care medicine 42, 1749–1755 (2014).

    CAS  PubMed  Google Scholar 

  6. Rivers, E. et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. The New England journal of medicine 345, 1368–1377 (2001).

    CAS  PubMed  Google Scholar 

  7. The ProCESS Investigators. A randomized trial of protocol-based care for early septic shock. The New England journal of medicine 370, 1683–1693 (2014).

  8. Fink, M. P. Animal models of sepsis. Virulence 5, 143–153 (2014).

    PubMed  Google Scholar 

  9. Levy, M. M. et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive care medicine 29, 530–538 (2003).

    PubMed  Google Scholar 

  10. Deutschman, C. S. & Tracey, K. J. Sepsis: current dogma and new perspectives. Immunity 40, 463–475 (2014).

    CAS  PubMed  Google Scholar 

  11. Wiersinga, W. J., Leopold, S. J., Cranendonk, D. R. & van der Poll, T. Host innate immune responses to sepsis. Virulence 5, 36–44 (2014).

    PubMed  Google Scholar 

  12. Wichterman, K. A., Baue, A. E. & Chaudry, I. H. Sepsis and septic shock--a review of laboratory models and a proposal. J Surg Res. 29, 189–201 (1980).

    CAS  PubMed  Google Scholar 

  13. Buras, J. A., Holzmann, B. & Sitkovsky, M. Animal models of sepsis: setting the stage. Nat. Rev. Drug Discov. 4, 854–865 (2005).

    CAS  PubMed  Google Scholar 

  14. Groeneveld, A. B., Bronsveld, W. & Thijs, L. G. Hemodynamic determinants of mortality in human septic shock. Surgery 99, 140–153 (1986).

    CAS  PubMed  Google Scholar 

  15. Parker, M. M., Shelhamer, J. H., Natanson, C., Alling, D. W. & Parrillo, J. E. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Critical care medicine 15, 923–929 (1987).

    CAS  PubMed  Google Scholar 

  16. Abraham, E., Shoemaker, W. C., Bland, R. D. & Cobo, J. C. Sequential cardiorespiratory patterns in septic shock. Critical care medicine 11, 799–803 (1983).

    CAS  PubMed  Google Scholar 

  17. Kraft, B. D. et al. Development of a novel preclinical model of pneumococcal pneumonia in nonhuman primates. American journal of respiratory cell and molecular biology 50, 995–1004 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. Carraway, M. S. et al. Blockade of tissue factor: treatment for organ injury in established sepsis. American journal of respiratory and critical care medicine 167, 1200–1209 (2003).

    PubMed  Google Scholar 

  19. Reyes, L. F. et al. A Non-Human Primate Model of Severe Pneumococcal Pneumonia. PloS one 11, e0166092 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. Hinshaw, L. B. et al. Survival of primates in LD100 septic shock following steroid/antibiotic therapy. J Surg Res. 28, 151–170 (1980).

    CAS  PubMed  Google Scholar 

  21. Angus, D. C. & van der Poll, T. Severe sepsis and septic shock. The New England journal of medicine 369, 840–851 (2013).

    CAS  PubMed  Google Scholar 

  22. Singer, M., De Santis, V., Vitale, D. & Jeffcoate, W. Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet 364, 545–548 (2004).

    PubMed  Google Scholar 

  23. Zanotti-Cavazzoni, S. L. & Goldfarb, R. D. Animal models of sepsis. Critical care clinics 25, 703–719, vii-viii, (2009).

  24. Poli-de-Figueiredo, L. F., Garrido, A. G., Nakagawa, N. & Sannomiya, P. Experimental models of sepsis and their clinical relevance. Shock 30(Suppl 1), 53–59 (2008).

    CAS  PubMed  Google Scholar 

  25. Haden, D. W. et al. Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis. American journal of respiratory and critical care medicine 176, 768–777 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Redl, H. & Bahrami, S. Large animal models: baboons for trauma, shock, and sepsis studies. Shock 24(Suppl 1), 88–93 (2005).

