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Combination of MRI-based prediction and
CRISPR/Cas12a-based detection for IDH
genotyping in glioma
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Donghu Yu1,10, Qisheng Zhong2,10, Yilei Xiao 3,10, Zhebin Feng4, Feng Tang1, Shiyu Feng4, Yuxiang Cai5,
Yutong Gao6, Tian Lan1, Mingjun Li7, Fuhua Yu3, Zefen Wang 8 , Xu Gao 9 & Zhiqiang Li 1

Early identification of IDH mutation status is of great significance in clinical therapeutic decision-
making in the treatment of glioma. We demonstrate a technological solution to improve the accuracy
and reliability of IDH mutation detection by combining MRI-based prediction and a CRISPR-based
automatic integrated gene detection system (AIGS). A model was constructed to predict the IDH
mutation status usingwhole slices inMRI scans with a Transformer neural network, and the predictive
model achieved accuracies of 0.93, 0.87, and 0.84 using the internal and two external test sets,
respectively. Additionally, CRISPR/Cas12a-based AIGS was constructed, and AIGS achieved 100%
diagnostic accuracy in terms of IDH detection using both frozen tissue and FFPE samples in one hour.
Moreover, the feature attribution of our predictive model was assessed using GradCAM, and the
highest correlationswith tumor cell percentages in enhancing and IDH-wildtype gliomaswere found to
have GradCAM importance (0.65 and 0.5, respectively). This MRI-based predictive model could,
therefore, guide biopsy for tumor-enriched, which would ensure the veracity and stability of the rapid
detection results. The combination of our predictivemodel andAIGS improved the early determination
of IDH mutation status in glioma patients. This combined system of MRI-based prediction and
CRISPR/Cas12a-based detection can be used to guide biopsy, resection, and radiation for glioma
patients to improve patient outcomes.

Glioma is the most frequent primary tumor of the central nervous system,
exhibiting a devastating prognosis1.Molecular classification contributes to a
better understanding of glioma pathophysiology and disease stratification2.
Isocitrate dehydrogenase (IDH) mutation status has emerged as one of the
most important molecular markers for glioma diagnosis and therapy, and
the early determination of IDHmutation status directly impacts treatment
decisions3,4. Traditional detection methods based on immunohistochem-
istry (IHC) and next-generation sequencing (NGS) are time-consuming
and are mostly used for postoperative diagnosis, which cannot meet the
needs of early determination of IDH mutation status. The application of
deep machine learning using radiomics images has shown potential to be
used for the prediction of IDH mutation status5–7. Moreover, newer

detection systems are continually being developed, some of which can
rapidly provide molecular information during surgery8,9.

Magnetic resonance imaging (MRI) plays a leading role innon-invasive
glioma diagnosis and treatment planning. Vast efforts have been devoted to
preoperatively determining IDH mutation status using MRI radiographic
features via deep learning algorithms5,6,10–12. Several approaches are used to
developmultitaskmodels for both segmentationandclassification, forwhich
segmentation masks are used for segmentation tasks5,6,12. However, auto-
mated tumor segmentation algorithms require manually segmented tumor
images as training examples, and manually segmenting gliomas in MRI is a
time-consuming task. In practice, clinically useful models are often costly,
generally because of the burden of lesion segmentations from hundreds or
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thousands of medical images. Previous studies focused on the MRI textural
features in glioma regions and ignored the information in these images on
other parts of the brain, which have also been shown to be associated with
IDH status13,14. IDH status affects the interaction between cells, and the
interactive effects may occur in other parts aside from the lesion. For
example, cells expressing IDH1 mutant release d-2-hydroxyglutarate (D-
2HG), a product increasing neuronal activity by mimicking the activity of
glutamate15, and the accumulated D-2HG in the circulating CSF made all
neurons exposed to relatively high concentrations of D-2HG16. Besides, the
connectome-based approach further revealed that the brain connectivity
disruption, distant from the focal lesion, was different based on IDH
status17,18. We hypothesized that extracting the imaging features fromwhole
slices inMRI scanswould improve the prediction accuracy of a classification
model. In order to handle the complex image information fromwhole slices
in brain MRI scans, Transformer, a novel deep learning architecture19, was
utilized in this study. Transformer can effectively capture long-range con-
textual relations between image pixels while maintaining low-level feature
extraction, and its noise suppression capabilities allowed Transformer to be
used for more complex pattern recognition19,20.

