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Deep learning models in classifying
primary bone tumors and bone infections
based on radiographs
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Primary bone tumors (PBTs) present significant diagnostic challenges due to their heterogeneous
nature and similarities with bone infections. This study aimed to develop an ensemble deep learning
framework that integrates multicenter radiographs and extensive clinical features to accurately
differentiate between PBTs and bone infections. We compared the performance of the ensemble
model with four imagingmodels based solely on radiographs utilizing EfficientNet B3, EfficientNet B4,
Vision Transformer, and Swin Transformers. The patients were split into external dataset (N = 423) and
internal dataset [including training (N = 1044), test (N = 354), and validation set (N = 171)]. The
ensemble model outperformed imagingmodels, achieving areas under the curve (AUCs) of 0.948 and
0.963 on internal and external sets, respectively, with accuracies of 0.881 and 0.895. Its performance
surpassed junior and mid-level radiologists and was comparable to senior radiologists (accuracy:
83.6%). These findings underscore the potential of deep learning in enhancingdiagnostic precision for
PBTs and bone infections (Research Registration Unique Identifying Number (UIN):
researchregistry10483 and with details are available at https://www.researchregistry.com/register-
now#home/registrationdetails/6693845995ba110026aeb754/).

Primary bone tumors (PBTs) are a diverse group of heterogeneous tumors
that primarily develop in the skeletal system1. Despite their relatively low
incidence, these malignancies present significant morbidity and mortality
rates2,3. Remarkably, bone tumors rank as the third leading cause of cancer-
related deaths among individuals under the age of 20 in the United States4.
Currently, the treatment options for bone tumors remain formidable,
traditional treatment options such as chemotherapy and surgical inter-
ventions, face significant challenges1,5. For instance, chemotherapy often
leads to severe side effects and has a limited success rate due to che-
moresistance in specific type of bone tumors like osteosarcoma6,7, while
surgical optionsmay result in functional impairments, residual metastasis,
and even deformities or disabilities8–10. These challenges underscore the
need for improved treatment strategies. Radiography is the suggested
primary auxiliary examination choice and commonly employed in
orthopedic diagnosis as they generally provide a clear evaluation of the

lesion’s location, internal matrix, margins, and associated periosteal
reactions11. These destruction signs reflect the biological activity of the
lesion, thus allowing for evaluation of the malignancy assessment12.
However, PBTs exhibit diverse compositions and may present with
overlapping radiological and histological features13,14. Consequently, the
samePBTsmay appear differently on radiographs, anddifferent PBTsmay
exhibit similar radiographic images15. Due to the rarity of PBTs, cultivating
a professional radiologist often encounters the problem of a long training
cycle and insufficient expertise16. Bone infections primarily encompass
osteomyelitis and joint infections. Notably, clinically distinguishing PBTs
from bone infections is challenging for the similarities in clinical practice
(e.g., fever, soft tissue swelling, periosteal reaction), leading to potential
confusion and challenges in accurate diagnosis17,18. Therefore, the pre-
operative differential diagnosis of PBTs and bone infections is crucial for
precise diagnosis and timely treatment.
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Traditional diagnostic methods heavily rely on the expertise and
subjective judgment of radiologists and pathologists, which can lead to
potential errors and delays in treatment options19–21. Furthermore, if ima-
ging studies are not interpreted by musculoskeletal radiologists who spe-
cialize in this field, discrepancies in readings can occur, reaching up to
28%22. In recent years, the emergence of deep learning algorithms especially
convolutional neural networks (CNNs) has significantly impacted clinical
practices such as assisted diagnosis and drug discovery23,24. These
advancements have also demonstrated improvements in cancer
prognosis25. The application of deep learning in cancer diagnosis has
considerably enriched thefield, showcasingastoundingefficiency in solving
complex problems with a lower error rate than humans26,27. For bone
tumors, the development of multitask deep learning models has enabled
accurate and simultaneous bounding box placement and segmentation of
PBTs in radiographs, andcan effectively differentiate benign andmalignant
PBTs with performance comparable to senior radiologists28. Due to the
rarity of PBTs, deep learning models in this domain are constrained by
limited access to large-scale cohort datasets, resulting in scant efforts to
differentiate between bone tumors and other bone pathologies. Further-
more, prevailing models emphasize algorithmic versatility and data
diversity, yet they fall short in sufficiently incorporating crucial clinical
patient data and prioritizing the interpretability of model outcomes. This
trend runs counter to the fundamental ethos of algorithmic design,
sometimes it is necessary to pause and delve into a profound compre-
hension of our meticulously crafted models with professional radiologist
interpretation, thereby aligning our efforts with the original essence of
algorithmic innovation.

Therefore, the main objective of this study was to create an ensemble
deep learning framework using multicenter radiographs and extensive
clinical features to accurately differentiate between PBTs and bone infec-
tions. While comparing the performance of the ensemble model with four
imaging models merely utilizing radiographs, which were built upon four
distinct neural networks: EfficientNet B3 (E3), EfficientNet B4 (E4), Vision
Transformer (ViT), and Swin Transformers (SWIN). Subsequently, these
models’ effectiveness was assessed and compared with the diagnostic
accuracy of radiologists. In addition, six professional radiologists, categor-
ized into three seniority groups, provided insights and discussions on the
clinical implications of the developed models. The research methodology
and study flowchart are illustrated in Fig. 1.