    PubMed  Google Scholar 

  27. Matute-Bello, G., Frevert, C. W. & Martin, T. R. Animal models of acute lung injury. American journal of physiology. Lung cellular and molecular physiology 295, L379–399 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hinshaw, L. B. et al. Survival of primates in lethal septic shock following delayed treatment with steroid. Circulatory shock 8, 291–300 (1981).

    CAS  PubMed  Google Scholar 

  29. Hinshaw, L. B., Brackett, D. J., Archer, L. T., Beller, B. K. & Wilson, M. F. Detection of the ‘hyperdynamic state’ of sepsis in the baboon during lethal E. coli infusion. The Journal of trauma 23, 361–365 (1983).

    CAS  PubMed  Google Scholar 

  30. Miller, F. J., Mercer, R. R. & Crapo, J. D. Lower Respiratory Tract Structure of Laboratory Animals and Humans: Dosimetry Implications. Aerosol Science and Technology 18, 257–271 (1993).

    CAS  Google Scholar 

  31. Crapo, J. D. et al. Morphometric characteristics of cells in the alveolar region of mammalian lungs. The American review of respiratory disease 128, S42–46 (1983).

    CAS  PubMed  Google Scholar 

  32. Plopper, C. G. & Hyde, D. M. The non-human primate as a model for studying COPD and asthma. Pulm Pharmacol Ther. 21, 755–766 (2008).

    CAS  PubMed  Google Scholar 

  33. Haudek, S. B. et al. Lipopolysaccharide dose response in baboons. Shock 20, 431–436 (2003).

    CAS  PubMed  Google Scholar 

  34. Suffredini, A. F. et al. The cardiovascular response of normal humans to the administration of endotoxin. The New England journal of medicine 321, 280–287 (1989).

    CAS  PubMed  Google Scholar 

  35. Hinshaw, L. B. et al. Effectiveness of steroid/antibiotic treatment in primates administered LD100 Escherichia coli. Ann Surg. 194, 51–56 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cohen, J. The immunopathogenesis of sepsis. Nature 420, 885–891 (2002).

    CAS  PubMed  Google Scholar 

  37. van Deventer, S. J. et al. Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 76, 2520–2526 (1990).

    PubMed  Google Scholar 

  38. Fiedler, V. B. et al. Monoclonal antibody to tumor necrosis factor--alpha prevents lethal endotoxin sepsis in adult rhesus monkeys. The Journal of laboratory and clinical medicine 120, 574–588 (1992).

    CAS  PubMed  Google Scholar 

  39. van Leenen, D. et al. Pentoxifylline attenuates neutrophil activation in experimental endotoxemia in chimpanzees. Journal of immunology 151, 2318–2325 (1993).

    Google Scholar 

  40. van der Poll, T. et al. Differential effects of anti-tumor necrosis factor monoclonal antibodies on systemic inflammatory responses in experimental endotoxemia in chimpanzees. Blood 83, 446–451 (1994).

    PubMed  Google Scholar 

  41. Levi, M. et al. Inhibition of endotoxin-induced activation of coagulation and fibrinolysis by pentoxifylline or by a monoclonal anti-tissue factor antibody in chimpanzees. The Journal of clinical investigation 93, 114–120 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Levi, M. et al. Differential effects of anti-cytokine treatment on bronchoalveolar hemostasis in endotoxemic chimpanzees. American journal of respiratory and critical care medicine 158, 92–98 (1998).

    CAS  PubMed  Google Scholar 

  43. Emerson, T. E. Jr., Lindsey, D. C., Jesmok, G. J., Duerr, M. L. & Fournel, M. A. Efficacy of monoclonal antibody against tumor necrosis factor alpha in an endotoxemic baboon model. Circulatory shock 38, 75–84 (1992).

    CAS  PubMed  Google Scholar 

  44. van der Poll, T. et al. Elimination of interleukin 6 attenuates coagulation activation in experimental endotoxemia in chimpanzees. The Journal of experimental medicine 179, 1253–1259 (1994).

    PubMed  Google Scholar 

  45. Taylor, F. B. Jr. Staging of the pathophysiologic responses of the primate microvasculature to Escherichia coli and endotoxin: examination of the elements of the compensated response and their links to the corresponding uncompensated lethal variants. Critical care medicine 29, S78–89 (2001).