Sensitive and rapid detection of genemutation is essential for precision
medicine, butdetection toolswith these attributes are still notwidespread. In
recent years, Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR) systems have been utilized for rapid and sensitive nucleic acid
detection because Cas proteins can accurately recognize nucleic acid targets
of interest21–23. Cas12a is one of the most commonly used CRISPR/Cas
proteins inDNAdetection systems.Upon recognition and cleavage of target
double-strand DNA, the collateral cleavage activity of Cas12a is activated,
resulting in cleavage of nearby single-strand DNA (including fluorescence
reporters) in a non-specific manner, and this “collateral cleavage” has been
widely exploited for sensitive and specific detection of target sequences24,25.
Here, we developed an IDHmutation detection instrument, which we have
termed the CRISPR/Cas12a-based automatic integrated gene detection
system (AIGS). In this tool, the combination of a rapid PCR amplification
system, CRISPR/Cas12a-mediated cleavage assay, and real-time fluores-
cence quantification system have been used to realize fully integrated
detection from sampling into a report.

The veracity and stability of gene testing results depend critically on
accurate biopsy sampling from the tumor-rich tissues. However, obtaining
tumor-rich tissue samples can often be a challenge. A report from The
Cancer Genome Atlas (TCGA) suggests that only 35% of biopsy samples
contain sufficient tumor content for appropriate molecular
characterization26. Deep machine learning efforts with radiomics analysis
have beenused to extract numerous features inother cases to visualize spatial
histologic heterogeneity and delineate biopsy targets in glioma. Several
outstanding studies have shown proof-of-concept that MRI imaging and
machine learning techniques can make clinically useful quantitative pre-
dictions of important histopathologic findings, such as tumor infiltration27,
metabolic status28, and proliferation indices29. We hypothesized that our
predictivemodelwithhigh accuracy also correlatedwith certainpathological
changes in glioma patients, and the non-invasive correlation of histology
developed using this model may facilitate image-guided biopsy.

In this study, the objectives were threefold: (1) to establish an MRI-
based predictive model for determining IDH mutation status using
Transformer; (2) to develop CRISPR/Cas12a-based AIGS; and (3) to
explore the clinical benefits of the combination of a predictive model and
AIGS (details shown in Fig. 1).

Results
Patient characteristics
A total of 664 patients from five retrospective cohorts were used for con-
structing our predictive model (Supplementary Fig. S1). Patient cohorts
from Zhongnan Hospital (ZNH, n = 261), General Hospital of Northern
Theater Command (NTCGH, n = 121), and Liaocheng Peoples Hospital
(LPH, n = 104) were used for model development and in internal test sets,
and the cohorts from Chinese PLAGeneral Hospital (PLAGH, n = 30) and

TheCancer ImagingArchive (TCIA,n = 148)were used as external test sets.
The prevalences of IDH-mutants in the development, internal test, PLAGH
test, and TCIA test sets were 48.18%, 43.84%, 33.33%, and 38.51%,
respectively. IDH status of these patients is shown in Supplementary Table
1. There was no significant difference for age (p = 0.30), sex (p = 0.56), IDH
status (p = 0.12), or grade (p = 0.49) between these sets, but the prevalence of
1p/19q co-deletion was significant (p = 0.02) in the development set (Sup-
plementary Table 2). Frozen tissues in the NTCGH cohort (n = 20) and
FFPE tissues in the LPH cohort (n = 91) were used for evaluating the per-
formance of CRISPR-based AIGS, and clinicopathological information for
retrospective samples is shown in Supplementary Table 3. Glioblastoma
accounted for the highest proportion, followed by astrocytoma and oligo-
dendroglioma.Moreover, thirteen patients in ZNH, with 2–6 biopsies each,
were recruited to explore the association between tumor cell percentage and
the resulting feature attribution maps by prediction model (clinical data is
given in Supplementary Table 4).

MRI-based prediction model performance
TheMRI data from all included patients were acquired in DICOM format,
then the MRI scans were pre-processed (including registration to an atlas,
skull-stripping, intensity normalization, and resampling) (Fig. 2a). To
extract comprehensive signal intensity information fromeach tumor,masks
for each segmented lesion volume were used to select the image slice con-
taining the largest tumor area in the axial plane. Additional slices spaced
5mm apart were added until the edge of the tumor mask was reached (Fig.
2b), and the axial slices per patient were automatically selected based on
tumor segmentation and were considered individual samples for model
development and testing. These slices were individually fed into the model,
and the model was trained to classify 2D slices. We hypothesized that the
IDH status of multiple 2D slices from a single subject could present the
subject’s whole tumor state, and the diagnostic accuracy per patient was
calculated from the mean value of the predicted probabilities for slices.