Results
Characteristics of study participants
This retrospective study included 1992 patients (median age, 29 years;
range, 1–88 years; 796 female) from three hospitals diagnosed of PBTs or
bone infections with histopathology reports available as reference (Table
1). The distribution of 1208 patients with PBTs were described in Sup-
plementary Table 1, with 767 benign subtypes, 251 malignant subtypes
and 190 intermediate subtypes according to the 2020 World Health
Organization (WHO) system for the classification for tumors of bone.
While for 784 patients with bone infection, bone tuberculosis counted
the highest proportion (Supplementary Table 2). 1569 patients from
Hospital 1 were utilized as internal dataset and divided into a training set
(N = 1044), a test set (N = 354) and a validation set (N = 171) (Fig. 2a)
(screening criteria in Fig. 2b); 423 patients fromHospital 2 and Hospital
3 were used for external validation (Supplementary Fig. 1). Clinical
characteristics like age, lesion location, pain, swelling, trauma,
C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), alka-
line phosphatase (ALP) among all of the bone infection andPBTpatients
had significantly different distributions (Table 1). The clinical char-
acteristics of patients with PBTs and bone infection were summarized
specifically in Supplementary Tables 3 and 4. We further found that
clinical characteristics like age, lesion location, pain, swelling, trauma,
C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), alka-
line phosphatase (ALP) also had statistical differences in the internal
dataset (Supplementary Table 5).

Classification performance of models
In the internal test set, the ensemble model outperformed four imaging
models (E3, E4, ViT and SWIN) on the binary classification to distinguish
PBTs from bone infections respectively (P < 0.001 for E3, E4, and ViT;
P = 0.835 for SWIN; DeLong test) (Table 2 and Supplementary Fig. 2).
Specifically, the ensemble model reached an AUC of 0.948 (95% CI,
0.931–0.963) and an accuracy of 88.1% for binary classification, whereas the
E3, E4, ViT and SWIN-based models achieved AUCs of 0.903 (95% CI,
0.878–0.927), 0.912 (95% CI, 0.890–0.934), 0.903 (95% CI, 0.880–0.927),
and 0.946 (95% CI, 0.929–0.963) as well as accuracies of 84.3%, 84.6%,
84.3%, and87.2%, respectively (Table 2). TheROCcurves and the confusion
matrices also demonstrated the best categorizing ability of the ensemble
model (Fig. 3 and Supplementary Fig. 3).

In the external test set for validation, the ensemble model also out-
performed the four imaging models, which proved the consistency and
applicability of the ensemble model (P < 0.001 for E3 and E4; P = 0.002 for
ViT and SWIN; DeLong test) (Table 2 and Supplementary Fig. 2). Speci-
fically, the ensemblemodel reached anAUCof 0.963 (95%CI, 0.951–0.973)
and an accuracy of 89.5% for the classification, while the four imaging
models reached AUCs of 0.930 (95% CI, 0.914–0.946), 0.946 (95% CI,
0.932–0.960), 0.951 (95% CI, 0.939–0.964), and 0.957 (95% CI,
0.944–0.969) as well as accuracies of 86.6%, 87.4%, 87.1%, and 88.5%,
respectively (Table 2). The confusion matrices and ROC curves in Fig. 3
further visually demonstrated the superior discrimination capability of the
ensemble framework. In addition, the result in internal validation set
further confirmed the stability and consistency of the ensemble model
(Supplementary Fig. 4).

Comparison of performance between the ensemble framework
and radiologists
In this study, six professional radiologists were divided into junior expert
group (EG1), medium seniority group (EG2), and senior expert group
(EG3). The comparative analysis was conducted using the internal test set.
As shown in Fig. 3, the ensemble framework significantly outperformed all
three radiologist groups (P < 0.001 for EG1, EG2, and EG3; Cochran’s Q
test) (Table 2). The SWIN-based imagingmodel demonstrated comparable
performance to the ensemble model (P = 0.835; DeLong test) (Table 2) and
also outperformed the three radiologist groups. The other three imaging
models (E3, E4, andViT) achieved superior performance compared to EG1
and EG2, and were comparable to EG3. In addition, we calculated and
provided other metrics, including accuracy, sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and F1 Score, to
facilitate a comprehensive comparison of the performance between the
ensemble framework and the radiologists (Table 3).

Inter-reader reliability
Considering the subjectivity of individual sample predictions and large
workload of the monotonous radiographs (n = 687), inter-reader reliability
among radiologists was much lower than that of the models. We compared
the best performing model—the ensemble model with experts of diverse
seniority, Cohen κ between expert 6 (radiologist with the highest seniority)
and the ensemble had the best consistency: 0.596 (95% CI, 0.560–0.633)
(Table 4). The Fleiss κ value among radiologists achieved 0.401 (95% CI,
0.364–0.438) on the internal test set, while the Fleiss κ value amongmodels
achieved 0.800 (95% CI, 0.770–0.830) (Table 4). Furthermore, we used
Cohen κ value to evaluate consistency between pairs of expert groups (EG1,
EG2, and EG3) and consistency between the ensemble model and the other
four imaging models. We found as seniority increased, the consistency of
judgment rose in radiologists, but the overall consistency of judgment was
still lower than that of the models. The Fleiss κ value among EG1, EG2, and
EG3 reached0.267 (95%CI, 0.234–0.300), 0.295 (95%CI, 0.261–0.329), and
0.581 (95% CI, 0.544–0.618), respectively (Table 4). In contrast, the Fleiss κ
value among the ensemble model and the imaging models reached 0.805
(95% CI, 0.775–0.835), 0.793 (95% CI, 0.763–0.823), 0.783 (95% CI,
0.752–0.814), and 0.908 (95% CI, 0.886–0.930), respectively (Table 4). This
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indicates that a strong disagreement exists among junior radiologists when
facing classification of PBTs and bone infection solely on radiograph data.