    PubMed  Google Scholar 

  46. de Boer, J. P. et al. Activation patterns of coagulation and fibrinolysis in baboons following infusion with lethal or sublethal dose of Escherichia coli. Circulatory shock 39, 59–67 (1993).

    PubMed  Google Scholar 

  47. Drake, T. A., Cheng, J., Chang, A. & Taylor, F. B. Jr. Expression of tissue factor, thrombomodulin, and E-selectin in baboons with lethal Escherichia coli sepsis. The American journal of pathology 142, 1458–1470 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Taylor, F. B. Jr., Kinasewitz, G. T. & Lupu, F. Pathophysiology, staging and therapy of severe sepsis in baboon models. J Cell Mol Med. 16, 672–682 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Taylor, F. B. Jr. et al. Protein C prevents the coagulopathic and lethal effects of Escherichia coli infusion in the baboon. The Journal of clinical investigation 79, 918–925 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kneidinger, R., Bahrami, S., Redl, H., Schlag, G. & Robinson, M. Comparison of endothelial activation during endotoxic and posttraumatic conditions by serum analysis of soluble E-selectin in nonhuman primates. The Journal of laboratory and clinical medicine 128, 515–519 (1996).

    CAS  PubMed  Google Scholar 

  51. Redl, H. et al. Expression of endothelial leukocyte adhesion molecule-1 in septic but not traumatic/hypovolemic shock in the baboon. The American journal of pathology 139, 461–466 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Creasey, A. A. et al. Tissue factor pathway inhibitor reduces mortality from Escherichia coli septic shock. The Journal of clinical investigation 91, 2850–2860 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Taylor, F. B. Jr. et al. Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circulatory shock 33, 127–134 (1991).

    PubMed  Google Scholar 

  54. Taylor, F. B. et al. Active site inhibited factor VIIa (DEGR VIIa) attenuates the coagulant and interleukin-6 and -8, but not tumor necrosis factor, responses of the baboon to LD100 Escherichia coli. Blood 91, 1609–1615 (1998).

    CAS  PubMed  Google Scholar 

  55. Minnema, M. C. et al. Recombinant human antithrombin III improves survival and attenuates inflammatory responses in baboons lethally challenged with Escherichia coli. Blood 95, 1117–1123 (2000).

    CAS  PubMed  Google Scholar 

  56. de Boer, J. P. et al. Activation of the complement system in baboons challenged with live Escherichia coli: correlation with mortality and evidence for a biphasic activation pattern. Infection and immunity 61, 4293–4301 (1993).

    PubMed  PubMed Central  Google Scholar 

  57. Bengtsson, A. et al. Anti-TNF treatment of baboons with sepsis reduces TNF-alpha, IL-6 and IL-8, but not the degree of complement activation. Scand J Immunol 48, 509–514 (1998).

    CAS  PubMed  Google Scholar 

  58. Silasi-Mansat, R. et al. Complement inhibition decreases the procoagulant response and confers organ protection in a baboon model of Escherichia coli sepsis. Blood 116, 1002–1010 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Keshari, R. S. et al. Inhibition of complement C5 protects against organ failure and reduces mortality in a baboon model of Escherichia coli sepsis. Proceedings of the National Academy of Sciences of the United States of America (2017).

  60. Huang, Y. C. et al. VA/Q abnormalities during gram negative sepsis. Respiration physiology 105, 109–121 (1996).

    CAS  PubMed  Google Scholar 

  61. Capelozzi, V. L. What have anatomic and pathologic studies taught us about acute lung injury and acute respiratory distress syndrome? Current opinion in critical care 14, 56–63 (2008).

    PubMed  Google Scholar 

  62. Levitt, J. E. & Matthay, M. A. Clinical review: Early treatment of acute lung injury--paradigm shift toward prevention and treatment prior to respiratory failure. Critical care 16, 223 (2012).

    PubMed  PubMed Central  Google Scholar 

  63. Ware, L. B. & Matthay, M. A. The acute respiratory distress syndrome. The New England journal of medicine 342, 1334–1349 (2000).