Vision transformers (ViTs)20,30were used to predict the genetic features
fromMRI scans. Self-pre-training with masked autoencoders (MAE)31 was
first performed, and another ViT with a task-specific head was used as the
backbone network for constructing our classification model (Fig. 2c). The
reconstruction results from MAE demonstrated that self-pre-training was
able to restore lost information from a random context (Supplementary Fig.
S2), which was conducive to the completion of classification tasks. The
ablation study of MAE pretraining on mask ratios and epochs further
proved its effect (Supplementary Table 5). The final model was achieved
through 63 epochs of training, and the performance of this predictivemodel
on test sets is summarized in Table 1. With mean probabilities from 7
samples per patient, our model achieved accuracies of 0.93, 0.87, and 0.84,
with AUCs of 0.95 (95% CI: 0.93–0.97), 0.91 (95% CI: 0.87–0.94), and 0.89
(95% CI: 0.85–0.94) using the internal test, PLAGH, and TCIA sets,
respectively. Besides, the prediction status for each IDH1/2 variant in the
predictive model is shown in Supplementary Table 6.

To provide insight into the behavior of this model, GradCAM images
were created, and the selectedfilter outputs fromthis establishedmodelwere
visualized. These maps and visualizations showed which parts of each scan
contributed the most to each prediction (Supplementary Fig. S3). For
patients with correct predictions, the model focused on the tumor region,
whereas, for patients with incorrect predictions, the model failed to do this.
The filter output visualizations recognized specific imaging features such as
the T2-weighted (T2w) brightness. The ring-enhancing lesion surrounding
a necrotic core in the T1-weighted contrast-enhanced (T1wC) scan seemed
to be the feature that contributed to a correct prediction for IDH-wildtype
gliomas. The absence of enhancement or minimal enhancement in the
T1wC scan was the feature of tumors with IDH mutations, which was
consistent with the previous studies32–34.

Development of a one-pot CRISPR/Cas12a-based assay
Mutation detection based on CRISPR/Cas12a is rapid and sensitive, and a
combination of this method with rapid PCR can make it faster and more
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accurate. For integrating rapid PCR amplification and Cas12a cleavage into
a one-pot reaction system, we designed a specific reaction tube, which
greatly simplified the operation and avoided amplicon contaminationwhen
detecting IDHmutation. There was a controllable valve in themiddle of the
reaction tube, separating the reaction tube into two chambers. The lower
chamber is composedof PEPCRfilm, allowing for better thermal transfer to
promote the efficiency of PCR, and rapid PCR reagents were deposited on
this side of the vessel. The reagents of our Cas12a cleavage system were
stored in the higher chamber of the tube. When the amplification is com-
plete, the CRISPR/Cas12a-mediated cleavage system is thenmixed into the
lower chamber by opening the valve and shaking the tube. Following the
completion of the cleavage reaction, the fluorescence of each sample was
then measured (Fig. 3a).

To identify the optimal CRISPR RNA (crRNA) for detecting IDH1-
R132H, five crRNAs were designed (Fig. 3b). We compared the sensitivity
and specificity of these crRNAs in detecting IDH1-R132H in templets at
1 × 1010 copies, comprising the R132H and WT alleles. After 30min of a
Cas12a reaction, all crRNAs, particularly crRNA2, and crRNA5, could
detect each sample with 100% D835Y, while crRNA1 but not crRNA5

produced a strong signal even for theWTallele (Fig. 3c). Thus, crRNA5was
the optimal crRNA for IDH1-R132H detection based on its excellent sen-
sitivity and specificity. An optimal crRNA for IDH2-R172K was similarly
identified (Fig. 3d, e). Next, eight pairs of rapid PCR primers were screened
to improve sensitivity (Supplementary Fig. S4). Using the best primer pairs
and crRNAs, as lowas 10 copiesof IDH1-R132Hor IDH2-R172K templates
could be detected after 30min of rapid PCR and 30min of Cas12a reaction
(Fig. 3f, g). Moreover, the detection limit for the system was determined to
be 0.1% with 1 × 104 copies of the template as an input (i.e., 10 copies of
IDH1-R132H template mixed with 9990 copies of WT template) (Fig. 3h).
A similar detection limit for IDH2-R172Kwas also determined (Fig. 3i).We
next compared this one-pot system with a commonly used Sanger
sequencing method. Sample Sanger sequencing chromatograms of mutant
dilutions show that at 10%, themutationwas not reliably detectable over the
background (Fig. 3j).