Visual interpretation of models
In order to accurately interpret the predictions made by the models, we
employed techniques such as GradCAM and ScoreCAM to visualize the
specific regions within the input data that the model utilizes for its decision-
making process (Fig. 4). By identifying and highlighting these key areas, we
are able to gain a deeper understanding of how the model arrives at its
predictions and make informed assessments about its performance and
reliability. In general, the analysis of the highlighted regions on the heatmaps
reveals that themodel primarily focusedon identifyingPBTorbone infection
lesions, such as hemorrhage, necrosis, calcification, cystic lesions, and
inflammatory exudation. These findings are in line with the segmentation
results, indicating that themodelwas able toachieveahigh levelof accuracy in

classifying these specific types of lesions. This demonstrates the effectiveness
of the model in accurately identifying and categorizing pathological features,
ultimately leading to satisfactory classification performance. The distinctions
between GradCAM and ScoreCAM are clearly evident in the generated heat
maps. GradCAM primarily emphasizes the areas of bone hyperplasia and
sclerosis, neglecting thoseof bonedestruction.Conversely, ScoreCAMdirects
its attention towardbothosteogenic andosteoclastogenic regions, resulting in
a more precise delineation of lesion boundaries.

Radiologist interpretation
Diagnosis of the ensemble model and radiologists across different types of
PBTs and bone infections were explicated in Supplementary Tables 6 and 7,
specifically. Some bone tumors were classified incorrectly by experts but
correctly by the model (Fig. 5). Giant cell tumors of bone (Fig. 5a) may
exhibit obvious aggressiveness, resulting in the blurring of the boundary

Fig. 1 | Design and flowchart of the deep learning framework. a Preprocessing of
data. The input of the models mainly includes image information based on radio-
graphs defined as input (A) and clinical information defined as input (B). bModel
development. c Comprehensive prediction. PRadio and PClinic refers to the results of
the four imagingmodels (E3, E4, ViT, and SWIN) and the clinic model, respectively.

d Evaluation. This part is mainly composed of ROC curve and confusion matrix.
e Verifying. The results of models are compared with radiologists with different
seniority. n number of the radiographs, E3 EfficientNet B3, E4 EfficientNet B4, ViT
vision transformer, SWIN swin transformers. Note: Fig. 1 was Created with
BioRender.com.
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between the lesion and normal bone, wormlike and ethmoidal bone
destruction, and soft tissue masses beyond the bone envelope. There is
partial image overlap with malignant bone tumors and infections (such as
Brodie abscess) on plain film29. Synovial osteo-chondromatosis (Fig. 5b) is
characterized by multiple cartilage nodules in the joint lumen. When the
cartilagenodules arenot significantly calcified, especiallywhenbone erosion
is present at the same time, it is difficult to distinguish osteoarthritiswith free
bodies in the joint30. There are also cases where both experts and models
misclassify. Chondrosarcoma (Fig. 5e) involving the pelvis is more likely to
occur in the iliac wing than in the acetabulum. Intramedullary osteolytic
lesions with poorly defined acetabular boundaries may be consistent with
chondrosarcoma, as well as tuberculosis and osteoarthritis of the hip. The
overlap of the structure in plainfilmmakes the calcification of the circular or
arc-shapedchondroid stroma, a typicalmanifestationof chondrosarcomaat
the acetabulum,notobvious, andappears tobe suspected involvementof the
adjacent femoral head. Multiple myeloma (Fig. 5f) tends to occur in the
thoracic vertebrae and has a positive pedicle sign (destruction of the ver-
tebral body but retention of the pedicle).When both the vertebral body and
pedicle are destroyed at the same time, it is necessary to distinguish them
from spinal metastasis and spinal tuberculosis with insignificant para-
vertebral abscess31. There are also cases where the experts got the

classification right and themodel got it wrong. Sclerosing osteosarcoma has
no obvious bone destruction, which is different from the common mixed
osteosarcomawith both osteolytic and sclerosing (Fig. 5c).Giant cell tumors
of bone occur mostly in the long bone, but can also occur in the vertebral
body (Fig. 5d). These relatively uncommon conditions can be recognized by
radiologists with extensive clinical experience. However, due to limited
training on rare cases, the model tends to focus more on interpreting the
more frequently encountered chronic osteomyelitis and spinal tuberculosis.

Some bone infections were classified incorrectly by experts but cor-
rectly by the model (Fig. 6). Chronic sclerosing osteomyelitis (Garre
osteomyelitis, Fig. 6a) mainly presents with osteosclerosis and lack of dead
bone formation, and needs to be distinguished from sclerosing
osteosarcoma32. When lumbar tuberculosis (Fig. 6b) involves only a single
vertebral body and lacks paravertebral space narrowing, formation of
paravertebral cold abscess, and soft tissue calcification, it should be differ-
entiated fromplasma-cell tumor andgiant cell tumorof bone. There are also
cases where the experts got the classification right, and the model got it
wrong. There is partial overlap between acute suppurative osteomyelitis
(Fig. 6d) and Ewing sarcoma. Although the image manifestations of joint
tuberculosis (Fig. 6c) occurring in the elbow joint are relatively typical, the
number of training cases of joint tuberculosis in the extremities is limited for

