
Lab Animal | Volume 54 | May 2025 | 120–125 120

lab animal Article

https://doi.org/10.1038/s41684-025-01518-3

A computational model to support 
the welfare-based management of a 
laboratory colony of common marmosets

 Check for updates

Joseph J. Gillard     

Here, a computational model to forecast the population dynamics of a laboratory colony of 
common marmosets (Callithrix jacchus) is presented. This tool supports decision-making that 
seeks to maximize welfare and maintain a healthy and genetically diverse colony. The model 
considers the population in terms of three compartments: breeding adults, their offspring and 
nonbreeding adults. Natural events are explicitly represented, including births, deaths and the 
transfer of mature offspring from family housing to adult housing. These events are simulated 
using rates based on historical data extracted from the colony record-keeping system. Multi-year 
forecasts of population dynamics are generated, taking full account of interventions such as the 
implementation of breeding controls, the usage of animals by a portfolio of research projects 
and relocation to external primate facilities. Model forecasts are validated against real data. 
Uncertainties in animal usage are propagated through the model. The resulting forecasts provide  
a realistic range of future stock levels to support colony management and decision-making.  
The model outputs provide evidence to help assess the impacts of making interventions in the 
system, for example, breeding control strategies. This evidence-based approach to colony 
management serves to enhance animal welfare and accountability to regulatory bodies and 
stakeholders. The model can be adapted to simulate the dynamics of other nonhuman  
primate colonies.

The ability to forecast future population numbers with confidence is 
important for managing a colony of laboratory animals. In this article, we 
consider a laboratory colony of common marmosets (Callithrix jacchus), 
maintained to support a portfolio of biomedical research projects, in a 
context where animal welfare is paramount and the objectives of the 3Rs 
are supported1. A host of interacting factors must be considered to ensure 
that welfare is maximized and a healthy, genetically diverse population 
is maintained.

For instance, a typical ongoing concern is to implement a breeding 
strategy that yields the required number of adult animals in the future, 
while maximizing welfare. The future population must be large enough 
to serve the scheduled research demand and to preserve sufficient genetic 
diversity to ensure a healthy population in the long-term, while avoid-
ing the risk of overbreeding. In primate species such as marmosets and 
tamarins, unrestricted breeding is considered to be enriching for dams2. 
Furthermore, reducing the number of births through breeding control 
(for example, contraception) can prevent family groups from developing 
normal cooperative parenting skills and caregiving behaviors, which can 

result in increased infant mortality3,4. Breeding strategies must therefore 
account for these factors.

The situation is further complicated by the finite capacity of animal 
housing, the complexities of recommended marmoset housing strate-
gies5 and the variable demand from in-house biomedical experiments. 
Unrestricted breeding could lead to population levels above the maximum 
acceptable stocking density if unchecked. Conversely, long-term reduction 
of breeding will lead to a shrinking pool of animals from which to select 
future breeders. This, in turn, will result in dwindling genetic diversity, 
increased inbreeding and an increase in mean kinship values, negatively 
impacting the long-term health of the colony and the suitability of animals 
for in vivo research.

The scenario sketched above illustrates some of the complexities 
of colony management. Interactions between natural and controllable 
factors are nonlinear and time dependent. The impacts of interventions 
over time are difficult to predict.

Mathematical modeling can provide a valuable aid to evidence-based 
decision-making. For instance, there is a long history of using population 
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Model reproduces historical data
We verified the ability of the model to reproduce real data extracted from 
the colony record-keeping system. For each year Y = 2012–2022 inclusive, 
the model was simulated 200,000 times using the initial conditions, transi-
tion rates, issues, relocations and breeding control data for year Y . Model 
outputs for offspring and adults were generated, quantiles were calculated 
across all model runs and the minimum and maximum values of the 
model outputs (that is, the range) were calculated at each monthly time 
point. Results for each year Y  were calculated as the percentage change 
from the initial numbers of offspring and adults at the start of the year.