Construction of a CRISPR/Cas12a-based detection device
To facilitate the promotion and commercialization of this one-pot CRISPR/
Cas12a-based assay, we designed and constructed an automatic integrated

Fig. 1 | Graphical illustration of this study. The illustration was created with BioRender.com.
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gene detection system (AIGS). The core components and optical paths of
this AIGS are shown in (Fig. 4a, b). In brief, the device mainly includes an
optical system, a temperature control system, and a timing control system.
In the optical system, a 470 nm light-emitting diode (LED) was used as the
fluorescence excitation module, and a photodetector was mounted on the
other side of the reaction tube. The temperature controlmodulewas located
at an orientation to control the optimal temperature for rapid PCR and
CRISPR/Cas12a-mediated cleavage, and the timing control was a single-

board computer. We used three-dimensional (3D) printing technology to
prepare all brackets and shells for the fixing and assembly of these com-
ponents (Fig. 4c). To simplify the operation, we designed a touchscreen-
basedman–machine interface.After the reaction tube is put into the sample
table and the START button is clicked, rapid PCR amplification (30min)
and CRISPR detection (30min) procedures (Fig. 4d) are performed auto-
matically. In AIGS, real-time results of fluorescence curve changes are
displayed on the touchscreen panel. The display interface from a typical

Fig. 2 | Construction of a predictivemodel of IDH status. a T1wC, T1w, T2w, and
FLAIR scans were used as inputs, and these scans were registered to an atlas, skull
stripped, normalized, and resampled. b Segmented FLAIR lesions were used to select
slices by first selecting the central slice with the maximum glioma area and
expanding every 5 mm until the boundary of each lesion was reached.

c Classification pipeline with MAE self-pre-training. Left: A ViT encoder was first
pre-trained with MAE. A random subset of patches was input to the encoder, and a
transformer decoder reconstructed each full image. Right: Self-pre-trained ViT
weights were transferred to initialize the segmentation encoder and a linear classifier
was used for classification tasks.
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detection result is shown in Fig. 4e, and the corresponding negative control
test results are shown in Fig. 4f. Additionally, another device with eight
detection channels was designed for multiplex molecular detection (Sup-
plementary Fig. S5).

We assayed a cohort of frozen tissue specimens (n = 20) representing
the major subtypes of diffuse glioma by AIGS, including varying WHO
grades (2–4), histologies (GBM, astrocytoma, and oligodendroglioma), and
highly variable tumor percentage (3–100%) (Fig. 4g). AIGS achieved 100%
diagnostic accuracy for IDH detection. A cohort of glioma FFPE cases
(n = 91)was then tested, andAIGS gave identical results to available original
clinical molecular marker results (Supplementary Table 7).

Association between tumor purity and predictive model
A group of patients with newly diagnosed glioma was recruited from
ZNH (4 diffuse astrocytomas, IDH mutant; 2 oligodendroglioma, IDH
mutant and 1p/19q codeleted; 5 glioblastoma IDH wildtype). Based on
conventional imaging findings in these MRI scans, two to six sphere
targets of 5 mm in diameter were defined as biopsy targets for each
patient. Two expert neuropathologists, blinded to the imaging results
and patient diagnosis, independently assessed the percentage of cancer
cells in each sample. For certain samples with IDH mutation, droplet
digital PCR (ddPCR) was used to quantify the fractional abundance of
the IDH1-R132H mutation. Whole exome sequencing (WES) was also
performed on the tumor tissue samples without IDH mutation, and
tumor purity for each sample was estimated from our WES data using
the ABSOLUTE algorithm35.

The MRI scans from the above patients were used as input into our
trained model to predict the status of IDH mutation, and the important
image regions that influenced these predictions were identified by Grad-
CAM. For all of the multiple biopsy samples, imaging measurements were
not associated with glioma cell percentages (Supplementary Fig. S6). In
subgroup analysis, the highest correlations with tumor cell percentage in
enhancing and IDH-wildtype gliomas were found to have GradCAM
importance (0.65 and 0.5) (Fig. 5a, b and Supplementary Fig. S7). A
GradCAM heatmap for patient 06 (a 31-year-old male patient with an
enhancingoligodendroglioma, IDH-mutant)was generated and is shown in
Fig. 5c, and a raised tumor percentagewas observed in the P06A regionwith
its high GradCAM importance. Then ddPCR was used to further validate
the presence of differences in tumor purity, and we found that the allele
fraction (IDH1-R132H) in this important region was higher than that in
unimportant regions (60.04% for P06A vs. 12.13% for P06B). Furthermore,
the fluorescence intensity of the P06A sample was stronger than that of

P06B at the same reaction time by AIGS (Fig. 5d), which suggested that
using GradCAM heatmaps to guide biopsy could improve accuracy rates
and shorten observation time when using AIGS.