Table 1 | Clinical characteristics of included patients with primary bone tumors or bone infections

Characteristics Patients with PBTs (N = 1208) Patients with bone infection (N = 784) All patients (N = 1992) P value

Age (year) 24.85 ± 18.18 45.65 ± 18.95 33.04 ± 21.09 <0.001*

Gender 0.1663

Female 498 (41.23%) 298 (38.01%) 796 (39.96%)

Male 710 (58.77%) 486 (61.99%) 1196 (60.04%)

Position <0.001*

Appendicular 1044 (86.42%) 314 (40.05%) 1358 (68.17%)

Axial 164 (13.58%) 470 (59.95%) 634 (31.83%)

Pain <0.001*

Yes 857 (70.94%) 487 (62.12%) 1344 (67.47%)

No 351 (29.06%) 51 (6.51%) 402 (20.18%)

NA 0 246 (31.37%) 246 (18.30%)

Swelling <0.001*

Yes 538 (44.54%) 320 (40.82%) 858 (43.07%)

No 662 (54.80%) 218 (27.81%) 880 (44.18%)

NA 8 (0.66%) 246 (31.37%) 254 (12.75%)

Trauma <0.001*

Yes 173 (14.32%) 47 (5.99%) 220 (11.04%)

No 858 (71.03%) 491 (62.64%) 1349 (67.72%)

NA 177 (14.65%) 246 (31.37%) 423 (21.24%)

CRP <0.001*

Normal 655 (54.22%) 194 (24.74%) 849 (50.10%)

Abnormal 440 (36.42%) 389 (49.62%) 829 (34.64%)

NA 113 (9.36%) 201 (25.64%) 314 (15.76%)

ESR 0.0089*

Normal 286 (23.68%) 53 (6.76%) 339 (26.27%)

Abnormal 803 (66.47%) 536 (68.37%) 1339 (22.68%)

NA 119 (9.85%) 195 (24.87%) 314 (51.05%)

ALP 0.0086*

Normal 0 (0.00%) 0 (0.00%) 0 (0.00%)

Abnormal 468 (38.74%) 391 (49.87%) 859 (43.12%)

NA 740 (61.26%) 393 (50.13%) 1133 (56.88%)

PBTs primary bone tumors, N number of patients, NA not appliable, CRP C-reactive protein, ESR erythrocyte sedimentation rate, ALP alkaline phosphatase.
Data in parentheses are percentages. Continuous variables are expressed as mean ± standard deviation. *P values less than 0.05 are considered statistically significant.
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the model, and more common training cases of tuberculosis come from
spinal tuberculosis, resulting in a decrease in the accuracy of model inter-
pretation. There are also cases inwhich both experts andmodelsmisclassify.
Brodie abscess appears as a single osteolytic lesion on X-ray, accompanied

by peripheral sclerosis with decreasing degree of peripheral sclerosis, which
is difficult to distinguish from osteosarcoma and osteoid osteoma (Fig. 6f).
When not accompanied by obvious sclerosis, it is difficult to distinguish
Langerhans histiocytosis and Ewing sarcoma (Fig. 6e)33.

Table 2 | Performance of the models and radiologists of different seniority in internal and external test set

Modality F1 score ROC AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV P value

Internal test set

Ensemble model 0.834 0.948 (0.931–0.963) 0.881 0.808 0.924 0.862 0.891 NA

E3 0.879 0.903 (0.878–0.927) 0.843 0.849 0.830 0.912 0.725 <0.001*

E4 0.881 0.912 (0.890–0.934) 0.846 0.856 0.825 0.907 0.741 <0.001*

ViT 0.881 0.903 (0.880–0.927) 0.843 0.840 0.848 0.926 0.702 <0.001*

SWIN 0.903 0.946 (0.929–0.963) 0.872 0.863 0.892 0.947 0.745 0.835

EG1 0.822 NA 0.758 0.764 0.742 0.890 0.535 <0.001*

EG2 0.849 NA 0.802 0.815 0.774 0.887 0.659 <0.001*

EG3 0.870 NA 0.836 0.866 0.783 0.874 0.771 <0.001*

External test set

Ensemble model 0.887 0.963 (0.951–0.973) 0.895 0.820 0.972 0.968 0.841 NA

E3 0.875 0.930 (0.914–0.946) 0.866 0.818 0.931 0.940 0.794 <0.001*

E4 0.883 0.946 (0.932–0.960) 0.874 0.818 0.953 0.960 0.790 <0.001*

ViT 0.883 0.951 (0.939–0.964) 0.871 0.803 0.977 0.982 0.763 0.002

SWIN 0.894 0.957 (0.944–0.969) 0.885 0.825 0.971 0.976 0.796 0.002

E3 EfficientNet B3, E4 EfficientNet B4, ViT vision transformer, SWIN swin transformers, CI confidence interval, PPV positive predictive value, NPV negative predictive value. *P values less than 0.05 are
considered statistically significant.