    CAS  PubMed  Google Scholar 

  64. Matthay, M. A., Ware, L. B. & Zimmerman, G. A. The acute respiratory distress syndrome. The Journal of clinical investigation 122, 2731–2740 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Idell, S. et al. Local abnormalities in coagulation and fibrinolytic pathways predispose to alveolar fibrin deposition in the adult respiratory distress syndrome. The Journal of clinical investigation 84, 695–705 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Welty-Wolf, K. E. et al. Bacterial priming increases lung injury in gram-negative sepsis. American journal of respiratory and critical care medicine 158, 610–619 (1998).

    CAS  PubMed  Google Scholar 

  67. Welty-Wolf, K. E. et al. Tissue factor in experimental acute lung injury. Seminars in hematology 38, 35–38 (2001).

    CAS  PubMed  Google Scholar 

  68. Tang, H. et al. Sepsis-induced coagulation in the baboon lung is associated with decreased tissue factor pathway inhibitor. The American journal of pathology 171, 1066–1077 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Welty-Wolf, K. E., Carraway, M. S., Ortel, T. L. & Piantadosi, C. A. Coagulation and inflammation in acute lung injury. Thrombosis and haemostasis 88, 17–25 (2002).

    CAS  PubMed  Google Scholar 

  70. Welty-Wolf, K. E. et al. Blockade of tissue factor-factor X binding attenuates sepsis-induced respiratory and renal failure. American journal of physiology. Lung cellular and molecular physiology 290, L21–31 (2006).

    CAS  PubMed  Google Scholar 

  71. Keshari, R. S. et al. Acute lung injury and fibrosis in a baboon model of Escherichia coli sepsis. American journal of respiratory cell and molecular biology 50, 439–450 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Silasi-Mansat, R. et al. Complement inhibition decreases early fibrogenic events in the lung of septic baboons. J Cell Mol Med 19, 2549–2563 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kinasewitz, G. T., Chang, A. C., Peer, G. T., Hinshaw, L. B. & Taylor, F. B. Jr. Peritonitis in the baboon: a primate model which stimulates human sepsis. Shock 13, 100–109 (2000).

    CAS  PubMed  Google Scholar 

  74. Taylor, F. B. Jr. et al. Staging of the baboon response to group A streptococci administered intramuscularly: a descriptive study of the clinical symptoms and clinical chemical response patterns. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 29, 167–177 (1999).

    Google Scholar 

  75. Jain, S. et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. The New England journal of medicine 373, 415–427 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Berendt, R. F., Long, G. G. & Walker, J. S. Influenza alone and in sequence with pneumonia due to Streptococcus pneumoniae in the squirrel monkey. The Journal of infectious diseases 132, 689–693 (1975).

    CAS  PubMed  Google Scholar 

  77. Philipp, M. T. et al. Experimental infection of rhesus macaques with Streptococcus pneumoniae: a possible model for vaccine assessment. Journal of medical primatology 35, 113–122 (2006).

    CAS  PubMed  Google Scholar 

  78. Dehoux, M. S. et al. Compartmentalized cytokine production within the human lung in unilateral pneumonia. American journal of respiratory and critical care medicine 150, 710–716 (1994).

    CAS  PubMed  Google Scholar 

  79. Olsen, R. J. et al. Lack of a major role of Staphylococcus aureus Panton-Valentine leukocidin in lower respiratory tract infection in nonhuman primates. The American journal of pathology 176, 1346–1354 (2010).

    PubMed  PubMed Central  Google Scholar 

  80. Chertow, D. S. et al. Influenza A and methicillin-resistant Staphylococcus aureus co-infection in rhesus macaques - A model of severe pneumonia. Antiviral Res 129, 120–129 (2016).

    CAS  PubMed  Google Scholar 

  81. Klevens, R. M. et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA : the journal of the American Medical Association 298, 1763–1771 (2007).