Another representative example with six biopsy targets (patient 02, a
71-year-old female patient with an enhancing glioblastoma, IDH wildtype)
is shown in Fig. 6a. Consistent with the above, the tumor purities in the
important regions (P02C, P02D, and P02F) were higher than those in the
regions with less importance (P02A, P02B, and P02E), asmeasured by both
HE and sequencing using the ABSOLUTE algorithm (Fig. 6b–d). Tumor
heterogeneity was estimated byWES (Supplementary Fig. S8), and different
frequencies of base substitutions and gene variants were observed in dif-
ferent samples from patient 02 (Fig. 6e, f). A phylogenetic tree was next
constructed to depict clonal relationships and ordering events (Fig. 6g, h).
The tree was barely rooted in patient 02, and the samples in important
regions were more closely related in this tree, which indicated that our
predictive model identified tumor heterogeneity.

Taken together, the correlations between tumor cell abundance and
GradCAM importance in our predictive model were generated by the fol-
lowing observations. First, the higher estimated tumor purity was almost
always inside and around the contrast-enhancing volume for enhancing
tumors. This was consistent with clinically known proliferation-leakage
associations. Second, the higher glioma cell percentage was almost always
close to cisterns in IDH-wildtype gliomas, whichmight be related to the role
of subventricular zone (SVZ) stem cells in glioblastoma36–38.

Discussion
In this study, we combined a transformer-based neural network with MAE
self-pre-training to identify genetic features from the entire brain rather
than onlywithin tumor areas present in T1wCorfluid-attenuated inversion
recovery (FLAIR), and the accuracy of this predictive model was as high as
0.84–0.87 using external test datasets. Besides, GradCAM analysis was also
performed to explore the behavior of our model, and T2w brightness and
ring-enhancing lesions inT1wCscans seemed tobe the outstanding features
extracted by this model in enhancing gliomas. We were surprised to find
that thismodel could focus on a regionwith high tumor purity in enhancing
gliomas, and the correlation betweenGradCAM importance and cancer cell
percentage reached as high as 0.65.

Most existing MRI-based IDH classification models depend on mul-
titask models, for which segmented lesions in the segmentation model are
used for further classification39. However, these models require a large
number of manually labeled images for training, andmanual segmentation
at the voxel level is time-consuming and costly. Thismotivatedus to develop
models without relying on lesion segmentation. Building a predictivemodel
of IDH status directly from whole slices in MRI scans is more challenging
than deriving a model using segmented lesions because the most area is
heathy tissue thatmight beunrelated to IDHstatus.However, this decreased
associationdoes not implicitly indicate that these tissues have no association
with IDH status. Many lines of evidence, at both the molecular and cellular
levels, have demonstrated that glioma is a whole-brain disease13,40,41. Three
factors contributed to the transformer’s superiority for feature learning in
this study: (1) Multi-head self-attention derived from the transformer’s
good noise suppression ability. Specifically, due to the inherent hetero-
geneous nature of glioma tumors and lesion boundary diffusion, quite a lot
of noise can be mixed with information related to IDH genotyping; (2)
Shifted windows ensure global information interactions. Transformer can
effectively capture long-range contextual relations between image pixels
while maintaining low-level feature extraction capabilities; (3) Transformer
has robust adaptability. Fine-tuning pretrained Transformer enables a
model to adapt to and perform better on downstream tasks19,42. One aspect
that has garnered recent attention is the management of low-grade gliomas
that are incidentally detected without objective clinical signs during MRI
screening for unrelated syndromes. Emerging evidence emphasizes the
importance of pursuing early interventions to achieve maximal recovery,
potentially prolonging survival and delayingmalignant progression in small
“incident” gliomas43,44. However, we could not accurately conclude whether

Table 1 | Diagnostic performance of the model for the
prediction of IDH status

Dataset AUC (95% CI) Accuracy Sensitivity Specificity

Per slice

Internal
test set

0.93
(0.91–0.95)