Fig. 2 | Data distribution and the screening criteria of the study. a Data processing process and data distribution across different datasets. b Screening criteria of the
research. n number of the radiographs, N number of the patients. Note: Fig. 2 was Created with BioRender.com.
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Discussion
Overall, our research introduced an innovative ensemble framework
designed to detect and classify PBTs and bone infections concurrently. This
framework incorporated two distinct single models: a radiograph-based

imaging model and a clinical logistic regressionmodel. By combining these
models, we were able to enhance the classification accuracy of radiologists,
surpassing the diagnostic capabilities of junior radiologists and aligning
closely with those of medium senior radiologists. Our findings suggest that

Table 3 | Performanceof theexperts andmodels in classifyinghigh-frequency lesions inPBTsandbone infections in the internal
test set

Bone tumors n# EG1 EG2 EG3 Expert average E3 E4 ViT SWIN Ensemble Model average

Osteochondroma 90 95.6% 93.3% 93.9% 94.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Osteosarcoma 49 70.4% 91.8% 77.4% 79.9% 89.8% 95.9% 93.9% 95.9% 95.9% 94.3%

Fibrous dysplasia 49 85.7% 89.8% 92.9% 89.5% 77.6% 81.6% 83.7% 95.9% 87.8% 85.3%

GCT 46 94.6% 95.7% 91.3% 93.8% 91.3% 91.3% 91.3% 89.1% 87.0% 90.0%

Bone infections N EG1 EG2 EG3 Expert average E3 E4 ViT SWIN Ensemble Model average

Bone TB 170 56.5% 57.4% 86.9% 66.9% 85.3% 86.5% 84.1% 85.3% 90.6% 86.4%

Osteomyelitis 77 50.6% 53.2% 62.9% 54.1% 50.6% 48.7% 46.8% 57.14% 66.2% 54.8%

FDB fibrous dysplasia of bone, GCT giant cell of bone, TB tuberculosis, EG expert group, E3 EfficientNet B3, E4 EfficientNet B4, ViT vision transformer, SWIN swin transformers.
# n refers to the number of the radiographs of related high-frequency lesions.

Fig. 3 | Confusion matrix and receiver operating characteristic (ROC) curve of
the ensemble model for the binary classification. a, b ROC curve and confusion
matrices of all models and radiologists’ interpretations on the internal test set.
c, d ROC curve and confusion matrices of all models on the external test set. Note:

EG1= expert 1+ expert 2 (junior radiologist group); EG2= expert 3+ expert 4
(medium seniority group); EG3= expert 5+ expert 6 (senior radiologist group). EG
expert group, E3 EfficientNet B3, E4 EfficientNet B4, ViT vision transformer, SWIN
swin transformers, AUC area under the curve, Acc accuracy.
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this ensemble approach holds promise for improving the accuracy and
efficiency of detecting and classifying PBTs and bone infections in clinical
settings.

In the realm ofmedical imaging, numerous deep learningmodels have
been developed to aid in the diagnosis and classification of skeletal diseases
using data from radiographs28,34,35, CT36–38, and MRIs39–41. However, the
majority of these models have primarily concentrated on feature extraction
from images and enhancing the accuracy of classification judgments to
optimize model performance, neglecting the initial goal of utilizing deep

learning as an auxiliary tool to enhance the diagnostic accuracy of clinicians.
Consequently, our study aims to shed light on this issue by employing
GradCAMand ScoreCAM to visualize the areas of focus within themodels.
In the course of our research, we have observed that GradCAM tends to
prioritize the identification of bone hyperplasia and sclerosis, while over-
looking areas of bone destruction. Conversely, ScoreCAM demonstrates a
more balanced approach by highlighting both osteogenic and osteoclasto-
genic regions, resulting in a more precise delineation of lesion boundaries.
This distinction underscores the importance of selecting the appropriate

Fig. 4 | Visualization of PBTs and bone infections in four cases respectively.
aVisualization of PBTs. Patient 1, a 10-year-old girl with chondrosarcomaon the left
proximal humerus; Patient 2, a 10-year-old boy with a simple bone cyst on the right
humerus; Patient 3, a 65-year-old female with giant cell tumor of bone on the left
distal femur; Patient 4, a 9-year-old boy with osteosarcoma on the left distal femur.
b Visualization of Bone infection. Patient 5, a 72-year-old male with chronic sup-
purative osteomyelitis of the lower right femur; Patient 6, a 31-year-old male with

tuberculosis of lumbar vertebrae 3 and 4 with spinal canal stenosis; Patient 7, a 68-
year-old female with tuberculosis of left knee joint; Patient 8, a 65-year-oldmale with
right distal femoral osteomyelitis. Starting from the left, the first column is the
original flat film image. The second column is an area cut as small as possible against
the edge of the lesion. The third column is the GradCAM-generated heat map. The
fourth is the heat map generated by ScoreCAM.

Table 4 | Inter-reader reliability of the models and radiologists

Inter-reader reliability between the ensemble model and radiologists

Fleiss κ (95% CI) 0.501 (0.463–0.538)

Cohen κ (95% CI) Expert 1 CSTC Expert 2 CSTC Expert 3 CSTC

Ensemble model 0.299 (0.265–0.333) + + 0.493 (0.456–0.531) + + + 0.456 (0.419–0.493) + + +

Cohen κ (95% CI) Expert 3 CSTC Expert 4 CSTC Expert 6 CSTC

Ensemble model 0.356 (0.321–0.392) + + + 0.570 (0.532–0.607) + + + 0.596 (0.560–0.633) + + +

Inter-reader reliability among radiologists

Fleiss κ (95% CI) 0.401 (0.364–0.438)

Cohen κ (95% CI) EG1 CSTC EG2 CSTC EG3 CSTC

0.267 (0.234–0.300) + + 0.295 (0.261–0.329) + + 0.581 (0.544–0.618) + + +

Inter-reader reliability among models

Fleiss κ (95% CI) 0.800 (0.770–0.830)