Model performance was quantified by calculating the root mean 
square error (r.m.s.e.) for each year. Two r.m.s.e. were calculated in each 
case. First, the r.m.s.e. between each individual realization and the observed 
data was calculated. The realization closest to the data was identified by 
finding the realization with the smallest r.m.s.e. (r.m.s.e.Min). Second, the 
r.m.s.e. between the median model prediction and the observed data was 
calculated (r.m.s.e.Med) for each year. These metrics facilitate comparison 
between the model medians and the closest realizations to the data, as 
well as a comparison between model performance for different years. The 
results of the verification runs are shown in Fig. 1.

In Fig. 1, the median, 95% credible interval and range depict statistical 
summaries of the distribution of model outputs at each time point. For 
instance, the shaded 95% credible interval represents the region encom-
passing 95% of simulation outputs. The unshaded region between the 
95% credible interval and the range encompasses the most outlying 5% of 
model outputs. The model outputs all of the raw data for each individual 
realization and for ease, the user can specify the quantiles that are auto-
matically calculated. In this way, the output is customizable. For instance, 
a user can request other statistical summaries, such as quartiles, deciles 
or any other required percentile, allowing the results to be interpreted in 
probabilistic terms.

The results in Fig. 1 verify that the model reproduces the observed 
data well for offspring and adults each year. Overall, 83% of the observed 
data points are within the 95% credible interval and every data point is 
captured within the range of model predictions. In addition, the model 
generates individual realizations that closely reproduce the observed data 
for both offspring and adults each year, indicating that the population 
dynamics are predictable and verifying that the model generates credible 
simulations, as intended.

Model generates credible 2-year forecasts
The primary use case for the model is to generate 2-year forecasts of the 
number of adult animals over time, taking into account planned breeding 
controls, issues and relocations. This capability was tested using historical 
data by calculating transition rates based on an observation period, year 
Y , and running simulations for the forecast period, years (Y + 1) and 
(Y + 2), for Y = 2012–2020. Planned breeding controls, issues and reloca-
tions for each forecast period were parameterized within the model, 
allowing them to be incorporated into the forecasts.

Each forecast period was simulated 200,000 times, and quantile 
summaries of the numbers of adults were produced. Two r.m.s.e.Med and 
r.m.s.e.Min metrics were calculated, as before. The resulting 2-year forecasts 
are shown in Fig. 2.

The range of the model forecasts captures all observed data points for 
each forecast period, except for three outliers: February in forecast 7 and 
February and March in Forecast 8. In addition, individual realizations were 
identified that closely reflect the real data, indicating that 2-year periods 
are forecastable using past data and that the model effectively simulates 
the underlying dynamics over a 2-year period.

The r.m.s.e.Med values were slightly larger than those for the adult pre-
dictions in the verification tests (cf. Fig. 1). However, this is to be expected, 
owing to errors being calculated for 24 time points in this case rather than 
12 previously. Nonetheless, the model demonstrates consistently reliable 
performance across the forecast periods. These results provide confidence 
that the model can be used to generate credible 2-year forecasts.

dynamics models in ecology6. An important application of population 
modeling to conservation biology during the past 40 years has been via the 
field of population viability analysis (PVA)7. PVA employs models together 
with real data to assess the likelihood of wildlife population survival or 
extinction at future times. Several software programs for conducting PVA 
have been developed, for example, VORTEX8,9, an open-source model 
that quantifies the probability distribution of fates that a population 
might experience.

Conditions for captive animal populations, such as in zoos or labo-
ratories, are substantially different to populations in the wild, presenting 
a promising opportunity for mathematical modeling. In such contexts, 
colony managers know the population structure in detail. Records of key 
life events (for example, births and deaths) and important developmental 
indicators for individual animals10 are maintained. This provides a rich 
dataset for modeling. However, published examples of models to aid the 
management of laboratory colonies are scarce. To the best of our knowl-
edge, a paper describing the population modeling of a captive squirrel 
monkey colony is the only published example11, in which two different 
spreadsheet-based approaches were tested, one deterministic and the other 
stochastic. Model inputs were derived from historical data for the squirrel 
monkey colony. Annual predictions of the colony population were made 
up to 22 years into the future. However, neither the deterministic nor 
stochastic model outputs reproduced the real census data well (Fig. 9 in 
ref. 11). Forecasts from the two models diverged substantially, indicating 
an inconsistency between them.