0.90 0.88 0.92

PLAGH set 0.90
(0.93–0.87)

0.86 0.77 0.90

TCIA set 0.86
(0.82–0.90)

0.82 0.77 0.95

Per patienta

Internal
test set

0.95
(0.93–0.97)

0.93 0.91 0.95

PLAGH set 0.91
(0.87–0.94)

0.87 0.90 0.85

TCIA set 0.89
(0.85–0.94)

0.84 0.77 0.88

AUC, area under the receiver operating characteristic curve.
aSince eachpatient yielded about 7 tumor slices, thediagnostic accuracyper patientwas calculated
from the mean value of the predicted probabilities for slices.
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this MRImodel has good accuracy for smaller “sporadic” gliomas, as all the
enrolledpatients hadobvious clinical signs. Ensuring thepredictive abilityof
the model for IDH in small “incident” gliomas and distinguishing them
from high-grade gliomas in a timely manner will aid with the surgical
approach of these patients. Therefore, further research remains necessary.

Traditional approaches for mutation detection, such as Sanger
sequencing, lack sensitivity or speed, and accuracy is often seriously affected
byheterogeneity and low tumorpurity45,46. Basedon themechanismof trans
cleavage by Cas12a, CRISPR/Cas12a systems have recently been shown to
have great potential for molecular diagnostics47–50. Currently, we have only

Fig. 3 | Development of a one-pot CRISPR/Cas12a-based assay. a Schematic of a
one-pot method for IDH mutation status detection. Sequences of b IDH1-R132H
and d IDH2-R172K crRNAs. Fluorescence heatmaps of different c IDH1-R132H
and e IDH2-R172K crRNAs in Cas12a reactions. Time-course analysis of detecting
10 copies of f IDH1-R132H and g IDH2-R172K templates using our one-pot assay.

Sensitivity of CRISPR/Cas12a-based detection of 1 × 104 templates with a gradient of
h IDH1-R132H and i IDH2-R172K mutation rates. Data are presented as the
mean ± SD (n = 3). ***p < 0.001, ****p < 0.0001 versus the WT group. j Sanger
sequencing chromatograms of mutant dilutions. Minor components of the figure
were obtained from BioRender.com.
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designed mutation detectors for IDH1-R132H and IDH2-R172K variants.
In gliomas, R132H is the most common IDH1mutation, and R172K is the
most common IDH2 mutation51,52. Further judgment was still required
when the AIGS report identified a negative result. However, considering
that IDH1-R132H and IDH2-R172K are the most common variants if the
two variants specified were not detected for tumors, we still encourage
doctors to regard them as IDH wildtype gliomas and perform clinical
treatment, especially when immediate judgment is required. If there is
sufficient time, NGS should be performed to further improve the results
obtained by AIGS. Besides, more detection markers of molecular char-
acteristics, such as promoter methylation of MGMT, need to be developed
to improve the range of IDHmutation status assays in clinical applications.
Intraoperative rapid molecular diagnosis is important for aiding a neuro-
surgeon in surgical approaches, and the AIGS system established here with
eight channels makes this possible at some future date (Supplementary Fig.
S4). To further optimize AIGS, some measures need to be taken to reduce
the detection time to approximately 30min, such as using graphene to
accelerate heat conduction for rapid PCR.

As for improving thediagnostic accuracyofAIGS, a tumor-rich sample
being collected initially is very helpful. Some studies have suggested that
MRI imaging has a certain facility for detecting glioma infiltration27,53–55.
Verburg et al. reported that the diagnostic accuracy for tumor infiltration
was highest for T1wC in non-enhancing gliomas27, whichwas similar to our
findings. For our predictive model, the high correlation between extracted
features and tumor cell percentage for enhancing gliomas indicated that the
heat maps fromGradCAM could be utilized to aid image-guided therapies.
Therefore, we propose a combined system of preoperative prediction and
intraoperative detection (Fig. 7), which should produce enhanced clinical
benefits. In this combined system,machine learningwith radiomics analysis
could extract numerous features to visualize spatial histologic heterogeneity
and delineate tumor-rich biopsy targets in glioma, and the non-invasive
correlates of histology developed by this predictive model may facilitate
image-guided biopsy to ensure the veracity and stability of the detection
results provided by AIGS. This system could assist pathologists in making
more accurate histological diagnoses, and it might satisfy clinical needs for
determining clinical trial eligibility for trials studying neoadjuvant or