Cohen κ (95% CI) E3 CSTC E4 CSTC ViT CSTC SWIN CSTC

Ensemble model 0.805 (0.775–0.835) + + + + + 0.793 (0.763–0.823) + + + + 0.783 (0.752–0.814) + + + + 0.908 (0.886–0.930) + + + + +

EG expert group, CSTC consistency, E3 EfficientNet B3, E4 EfficientNet B4, ViT vision transformer, SWIN swin transformers, CI confidence interval.
Note: EG1= expert 1+ expert 2 (junior radiologist group); EG2= expert 3+ expert 4 (medium seniority group); EG3= expert 5+ expert 6 (senior radiologist group).
CSTC evaluation (consistency evaluation):
0< Fleiss κ, Cohen κ ≤ 0.2, low consistency, “+”.
0.2< Fleiss κ, Cohen κ ≤ 0.4, general consistency, “+ +”.
0.4< Fleiss κ, Cohen κ ≤ 0.6, moderate consistency, “+ + +”.
0.6< Fleiss κ, Cohen κ ≤ 0.8, high consistency, “+ + + +”.
0.8< Fleiss κ, Cohen κ ≤ 1.0, extremely high consistency, “+ + + + +”.
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methodology for image analysis in order to achieve optimal results in the
identification and characterization of bone abnormalities. Further investi-
gation into the comparative effectiveness of these techniques may yield
valuable insights for enhancing diagnostic accuracy and treatment planning
in the field of medical imaging. Additionally, a group of experienced radi-
ologists is enlisted to provide insightful clinical explanations for instances of
misjudgment in representative cases, thereby facilitating a deeper compre-
hension of the models’ functionality and ultimately improving its utility in
the medical field.

Manual annotations of ROI which served as ground truth for var-
ious deep learning models have long been regarded as a relatively chal-
lenging and intricate task, especially in CT- or MRI-based deep learning
models37,42. Despite the continuous emergence of novel segmentation
algorithms in recent years like Mask R-CNN, 3D CNN43,44 and so on, the
segmentation performance of models built upon these algorithms often
falls short of expectations. Issues such as misidentifying lesion locations
or producing inaccurate segmentations frequently result in IoU andDice
scores that do not meet desired standards. Such discrepancies can
introduce bias into subsequent classification model assessments and

necessitate intricate manual verification and corrections in later stages.
Therefore, in terms of research design, compared with multitask deep
learning framework, our research prioritizes the accuracy and inter-
pretability of the deep learning model. All of the segmentation and
labeling of lesion areas in the radiographs aremeticulously carried out by
professional radiologists.

The utilization of deep learning techniques has significantly improved
the clinical diagnosis of medical images in computer-assisted imaging set-
tings. Despite these advancements, distinguishing between PBTs and bone
infections remains a challenging task. Previous research has successfully
developed and validated deep learningmodels for classifying different types
of PBTs using radiographic and demographic data28,45. However, these
studies primarily concentrate on categorizing benign, intermediate, and
malignant PBTs, rather than differentiating bone tumors from other mus-
culoskeletal diseases that may be easily confused with PBTs. It is worth
noting that while MRI-based deep learning models have been created to
enhance the diagnosis of patients with PBTs and bone infections42, biases
were present in the patient data collection due to variations in diagnosis and
treatment protocols across different medical centers. Furthermore, these

Fig. 5 | Bone tumor cases misclassified by experts and models in the internal
test set. a, b The models mostly predict correctly but the experts mostly predict
incorrectly based on the radiographs from Patient a and Patient b. c, d The models
mostly predict incorrectly but the experts mostly predict correctly based on the
radiographs from Patient c and Patient d. e, f Both of the models and the experts
mostly predict incorrectly based on the radiographs from Patient e and Patient f.

Model classification shows the probability of SWIN model and E3 model, which
respectively correspond to the best andworst predictions in the imagingmodels. Red
circles refer to bone tumors. Blue circles refer to bone infections. Bar = 100 μm. E3
EfficientNet B3, SWIN swin transformers, GCT giant cell of bone, SC Synovial
chondromatosis, OS osteosarcoma, CS Chondrosarcoma, PC plasmacytoma. Note:
Fig. 5 was Created with BioRender.com.
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studies have overlooked important biomarkers such as CRP, ESR, ALP,
lactate dehydrogenase (LDH) and so on. Combining the completeness of
clinical information can better restore the original appearance and char-
acteristics of the disease.Our ensemblemodelwhich encompasses sufficient
clinical information outperformed the other four models merely based on
the image data. These cases underscore the necessity for more systematic
approaches to data gathering and organization, encompassing a broader
spectrum of bone lesions and data points to enhance the accuracy of the
models.

This study has limitations. Firstly, bone infections are more common
than PBTs and benign subtypes in PBTs are far more common than
malignant ones. However, because the hospitals selected were regionally
superior medical centers, patients with intractable diseases have high ten-
dency. Secondly, our external validation set includes a children’s specialty
hospital (Hospital 3), while it does help increase the diversity of our study
population to some extent,making our researchmore representative, itmay
introduce some bias in terms of population distribution. Thirdly, the seg-
mentation and labeling of lesion areas in the radiographs were entirely
carried out by radiologists manually, making the research multifarious,

although it may bring better work. In addition, in the collection process of
clinical information, we found that for some examination like ALP and
LDH, not all patients need this examination. In addition, doctors from
different hospitals and departments may also exist examination preference,
which lead to large amount ofmissing information. In the future,more cases
with radiograph images from representative hospitals and more standar-
dized collection of clinical information need to be researched to improve the
generalizability and completeness of the model.