In this study, we present a novel stochastic simulation model, based 
on domain knowledge, which generates multi-year forecasts of the popu-
lation dynamics of a laboratory colony of marmosets. It represents the 
population structure and demography-based housing arrangements by 
separating breeding adults, their offspring and nonbreeding adults into 
different model compartments. Data to parameterize the mathematical 
rates of natural events (for example, births and deaths) are extracted 
directly from the colony record-keeping system. Breeding strategy, an 
important management intervention, is modeled in detail.

Crucially, the planned issuing of animals to a portfolio of biomedical 
research projects is incorporated into the model, to allow the interactions 
among interventions, research requirements and housing constraints to 
be analyzed. Uncertainty in project likelihood and timing is factored into 
the predictions, to provide decision-makers with a realistic future picture 
of stock levels, including best and worst cases, to aid colony manage-
ment. The model also includes alternative outlets, such as relocation to 
external primate facilities, providing another means of balancing project 
demand and population growth. These capabilities make the model a 
tool to support the reduction of animals bred for research purposes and 
the refinement of husbandry procedures, aligning this work with the 
objectives of the 3Rs12.

The model is written in R13, which is freely available, simple to 
install and ubiquitous across research organizations. This renders the 
model transparent to users, customizable to the structures and needs of 
different colonies and amenable to analysis and postprocessing. A set of 
R scripts containing the model have been made available for reuse and 
modification on GitHub14.

Results
In general, the model is parameterized using real data from a past obser-
vation period. Predictions of population levels month-by-month for 
a future forecast period are made, taking into account the breeding 
controls, issues and relocations planned during the forecast period. In 
general, a target number of breeders is maintained in the colony, so the 
number of breeders in the model is assumed constant during forecasts. 
By simulating the stochastic model many times, distributions of credible 
outcomes for the numbers of offspring and nonbreeding adults (hereafter 
simply ‘adults’, unless a distinction is required) over time are determined, 
which are then summarized by statistical measures (for example, median, 
quantiles and range).
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Fig. 1 | Comparison of model predictions with real data. For each verification 
year, median model predictions are depicted by solid colored lines, 95% credible 
intervals by shaded regions and ranges by dotted lines. All quantiles were 
calculated from 200,000 model realizations. The initial observed values for each 

verification period (circles filled white) were used as initial conditions for model 
simulations. The r.m.s.e.Med and r.m.s.e.Min values quantify the r.m.s.e. of the 
subsequent observations (circles filled black) with the median model prediction or 
the realization closest to the observed data, respectively.
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Discussion
We developed a model of the population dynamics of a laboratory colony 
of common marmosets that is stochastic, compartmental, based on the 
demographic structure of the colony and which accounts for breeding 
control, planned issues and relocations. The model works as intended 
and generates credible 2-year forecasts (Figs. 1 and 2). Model median 
predictions displayed consistently good performance. The model gener-
ates individual realizations that closely reflect the observed data (mean 
r.m.s.e.Min of 2-year forecasts: 3.21), providing assurance that the colony 
dynamics are forecastable and that the model simulates the dynamics in 
a credible manner. These results provide confidence in using the model 
to support colony management decision-making.

The R code for the version of the model presented here is freely avail-
able for reuse and modification, and is available on Github14. The mathe-
matics underlying the model is straightforward and can be readily adapted 
to simulate the population dynamics of other laboratory animal colonies, 
even if structured differently. The first step in adapting the model would 
be to revise the colony schematic (Supplementary Fig. 1), to understand 
the demographic compartments and the movement of animals between 
them. The user may need to add additional compartments, depending on 
the colony structure. Next, the equations describing the monthly changes 
to the number of animals in each compartment (Algorithm 1, steps 14  
and 15) can be modified accordingly. Any new compartments will 
require the addition of their own equations at this point in the algorithm.  
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Fig. 2 | Validation of the 2-year forecasts against historical data. For each 2-year 
forecast period, median model predictions are depicted by solid colored lines,  
95% credible intervals by shaded regions and ranges by dotted lines. All quantiles 
were calculated from 200,000 model realizations. Initial observed values for each 

forecast period (circles filled white) were used as initial conditions for model 
simulations. The r.m.s.e.Med and r.m.s.e.Min values quantify the r.m.s.e. of the 
subsequent observations (circles filled black) with the median model forecast or 
the realization closest to the observed data, respectively.
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Success in the process of adapting the model will depend on an effective 
collaboration between colony managers and modelers.