Fig. 4 | Construction of CRISPR/Cas12a-based AIGS. a Simplified schematic
diagram of the optical system, heating system, and fluorescence detection sub-
systems of the AIGS system. b Schematic diagram of the optical path in the optical
system. c Internal structure of the instrument. d Images of the AIGS system. e A

typical detection result from AIGS. The results can be observed by monitoring
fluorescence curves. fTest results using negative samples under the same conditions.
gA cohort of frozen tumor samples was assayed for IDHmutation byAIGS (n = 20).
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intratumoral targeted drugs56. Although a limitation of our study is that we
were not able to verify the effectiveness of this system using a prospective
randomized controlled trial, the promise of the combination of a predictive
model and rapid detection is still clear from the results presented herein and
represents a valuable contribution to the scientific community. To the best
of our knowledge, this is the first work that shows how to integrate a
predictive model and rapid detection method for gene mutation.

In conclusion, we developed an MRI-based predictive model and
CRISPR-based AIGS for IDH mutation status analysis. The feature
importance identifiedbyourpredictivemodel canbe representedusingheat
maps for biopsy, which can enhance the veracity and reliability of any
detection result provided by AIGS. This combined system utilizing a pre-
dictivemodel andAIGS has great potential to accelerate precisionmedicine
in the treatment of glioma.

Methods
Patient selection
A total of 1109 patients from five retrospective cohorts were considered for
inclusion to construct this predictive model. Requirements for informed

consent were waived, as no protected health information was reported
herein. The details on inclusion criteria are provided in Supplementary
Methods.

For testing CRISPR/Cas12a-based AIGS, tumor samples, and basic
information on patients were obtained fromNTCGHand LPH.A cohort of
frozen tissue specimens (n = 20) representing the major subtypes of diffuse
glioma were assayed by AIGS. Glioma formalin-fixed, and paraffin-
embedded (FFPE) tissues with limited DNA from LPH (n = 94) were fur-
ther used to test the accuracy of AIGS. The requirements for informed
consent were waived, as no protected health information was reported
herein.

To explore the association between pathological characteristics
and the recognized features identified using our predictive model,
multi-region stereotactic biopsies were harvested from the recruited
patients from ZNH from July 2021 to February 2022 (n = 15), and in
this case, these patients provided written informed consent. The
details of IDH status evaluation for all patients in this study are pre-
sented in Supplementary Methods. The study was conducted in
accordance with the guidelines of the Declaration of Helsinki and was

Fig. 5 | The potential of GradCAM heatmaps for guiding biopsy. Correlations
between image intensity and tumor percentage in a enhancing/non-enhancing and
b IDH-wildtype/IDH-mutant gliomas. Lengths of the five flower petals are quali-
tatively based on correlation indices and indicate the coefficients relative to the four

circles representing −0.5, 0, 0.5, and 1. cMRI images and GradCAM heat map for
patient 06. d Corresponding HE and ddPCR results of MRI-guided biopsy targets
(cross points).
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approved by the Ethics Committee of Zhongnan Hospital (approval
No. 2019048).

Predictive Model Construction
The processing steps for MRI scans and the details of the model construc-
tion are summarized in Supplementary Methods. The performance of this
model was then evaluated on the independent test sets. The area under the
receiver operating characteristic curve (AUC), accuracy, sensitivity, and
specificity were all evaluated for each genetic feature. For the AUC, we also
evaluated the 95% confidence interval (CI) using basic bootstrapping with
1000 iterations. The model explanation was performed using Gradient-
weighted Class Activation Mapping (GradCAM), a heatmap-based feature
attributionmethod57. This approach enables rapid visual verification of our
models’performance by extracting features from regions that correspond to
human interpretation.

CRISPR/Cas12a-based AIGS development
In the Cas12a reaction, a mutation-specific crRNA is necessary to avoid
cross-reactivity with the WT. To find the optimal crRNA for detecting
IDH1-R132H and IDH2-R172K, five crRNAs for IDH1-R132H and three
crRNAs for IDH2-R172K with different mismatches were designed. The
sensitivity and specificity of these crRNAs in detecting mutations in the
mixture of R132H/R172K andWT templates were evaluated. Primer design
for PCR amplification was done using Prime Premier 5.0. The rapid PCR
amplification system consisted of 25 μL 2× Hieff® Robust PCRMasterMix
(Yisheng Biotechnology), 10 μM forward primer, 10 μM reverse primer,
40–100 ng DNA, and sterile water up to 50 μL. Rapid PCR was performed
with a hot start at 95 °C for 180 s, followed by 25 cycles of [95 °C for 10 s and
60 °C for 20 s], respectively. Using the optimized crRNAs and primers, the
lower limit of detection for the one-pot CRISPR/Cas12a-based assay was
determined for IDH1-R132H and IDH2-R172K. The Cas12a-mediated