    CAS  PubMed  Google Scholar 

  82. Centers for Disease Control & Prevention. Bacterial coinfections in lung tissue specimens from fatal cases of 2009 pandemic influenza A (H1N1) - United States, May-August 2009. MMWR. Morbidity and mortality weekly report 58, 1071–1074 (2009).

  83. Kallen, A. J. et al. Staphylococcus aureus community-acquired pneumonia during the 2006 to 2007 influenza season. Annals of emergency medicine 53, 358–365 (2009).

    PubMed  Google Scholar 

  84. Lina, G. et al. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 29, 1128–1132 (1999).

    CAS  Google Scholar 

  85. Kobayashi, S. D. et al. Seasonal H3N2 influenza A virus fails to enhance Staphylococcus aureus co-infection in a non-human primate respiratory tract infection model. Virulence 4, 707–715 (2013).

    PubMed  PubMed Central  Google Scholar 

  86. Stearns-Kurosawa, D. J., Lupu, F., Taylor, F. B. Jr., Kinasewitz, G. & Kurosawa, S. Sepsis and pathophysiology of anthrax in a nonhuman primate model. The American journal of pathology 169, 433–444 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Popescu, N. I. et al. Peptidoglycan induces disseminated intravascular coagulation in baboons through activation of both coagulation pathways. Blood 132, 849–860 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Grossman, T. H. et al. The Fluorocycline TP-271 Is Efficacious in Models of Aerosolized Bacillus anthracis Infection in BALB/c Mice and Cynomolgus Macaques. Antimicrobial agents and chemotherapy 61, https://doi.org/10.1128/AAC.01103-17 (2017).

  89. Savransky, V. et al. Correlation between anthrax lethal toxin neutralizing antibody levels and survival in guinea pigs and nonhuman primates vaccinated with the AV7909 anthrax vaccine candidate. Vaccine 35, 4952–4959 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Vietri, N. J. et al. Short-course postexposure antibiotic prophylaxis combined with vaccination protects against experimental inhalational anthrax. Proceedings of the National Academy of Sciences of the United States of America 103, 7813–7816 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Inglesby, T. V. et al. Anthrax as a biological weapon, 2002: updated recommendations for management. JAMA : the journal of the American Medical Association 287, 2236–2252 (2002).

    PubMed  Google Scholar 

  92. Marshall, J. C. Such stuff as dreams are made on: mediator-directed therapy in sepsis. Nat Rev Drug Discov 2, 391–405 (2003).

    CAS  PubMed  Google Scholar 

  93. Bevilacqua, M. P. & Nelson, R. M. Selectins. The Journal of clinical investigation 91, 379–387 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Carraway, M. S. et al. Antibody to E- and L-selectin does not prevent lung injury or mortality in septic baboons. American journal of respiratory and critical care medicine 157, 938–949 (1998).

    CAS  PubMed  Google Scholar 

  95. Tracey, K. J. et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330, 662–664 (1987).

    CAS  PubMed  Google Scholar 

  96. Hinshaw, L. B. et al. Survival of primates in LD100 septic shock following therapy with antibody to tumor necrosis factor (TNF alpha). Circulatory shock 30, 279–292 (1990).

    CAS  PubMed  Google Scholar 

  97. van der Poll, T. et al. Pretreatment with a 55-kDa tumor necrosis factor receptor-immunoglobulin fusion protein attenuates activation of coagulation, but not of fibrinolysis, during lethal bacteremia in baboons. The Journal of infectious diseases 176, 296–299 (1997).

    PubMed  Google Scholar 

  98. Schlag, G., Redl, H., Davies, J. & Haller, I. Anti-tumor necrosis factor antibody treatment of recurrent bacteremia in a baboon model. Shock 2, 10–18 ; discussion 19-22. (1994).

  99. Reinhart, K. et al. Randomized, placebo-controlled trial of the anti-tumor necrosis factor antibody fragment afelimomab in hyperinflammatory response during severe sepsis: The RAMSES Study. Critical care medicine 29, 765–769 (2001).

    CAS  PubMed  Google Scholar 

  100. Panacek, E. A. et al. Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F(ab’)2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6 levels. Critical care medicine 32, 2173–2182 (2004).