Whether the model needs modifying to represent a different colony 
or not, the availability of data is of crucial importance. A high-quality 
dataset is required, detailing the dates of birth, transfer and death for every 
animal, as well as a record of historical litter sizes. These data are essential 
for parameterizing the model (see the Methods for a greater description 
of data requirements).

The structure of the model is based on domain knowledge of the 
colony of interest, and it is completely parameterized using historical data. 
Consequently, the forecasts depend on the accuracy with which the colony 
is represented in the equations, as well as the trends and variance inherent 
in the past data. This presents three potential limitations for the model. 
First, if the model is adapted to a different colony but the structure is not 
represented correctly in the mathematical equations, then the forecasts 
should not be expected to be accurate. Second, if the colony structure is 
correctly represented in the equations, but there is insufficient data to 
parameterize the rates of transition between compartments, then this will 
present a problem. One solution would be to estimate unknown param-
eters by fitting the model to past data. This is a pragmatic solution, but it 
would introduce an additional uncertainty into the model predictions. 
Third, by design, variance in the past data is propagated through the model 
and is reflected in the uncertainty of the forecasts. Therefore, historical 
data with high variance will lead to forecasts with greater uncertainty. 
Individual model users will want to validate the forecasts of the adapted 
model against their own historical data to assess the level of confidence 
with which they can use the forecasts in their context.

The number of animals issued to experiments can differ from plans 
if projects experience changes in requirements, delays or cancellations. 
These uncertainties can create risks for colony managers, who seek to 
maintain the population within acceptable stocking densities. We can 
integrate these uncertain factors into our forecasts, providing previously 
unattainable insights to inform welfare-based colony management.  

To illustrate how this can be done, we revisited the forecast for 2021–2022 
using data from the observation period 2020. Considering this as a base-
line case, we explored the impact on the forecasts of incorporating usage 
uncertainty. For illustrative purposes, the planned number of animals to 
be issued to experiments during the forecast period was split across five 
projects. Each project was assigned two probability parameters. First, a 
probability of proceeding, to quantify expert opinion about the likelihood 
that each project would go ahead or not. For illustrative purposes, these 
probabilities were set to be 1, 1, 0.8, 0.5 and 1, respectively. Second, each 
project was assigned a discrete probability distribution over the potential 
number of months by which each project might be delayed, if it were 
to go ahead. The assumed maximum possible delays were 0, 0, 3, 6 and  
1 months, respectively.

Using these illustrative parameters, 100,000 realizations of the model 
were performed, with each run randomly sampling from the distributions 
defined above, to generate 2-year forecasts incorporating usage uncer-
tainty. The median and maximum predictions of the numbers of adults 
at the end of 2022 were 23.1% and 48.8% higher than in the baseline case, 
respectively. These figures reflect that when some projects do not proceed 
as planned, animal usage is less, hence a higher stock level at the end of 
the forecast period. These figures can be compared with housing capacity 
limitations to allow the potential risk of exceeding acceptable stocking 
densities to be assessed.

Continuing with the illustrative scenario, supposing that the increased 
numbers of adults at the end of 2022 present a risk of exceeding accept-
able stocking densities, we explored how this risk could be mitigated by 
relocating a proportion of marmosets to alternative external primate 
facilities during the forecast period. We found that relocating 17% of the 
adult stock available in September 2022 during the final quarter of 2022 
would be sufficient to reduce the median number of adults down to the 
baseline level, thus mitigating the risk.

Analysis of the illustrative scenario enables us to identify an unin-
tended negative impact of this relocation plan, demonstrating a further 
benefit of using the model to support decision-making. The minimum 
model prediction of the number of adults remaining at the end of 2022 
was 29.8% lower than in the baseline case due to the relocated animals 
being removed from the system. This represents the case where all projects 
proceed as planned (which occurs with a probability of 0.4 according to 
our assumed probabilities, assuming they are independent). Therefore, the 
decision to relocate animals to mitigate the risk of exceeding acceptable 
housing densities could unintentionally create a new risk of a shrinking 
population, should all projects proceed on time. Consideration of actual 
stock numbers enables the level of risk to be assessed in context, to help 
refine the relocation plan. For instance, the relocation process may only 
be initiated if projects do not proceed by a certain date.