This groundbreaking study introduces a radiograph-based deep
learning frameworkdesigned to enhance the classificationofPBTs andbone
infections, while also elucidating the clinical interpretation of these models.
The ensemble deep learning framework, utilizing multicenter radiographs
and clinical data, significantly improves the diagnostic accuracy for the
binary classification. The results of the model have been meticulously
visualized andprofessionally explainedby expert radiologists. The ensemble
model ismore accurate and reliable indiagnosis comparedwith radiologists.
These findings hold immense potential to guide orthopedic surgeons in
making informed treatment decisions, thereby facilitating timely interven-
tions for patients in need.

Fig. 6 | Bone infection cases misclassified by experts and models in the internal
test set. a, b The models mostly predict correctly but the experts mostly predict
incorrectly based on the radiographs from Patient g and Patient h. c, d The models
mostly predict incorrectly but the experts mostly predict correctly based on the
radiographs from Patient i and Patient j. e, f Both of the models and the experts
mostly predict incorrectly based on the radiographs from Patient k and Patient l.

Model classification shows the probability of SWIN model and E3 model, which
respectively correspond to the best andworst predictions in the imagingmodels. Red
circles refer to bone tumors. Blue circles refer to bone infections. Bar = 100 μm. E3
EfficientNet B3, SWIN swin transformers, COM chronic osteomyelitis, LVT lumber
vertebra tuberculosis, JT joint tuberculosis, OM osteomyelitis, BA brodie’s abscess.
Note: Fig. 6 was Created with BioRender.com.
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Methods
In this research, the methodology is mainly composed of data collection,
preprocessing, annotation,model design, and development. The subsequent
analysis was performed in compliance with all relevant ethical regulations,
including theDeclarationofHelsinki, as approvedby the institutional review
board of human studies of the Second Xiangya Hospital of Central South
University (protocol number: no.2022-040) (Hospital 1). In addition, this
retrospective study was approved by the local institutional review boards of
Xiangya Hospital of Central South University (Hospital 2) and Hunan
Children’s Hospital of Central South University (Hospital 3), and informed
consent was waived because of the retrospective nature28. The study was
performed in accordance with national and international guidelines, and
followed the recommended guidelines Checklist for Artificial Intelligence in
Medical Imaging (CLAIM) guidelines (Supplementary Table 8)46.

Research participants and data
This retrospective multicenter study collected patients via consecutive
sampling between 2013 and 2022 from two cohorts: training cohort (from
Hospital 1) and testing cohort (from Hospital 2 and Hospital 3) (Supple-
mentary Fig. 1). After screening, 1569 patients diagnosed of PBTs or bone
infections with histopathology reports available as reference were finally
included in the internal dataset. While 423 patients from another two
medical centers were collected for validation (Fig. 2a and Supplementary
Fig. 1). These lesions were identified to have bone involvement through
preoperative radiographs and were histologically diagnosed following
biopsy or surgery. The criteria for evaluating the accuracy of both expert
classifications and model classifications are grounded in pathological
results, serving as the “ground truth”. (i) For the inclusion criteria, lesions
were confirmed anddiagnosed as PBTs according to the 2020WorldHealth
Organization (WHO) system for the classification for tumors of bone1while
bone infections were confirmed and proven by histology and (or) bacterial
culture. The other vital inclusion criteria are evident as well as available
clinical information and preoperative radiographs. (ii) The screening cri-
teria were respectively described in Fig. 2b: (a) radiographs were from
patients diagnosed between 2013 and 2022 (b) in selected three hospitals; (c)
radiographs with robust quality for reliable assessments of the bone lesions
and (d) all of these radiographs were preoperative. With reference to pre-
vious literature42,45,47, clinical characteristics of the included patients’ con-
tained age, gender, lesion position (appendicular or axial), “whether the
lesionpainful ?”, “whether the lesion swelling ?”, “whether a recent history of
trauma ?”, and we further collected examination data including C-reactive
protein (CRP), erythrocyte sedimentation rate (ESR), and alkaline phos-
phatase (ALP). All of the clinical data of the patients were reviewed and
obtained from the patients’ electronic medical records after data desensiti-
zation and standardization.

Image preprocessing and annotation
During the preprocessing stage, all of the radiographs were screened and
selected based on the inclusion and exclusion criteria above. Notably,
radiograph images like artifacts or foreign bodies which might significantly
hinder the observationof lesionswere regarded as poor-quality radiographs.
One senior seniority radiologist (Y.H.) with systematic musculoskeletal
fellowship training (12 years work experience) and one medium seniority
clinical orthopedist (C.T.) (8 years work experience) independently
reviewed these radiographs without the patients’ information, and the
quality of them would decide by consensus. Radiographs were kept and
downloaded as Digital Imaging and Communications in Medicine
(DICOM) files from the picture archiving and communication system
(PACS) at their original sizes and resolutions.All of these radiograph images
haveundergonedesensitizationprocessing of disengagingpatient-protected
health information fromDICOMdata tomeet the relevant legal criteria and
requirements of US (HIPAA) as well as European (GDPR)42. Delineating
the region of interest (ROI) was performed by two proficient radiologists
(Y.Q. with 3-5 years of experience and J.G. with 3-5 years of experience in
screening musculoskeletal radiographs images). ROIs were meticulously

outlined via Click 2 Crop (version 5.2.2) (https://click-2-crop.en.softonic.
com/) to closely segment pertinent entities present in each PBT or bone
infection. Instanceswhere disagreements arose between the two radiologists
regarding contentious boundaries of these entities were subjected to further
scrutiny. In such cases, a distinguished senior radiologist (Y.H.), boasting an
impressive 12 years of experience in screeningmusculoskeletal radiographs,
undertook the taskof confirming thefinal delineationsofROIs.The smallest
rectangular box that can completely cover the ROIwasmanually annotated
as the boundary box by senior seniority radiologist (Y.H.) to ensure accu-
racy. Afterward, the annotated ROIs were used as ground truth for the
model development process.