    CAS  PubMed  Google Scholar 

  101. Abraham, E. et al. Assessment of the safety of recombinant tissue factor pathway inhibitor in patients with severe sepsis: a multicenter, randomized, placebo-controlled, single-blind, dose escalation study. Critical care medicine 29, 2081–2089 (2001).

    CAS  PubMed  Google Scholar 

  102. Abraham, E. et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA : the journal of the American Medical Association 290, 238–247 (2003).

    CAS  PubMed  Google Scholar 

  103. Marlar, R. A., Kleiss, A. J. & Griffin, J. H. Mechanism of action of human activated protein C, a thrombin-dependent anticoagulant enzyme. Blood 59, 1067–1072 (1982).

    CAS  PubMed  Google Scholar 

  104. Taylor, F. B. & Kinasewitz, G. Activated protein C in sepsis. J Thromb Haemost 2, 708–717 (2004).

    CAS  PubMed  Google Scholar 

  105. Bernard, G. R. et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. The New England journal of medicine 344, 699–709 (2001).

    CAS  PubMed  Google Scholar 

  106. Ranieri, V. M. et al. Drotrecogin alfa (activated) in adults with septic shock. The New England journal of medicine 366, 2055–2064 (2012).

    CAS  PubMed  Google Scholar 

  107. Abraham, E. et al. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. The New England journal of medicine 353, 1332–1341 (2005).

    CAS  PubMed  Google Scholar 

  108. Otterbein, L. E. et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nature medicine 6, 422–428 (2000).

    CAS  PubMed  Google Scholar 

  109. Fredenburgh, L. E. et al. Effects of inhaled CO administration on acute lung injury in baboons with pneumococcal pneumonia. American journal of physiology. Lung cellular and molecular physiology 309, L834–846 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Shinohara, M. et al. Cell-cell interactions and bronchoconstrictor eicosanoid reduction with inhaled carbon monoxide and resolvin D1. American journal of physiology. Lung cellular and molecular physiology 307, L746–757 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Dalli, J. et al. The Regulation of Proresolving Lipid Mediator Profiles in Baboon Pneumonia by Inhaled Carbon Monoxide. American journal of respiratory cell and molecular biology 53, 314–325 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Fredenburgh, L.E. et al. A phase I trial of low-dose inhaled carbon monoxide in sepsis-induced ARDS. J. CI Insight 3, pii: 124039 (2018).

    Google Scholar 

  113. Chabot, D. J. et al. Efficacy of a capsule conjugate vaccine against inhalational anthrax in rabbits and monkeys. Vaccine 30, 846–852 (2012).

    CAS  PubMed  Google Scholar 

  114. Poliquin, P. G. et al. Delivering Prolonged Intensive Care to a Non-human Primate: A High Fidelity Animal Model of Critical Illness. Sci Rep. 7, 1204 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. Shade, R. E., Bishop, V. S., Haywood, J. R. & Hamm, C. K. Cardiovascular and neuroendocrine responses to baroreceptor denervation in baboons. The American journal of physiology 258, R930–938 (1990).

    CAS  PubMed  Google Scholar 

  116. Friday, K. E. & Lipkin, E. W. Long-term parenteral nutrition in unrestrained nonhuman primates: an experimental model. The American journal of clinical nutrition 51, 470–476 (1990).

    CAS  PubMed  Google Scholar 

  117. Weatherall, D. The use of non-human primates in research. (Academy of Medical Sciences, London, 2006).

    Google Scholar 

  118. Arnason, G. The ethical justification for the use of non-human primates in research: the Weatherall report revisited. Journal of medical ethics 44, 328–331 (2018).

    PubMed  Google Scholar 

  119. Barnhill, A., Joffe, S. & Miller, F. G. The Ethics of Infection Challenges in Primates. Hastings Cent Rep. 46, 20–26 (2016).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Claude A. Piantadosi for his critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingye Chen.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Welty-Wolf, K.E. & Kraft, B.D. Nonhuman primate species as models of human bacterial sepsis. Lab Anim 48, 57–65 (2019). https://doi.org/10.1038/s41684-018-0217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41684-018-0217-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research