We note that the usage uncertainty assumptions considered above are 
conservative. Often, the uncertainties in project likelihood and timing can 
be much greater, leading to larger potential impacts than the illustrative 
examples presented here.

The model can also be used to inform decision-making in the context 
of high-impact operational risks. For instance, we might want to assess 
the best breeding strategy in the event that all research projects are paused 
for an unspecified duration, for instance, due to a global pandemic, such 
as COVID-19. When laboratory work is paused, over time, unrestricted 
breeding could lead to maximum acceptable stocking densities being 
exceeded, so the goal would be to identify a strategy that maximizes breed-
ing subject to the capacity constraints of animal housing. For illustrative 
purposes, suppose that the maximum acceptable stocking density is 25% 
higher than the number of adults at the beginning of the forecast period. 
Also, suppose that the minimum acceptable number of offspring is 50% of 
the initial number at the start of the same period. With these constraints 
in mind, we used the model to explore the impact of hypothetical breed-
ing strategies that maintain 100%, 75%, 50%, 25% and 0% of the maximal 
breeding rate for a 2-year period, to identify which strategy would best 
maintain acceptable levels of offspring and adults while research projects 
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are paused. Simulating each case 100,000 times, we calculated statistical 
summaries of the numbers of offspring and adults over time for each case 
(the median predictions are displayed in Fig. 3).

Under these circumstances, if breeding is unrestricted (that is, 100%), 
then the number of adults exceeds acceptable levels within 12 months of 
research projects being paused. Restricting breeding to 75% of maximum 
levels (for example, by administering chemical contraceptive intermit-
tently to one-quarter of dams at any given time) also leads to unacceptably 
high numbers of adults and does not substantially limit stock levels in 
the 2-year timeframe. Restricting breeding to either 25% or 0% ensures 
that adult stock levels remain well within the acceptable range; however, 
in both these cases, the offspring population decreases below the accept-
able level within 12 months. Restricting breeding to 50% ensures that 
the adult stock limit is not exceeded until the final month of the second 
year and the number of offspring remains above the minimum limit in 
this timeframe. Therefore, out of the options tested here, a 50% breeding 
strategy would be preferred.

As demonstrated by the illustrative scenarios described above, the 
model provides a means of analyzing the interactions among usage, 
relocations, breeding control, housing capacity and the associated risks 
of colony management decisions. To the best of our knowledge, this is the 
first model of its kind, based on the underlying structure of the colony, 
simulating life events and taking into account interventions.

This evidence-based approach to colony management supports the 
3Rs objectives. It supports reduction by providing a quantitative approach 
to help mitigate overbreeding and advice to inform optimal stocking densi-
ties. It supports refinement by providing colony managers with forecasts 
that can influence decisions about future housing arrangements, helping 
to enhance welfare throughout the lifetimes of animals within the colony. 
Furthermore, this approach is repeatable, auditable and transparent, 
enhancing accountability to external regulatory bodies and stakeholders.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions and 
competing interests; and statements of data and code availability are 
available at https://doi.org/10.1038/s41684-025-01518-3.
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Methods
Model structure
The population is partitioned into three disjoint compartments, corre-
sponding to broad demographic categories: offspring, breeders and 
nonbreeding adults, labeled {C,B,A}, respectively. Denoting by n(C)t , n(B)t  
and n(A)t  the number of animals alive in each compartment at time t , the 
total population of the colony is equal to (n(C)t + n(B)t + n(A)t ), at time t . 

The colony is described by the state vector xt = (n(C)t ,n(B)t ,n(A)t )
T
, where ‘T’ 

denotes the transpose. Time is a discrete variable with a default time-step 
of 1 month.

