Table 2 Comparison the performance of ML models for YOCRC risk stratification in the internal validation dataset
 | AUC | Accuracy | Sensitivity (Recall) | Specificity | NPV | Precision (PPV) | F1 score | Brier score |
---|---|---|---|---|---|---|---|---|
LR | 0.768 | 0.741 | 0.650 | 0.745 | 0.978 | 0.108 | 0.185 | 0.219 |
RF | 0.859 | 0.747 | 0.840 | 0.743 | 0.990 | 0.134 | 0.231 | 0.177 |
KNN | 0.692 | 0.622 | 0.665 | 0.619 | 0.975 | 0.077 | 0.137 | 0.258 |
SVC | 0.777 | 0.729 | 0.720 | 0.729 | 0.982 | 0.112 | 0.194 | 0.207 |
DT | 0.732 | 0.830 | 0.625 | 0.840 | 0.979 | 0.156 | 0.250 | 0.182 |
XGBoost | 0.871 | 0.790 | 0.775 | 0.790 | 0.987 | 0.149 | 0.251 | 0.166 |
AdaBoost | 0.843 | 0.776 | 0.745 | 0.778 | 0.985 | 0.137 | 0.232 | 0.223 |
Stacking | 0.821 | 0.780 | 0.800 | 0.779 | 0.988 | 0.147 | 0.248 | 0.163 |