Fig. 6 | Example of imaging with corresponding histology. aMRI images and
GradCAM heatmaps for patient 02. b Corresponding HE of biopsy targets.
c Statistical table of tumor position, cancer cell percentage, and tumor purity of
biopsy targets. d Comparison of tumor purity between important regions and
unimportant regions as estimated by GradCAM. Data are presented as the
mean ± SD (n = 3). **p < 0.01 between important regions and unimportant regions.

e The frequency of base substitutions within specific trinucleotide mutational
contexts of each sample in patient 02. f Oncoplot of genes with highest counts of
variants in multi-spot tumors. g Phylogenetic tree of patient 02 by iTOL.
h Phylogenetic tree was constructed for patient 02 based on the maximum parsi-
mony algorithm.
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cleavage system contained 1.5 μM Fncas12a, 3 μL 1× NEB buffer 2.1,
0.75 μMcrRNA, 50 pM ssDNAFQ reporter, and 50 μL amplified products.
The reactionwas carried out at 37 °C for 30min, withfluorescence collected
every 1min. The mutant and WT templates were mixed at various ratios,
with IDH1-R132H or IDH2-R172K comprising 100%, 50%, 20%, 10%, 1%,
and 0.1% of the total templates.

For facilitating the promotion and commercialization of this tech-
nology, we designed and constructed an automated integrated gene detec-
tion system (AIGS) (Supplementary methods). Three-dimensional (3D)
printing technologywas used to prepare all the brackets and shells for fixing
and assembling these components, and a touchscreen-basedman–machine
interface was designed to simplify instrument operation. Frozen tissues and
FFPE tissues of glioma were further used to test the reliability of AIGS.

Tumor heterogeneity exploration
Imaging sequence coordinates that corresponded with biopsy sample
locations were used to center cubic regions of interest (ROIs) of the 5-mm-
diameter sphere. In order to normalize the imaging sequences with relative
measurements (T1wC, T1w, T2w, FLAIR), an ROI was manually placed in
the same regionof the contralateral hemisphere for eachbiopsy location. For
each imaging sequence, the mean of the voxel measurements within the
biopsy and contralateral ROI were extracted for further analyses (ITK-
SNAP software). In the heat maps generated by GradCAM, the intensity of
the color was used to quantify the important region, and then Spearman’s
correlation between GradCAM importance and tumor cell percentage was
analyzed.The computationprocedureofGradCAMimportance is shown in
Supplementary Methods. For certain samples with IDH mutation, droplet
digital PCR (ddPCR) was used to quantify the fractional abundance of the
IDH1-R132H mutation. Whole exome sequencing (WES) was also

performed on the tumor tissue samples without IDHmutation, and tumor
purity for each sample was estimated from our WES data using the
ABSOLUTEalgorithm35. The technical details of ddPCRandWESare given
in Supplementary Methods. The correlation between tumor abundances
and image intensities was calculated.

Statistical analysis
Clinicopathological characteristics were compared using appropriate sta-
tistical tests, including Chi-square or Fisher’s exact test for categorical
variables and t-test for continuous variables. The AUC, sensitivity, and
specificity were used to evaluate the model classification ability. The
Spearman’s correlation between GradCAM importance and tumor cell
percentagewas analyzed.All testswere two-sided, and statistical significance
was defined asP < 0.05. Statistical analyseswere performedusingR software
version 4.1.3.

Data availability
Requests to original datasets should be made directly via corresponding
author (M.D., PhD, Zhiqiang Li, E-mail: lizhiqiang@whu.edu.cn) with a
data access request form, institute rules and regulation of data access should
be followed.

Code availability
All code was implemented in Python 3.9 and R 4.1.3. Original Vit model
code is available on https://github.com/google-research/vision_
transformer. Original MAE model code is available on https://github.
com/facebookresearch/mae. Custom Python and R code related to this
study is publicly available on https://github.com/Tofu-fish/Vit-for-IDH-
genotyping.

Fig. 7 | Combined MRI-based predictive and
CRISPR/Cas12a-based AIGS system. Minor com-
ponents of the figure were obtained from
BioRender.com.
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