Animals move between compartments in a well-defined manner. 
The possible moves into or out of compartments are called transition 
events (or simply ‘events’). Each event has an associated transition rate 
governing the number of animals undergoing the transition in a fixed 
time interval. There are four events: births (new infants are born into the 
offspring compartment with an average rate β per month), transfers 
(mature offspring are transferred from family cages to adult cages with 
an average rate ω per month), new breeders (preselected marmosets 
become breeders with an average rate γ per month) and deaths (animals 
in compartment X  die with average rate δ(X) per month, for X = C,B,A).

We also consider three interventions, where human decision-making 
affects the system: breeding controls (breeders partially or completely 
prevented from breeding at their maximal natural rate), issues (adult 
animals issued to experiments, according to a planned schedule) and 
relocations (adult animals relocated to external primate facilities, accord-
ing to a planned schedule). A schematic of this compartmental system is 
shown in Supplementary Fig. 1.

The system can be simplified as follows. When a breeding animal 
dies, it is replaced by a previously selected animal to maintain a target 
number of breeders. Therefore, it can be assumed that for a given forecast 
period, the number of breeders is a constant, B̂. Under these circumstances, 
the rates γ and δ(B) are no longer required. The resulting simplified system 
is shown in Supplementary Fig. 2

The state vector can now be written as xt = (n(C)t , ̂B,n(A)t )
T
. Denoting 

the change in the numbers of offspring and adults between two time points 
t1 and t2 by ∆(C)(t,xt) and ∆(A)(t,xt), respectively, the change in state during 
this period is

xt2 = xt1 +
⎛
⎜⎜⎜
⎝

∆
(C)(t,xt)

0

∆
(A)(t,xt)

⎞
⎟⎟⎟
⎠

.

Mathematical expressions for these changes are described in 
Algorithm 1 below.

We use the model to forecast the future state of the system, starting 
at an initial time t0 for a period of N  months, that is, for a forecast period 
(t0, t0 + N) . The months during this forecast period will be indexed 
i = 0, ⋯ ,N, where i = 0 corresponds to t0. To generate forecasts, the model 
is parameterized using real data extracted from the colony record-keeping 
system for a prior period of M  months, referred to as the observation 
period, (t0 −M, t0).

Data requirements
The following data items for the observation period are required to 
parameterize the model: the distribution of litter sizes (ℒ0), the number 
of transfer events each month (r0, j), the median number of offspring and 
adults alive each month (n̄C0, j and n̄A0, j), and the numbers of offspring and 
adults dying each month (dC0, j and dA0, j), where the index j denotes the j 
th month of the observation period.

The following data items for the forecast period are also required 
to allow the model to make predictions: the planned number of dams 
per month (Di), the planned proportion of dams receiving contracep-
tion per month (pi), the efficacy of the contraception used (ceff), the 

planned number of issues per month (ui) and the planned number of 
relocations per month (vi), where the index i denotes the i th month of 
the forecast period.

Transition rates
To implement the simplified model depicted in Supplementary Fig. 2, 
we quantify the transition rates using data from the observation period. 
First, we derive a formula for the rate of births.

Let Di denote the target number of dams for month i of the forecast 
period. Breeding control interventions (that is, chemical contraception) 
are modeled as follows. Let pi be the proportion of dams receiving con-
traception during month i and let ceff denote the efficacy of the contracep-
tive, expressed as a proportion (that is, ceff = 1 corresponds to 100% 
efficacy and so on). Then, the fraction of maximal breeding that is permit-
ted during month i, denoted fi, is

fi = 1 − piceff. (1)

Using equation (1), breeding control interventions to be implemented 
during a forecast period are fully specified by a time series f = ( f1, f2,⋯ , fN). 
Then, the number of dams able to give birth to a litter of marmosets during 
month i of the forecast period can be approximated by D̂i = ⌊ fiDi⌉, where 
the asymmetric brackets indicate rounding to the nearest integer.

