Table 8 Performance comparison of TR-MAMIL using different feature extractor methods on the testing sets in (a) classification of aggressive and non-aggressive EC, (b) TMB prediction for the aggressive EC, and (c) TMB prediction for the non-aggressive EC

From: Deep learning for endometrial cancer subtyping and predicting tumor mutational burden from histopathological slides

Task

Backbone

Model selection

Acc.

Sens.

Spec.

MeanSS

AUROC

(a) Classification of aggressive and non-aggressive EC

Truncated ResNet50

F1-score

0.89

0.93

0.84

0.89

0.97

 

Truncated ResNet101

 

0.84

0.80

0.89

0.84

0.86

 

Truncated ResNet152

 

0.86

0.83

0.90

0.87

0.93

 

CCL-ResNet5063

 

0.58

1.00

0.00

0.50

0.53

 

CCL-ResNet152

 

0.58

1.00

0.00

0.50

0.52

 

DINO-ViT-S/1664

 

0.84

0.90

0.77

0.83

0.90

 

Lunit’s DINO-ViT-S/1658

 

0.86

0.82

0.90

0.86

0.91

 

Lunit’s DINO-ViT-S/16 with data normalization58

 

0.85

0.83

0.87

0.85

0.91

(b) TMB prediction for aggressive ECs

Truncated ResNet50

Cross-Entropy

0.67

0.78

0.61

0.69

0.69

 

Truncated ResNet101

 

0.71

0.75

0.68

0.71

0.78

 

Truncated ResNet152

 

0.73

0.63

0.73

0.73

0.78

 

CCL-ResNet5063

 

0.58

1.00

0.00

0.50

0.50

 

CCL-ResNet152

 

0.58

1.00

0.00

0.50

0.48

 

DINO-ViT-S/1664

 

0.65

0.83

0.54

0.69

0.70

 

Lunit’s DINO-ViT-S/1658

 

0.70

0.75

0.66

0.71

0.76

 

Lunit’s DINO-ViT-S/16 with data normalization58

 

0.72

0.69

0.73

0.71

0.79

(c) TMB prediction for non-aggressive ECs

Truncated ResNet50

F1-score

0.64

0.57

0.67

0.62

0.69

 

Truncated ResNet101

 

0.69

0.53

0.84

0.61

0.65

 

Truncated ResNet152

 

0.66

0.76

0.61

0.68

0.70

 

CCL-ResNet5063

 

0.58

1.00

0.00

0.50

0.67

 

CCL-ResNet152

 

0.58

1.00

0.00

0.50

0.43

 

DINO-ViT-S/1664

 

0.59

0.43

0.67

0.55

0.51

 

Lunit’s DINO-ViT-S/1658

 

0.48

0.57

0.44

0.51

0.51

 

Lunit’s DINO-ViT-S/16 with data normalization58

 

0.55

0.38

0.63

0.50

0.58

  1. The bold case highlights the recommended setup of the proposed framework.