Next, we model the inter-litter interval. The average gestation period 
for marmosets is 143–144 days5. Postpartum ovulation within 10–20 days 
of litter delivery is a feature of the marmoset reproductive cycle, leading 
to reported median inter-litter intervals of 162 days15, 154 days16 and 
158 days17. Therefore, we assume that the average inter-litter time is 
between 153 and 164 days, or between approximately 5.0 and 5.4 months. 
Let tlm denote the time from the start of the forecast period (in months) 
at which the m th dam gives birth to its l  th litter during that period. 
Each breeding dam is assumed to produce its first litter of the forecast 
period between 0 and 5.4 months after the start of the forecast period. 
This means that the time of the first litter can be simulated by sampling 
from a uniform distribution for each of the m dams, t1m ∼ Uniform(0, 5.4). 
Then, since the inter-litter interval is between 5.0 and 5.4 months, it  
can be assumed that the times of subsequent litters are calculated by  
the formula

tlm = tl−1m + τ, (2)

for l > 1, where τ ∼ Uniform(5, 5.4). Litter times greater than (t0 + N) are 
discarded, since they are beyond the end of the forecast period.

Having simulated a set of litter times for each breeding dam during 
the forecast period, {tlm}, the model proceeds month-by-month to evalu-
ate the number of infant offspring born in each case. For each i, dams 
that give birth during the i th month are identified. This is achieved by 
determining the subset of dams, μi , that satisfy the following 
condition:

μi = {m ∶ ⌊tlm + 1⌋ = i} , (3)

where m = 1,… , max(D̂i) indexes the breeding dams, and the half-square 
brackets indicate taking the floor of the number inside. This form of 
rounding (taking the floor and including the +1 term) ensures that simu-
lated litter times are allocated to the correct ordinal month number. For 
instance, randomly generated litter times between 0 and 1 months after 
the beginning of the forecast period are allocated to the first month (that 
is, i = 1, January), litter times that are between 1 and 2 months after the 
start of the forecast period are allocated to the second month (that is, i = 2, 
February) and so on.

Using this notation, |μi| denotes the number of litters birthed in month 
i. It remains to simulate the number of infant offspring born into each 
litter using historical data. Let ℒ0 denote the empirical distribution of 
litter sizes (that is, the number of infant offspring per litter) from the 
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observation period. Then, for each month i, a set of |μi| litter sizes is 
sampled

si= {s1i , s
2
i ⋯, s|μi |i } ,

where skii ∼ ℒ0, for ki = 1,⋯ , |μi|.
The total number of new infant offspring born during month i is 

then the sum of these samples,

bi = ∑sssi = ∑
ki
skii . (4)

Repeating this process sequentially through months i = 1, ⋯ ,N yields 
a time series of births for the N-month forecast period, b = (b1, b2, ⋯ , bN), 
generated according to the empirical inter-litter intervals and litter sizes.

Next, we consider the rate of transfer events, where mature offspring 
are moved from their family cages and pair-bonded with opposite sex 
partners in adult cages (males in this category will have previously been 
vasectomized to prevent subsequent breeding). The transfer rate for month 
i of the forecast period can be simulated using the empirical transfer rate 
for the prior observation period, together with the number of offspring 
alive during the previous month, nC(i−1), where nC0 is the initial number of 
offspring at the start of the forecast period. Let r0, j denote the number of 
transfer events in the j th month of the observation period and let n̄C0, j be 
the median number of offspring alive in the same month. Then, the mean 
monthly rate of transfers for the observation period is calculated as

ω0 =
1
M

M
∑
j=1

r0, j
n̄C0, j

, (5)

where M  is the number of months in the observation period. 
Equation (5) expresses the rate of transfers as the number of transfers 
per month per offspring. Then, the number of transfer events during 
the i th month of the forecast period, wi, can be simulated using a 
Poisson random variable with rate proportional to ω0,

wi ∼ Pois (ω0nC(i−1)) , (6)

where ω0 is defined by equation (5) and nC(i−1) is the number of offspring 
in month (i − 1) or the forecast period.

The final transition rates to quantify are the average monthly death 
rates for offspring and adults. These are estimated using the respective 
rates observed during the observation period, similarly to transfers. 
Denote by dC0, j and dA0, j the numbers of offspring and adults dying during 
month j of the observation period, and let n̄C0, j and n̄A0, j be the median 
numbers of offspring and adults alive during the j th month. The mean 
monthly per capita death rates for offspring and adults during the obser-
vation period are then

δC0 =
1
M

M
∑
j=1

dC0, j
n̄C0, j

(7)

δA0 =
1
M

M
∑
j=1

dA0, j
n̄A0, j

(8)

The model assumes that deaths are calculated at the end of each 
month, so that the death rates apply not just to the nC(i−1) and nA(i−1) offspring 
and adults alive at the start of month i, but also to the bi infant offspring 
born and the wi mature offspring transferred during the month. Under 
this assumption, the numbers of deaths during month i of the forecast 
period can be simulated by Poisson-distributed variables with rates 
determined by equations (7) and (8),

dCi ∼ Pois (δC0 (n
C
(i−1) + bi −wi)) , (9)

dAi ∼ Pois (δA0 (n
A
(i−1) +wi)) . (10)

The death rate of breeders is not considered owing to the simplifying 
assumption that the number of breeders remains constant (B̂) during the 
forecast period.

To include planned issues and relocations in model forecasts, time 
series detailing the number of animals required per month of the forecast 
period are specified. We denote these by u = (u1,u2,⋯ ,uN)  and 
v = (v1, v2,⋯ , vN), respectively. The first time series captures the planned 
schedule of (total) marmoset usage across a portfolio of research projects 
and the second captures the planned relocation schedule. In practice, 
many components of u and v may equal zero, representing no usage or 
relocations during those months. Since there may be some uncertainty 
in the numbers of animals that will be issued to experiments (for example, 
due to uncertainties in project likelihood, timing and requirements) or 
relocated, each component ui and vi can be expressed as a probability 
distribution, enabling uncertainty to be propagated through the model 
via simulation.

Simulating population dynamics
Let xt0 denote the initial state of the system at the beginning of the forecast 
period. A single realization of the system is simulated using the 
pseudo-code in Algorithm 1.

Algorithm 1. Pseudo-code for simulating one stochastic realization 
of the model. 
1 Initialize i = 1 and an empty matrix X(N+1)×3.
2 X[1,] = xt0
3 D̂i = ⌊ fiDi⌉
4 t1m ∼ Uniform(0, 5.4), for m = 1, ⋯ , D̂1
5 WHILE i ≤ N
6   μi = {m ∶ ⌊tlm + 1⌋ = i}
7   IF |μi| > 0
8     si= {s1i , s

2
i ⋯, s|μi |i }, where skii ∼ ℒ0, for ki = 1, ⋯ , |μi|

9     tl+1ki
= tlki + Uniform(5, 5.4), for ki = 1, ⋯ , |μi|

10     bi = ∑sssi
11 ELSE
12     bi = 0
13  � Sample wi, dCi  and dAi  according to equations (6), (9) and (10) 

(sample ui and vi, if they are specified as probability distributions)
14   ∆

C
i = bi − d

C
i −wi

15   ∆
A
i = wi − d

A
i − ui − vi

16   xt0+i = xt0+(i−1) + (
∆

C
i

0
∆

A
i

)

17   (xt0+i)a = max(0, (xt0+i)a), for a = 1, 3.
18   X[1+i,] = xt0+i
19   i = i + 1
20 END WHILE

In step 13, the random variables are sampled from the distributions 
defined above. If uuu and vvv are specified as time series of probability distri-
butions, then these are also sampled. The max(0, •) function in step  
17 prevents negative values in the state vector for the C and A compart-
ments. Negative values of animals, while obviously impossible in reality, 
could be numerically possible in the forecasts due to the random sampling 
step if, for instance, the user were to input parameter values sufficient to 
create a drastic decline in stock levels.

The output of Algorithm 1 is a matrix X with (N + 1) rows containing 
the state vector for each month of the forecast period. The three columns 
of X are the time series for the compartments C,B,A, respectively. The 
matrix X  is a unique stochastic trajectory of the model through its state 
space. A distribution of trajectories is generated by performing many 
realizations using a Monte Carlo approach. The resultant distribution 
represents the range of possible outcomes for the colony during the forecast 
period. Statistical quantities (for example, range and quantiles) are cal-
culated to summarize the realizations, allowing the many possible 
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outcomes to be expressed probabilistically with uncertainty. Note that no 
parameter fitting is required, all parameters are derived from real data 
extracted from the colony record-keeping system.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon request.

Code availability
A set of scripts containing R code for the model are available for reuse and 
modification via GitHub at https://github.com/dstl/colony-forecast-model 
(ref. 14).
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