Design of the imaging models
For the classification of the radiographs, imaging models were built upon
four distinct neural networks: EfficientNet B3 (E3), EfficientNet B4 (E4),
Vision Transformer (ViT), and Swin Transformers (SWIN)48–50. These
models were selected based on their state-of-the-art performance in image
classification tasks and their ability to capture diverse features frommedical
images. Specifically, EfficientNet represents a lineage of Convolutional
Neural Networks (CNNs) that utilize compound scaling to harmonize the
depth,width, and resolution of the network, achieving optimal performance
with fewer parameters compared to traditional CNNs50. Thanks to this
innovative methodology, EfficientNet consistently attains state-of-the-art
accuracy, yet withmarkedly fewer parameters. Thismakes it a prime choice
for an array of computer vision applications50,51. The Vision Transformer
(ViT) introduces a novel architecture that processes images as sequences of
patches using Transformer blocks, originally designed for natural language
processing tasks. This architecture has demonstrated significant potential in
handling visual data. The SwinTransformer further refines this approachby
incorporating a hierarchical structure and local self-attention mechanisms,
enabling it tomanage diverse resolutions and scales effectively. Collectively,
thesemodels represent someof themost advanced frameworks in computer
vision.

Addressing the constraints of our limited label data, we adopted a
transfer learning strategy. All four imaging models were initialized with
weights pre-trained on the extensive ImageNet dataset, followed by fine-
tuning on our proprietary bone dataset52. The original classification heads of
these models, designed for 1000-class classification, were replaced with a
single output node equipped with a sigmoid activation function to facilitate
binary predictions (PBTs vs. bone infection).

Model training and evaluation
The internal dataset from Hospital 1 was partitioned into training, valida-
tion, and test set at a ratio of 7:1:2, respectively. The dataset fromHospital 2
and Hospital 3 was set aside as an external test set to evaluate the general-
izability of our models across different data sources. Each of the four ima-
ging models was trained independently using a batch size of 128 over 100
epochs. We employed Binary Cross-Entropy loss as our loss function.
Optimization of the model was achieved through Stochastic Gradient
Descent with an initial learning rate of 0.1. This rate was decayed by a factor
of 10 every 30 epochs. For testing, we utilized the weights from the epoch
exhibiting the best performance on the validation dataset.

Our algorithms were developed in Python 3.7 and executed on a
machine equipped with an NVIDIA RTX 3090 GPU. The deep learning
framework used in this study is PyTorch. In terms of data preprocessing, all
images underwent resizing and normalization. Specifically, images were
resized to a resolution of 224 × 224 pixels and normalized using the mean
and standard deviation of the training dataset. To further enhance perfor-
mance, we incorporated standard data augmentation techniques during
training, including randomhorizontal and verticalflipswith a probability of
0.5 for each.

Model ensemble
To further optimize performance, we integrated the predictions from the
four imaging models (E3, E4, ViT, and SWIN) with traditional machine-
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learning models based on patients’ clinical characteristics. The hyperpara-
meters utilized in the four imaging models and the ensemble model are
depicted in Supplementary Table 9. Specifically, we designed and evaluated
several machine-learningmodels, including Random Forest (RF), Adaptive
Boosting (AdaBoost), Gradient Boosted Decision Trees (GBDT), Light
Gradient Boosting Machine (LightGBM), Decision Tree (DT), Logistics
Regression (LR), Extreme Gradient Boosting (XGBoost) and K-Nearest
Neighbor (KNN). Given the missing clinical data and the significant dif-
ferences in clinical features between PBTs and bone infections, the clinical
characteristics included in the ensemble model were age, gender, and lesion
location.

The construction of the ensemble model involved a two-step 5-fold
cross-validation approach to avoid self-validation. In the first step, the four
trained imaging models were used to score each patient (Supplementary
Fig. 5). In the second step, these scores were integrated with clinical features
using traditional machine-learning methods, with fivefold cross-validation
utilized for hyperparameter tuning (Supplementary Fig. 6). Through sys-
tematic comparison, we determined that the ensemble model utilizing
RandomForest achieved the highest AUC (Supplementary Fig. 7). The final
ensemble framework integrates both clinical characteristics and imaging
information, providing a comprehensive diagnostic tool for PBTs and bone
infection classification.

Visualization and examples
To interpret the models’ predictions, we use GradCAM and ScoreCAM to
visualize the regions that our model relies on for decision-making. Grad-
CAM calculates the gradient of the target class score with respect to feature
maps. It then applies global-average-pooling to these gradients to determine
the importance weights for each feature map. This weighted combination,
when subjected to a ReLU activation, produces a coarse localization map
highlighting the most relevant image regions. As GradCAM is model-
agnostic, it can be applied to four different models in our approach. In
contrast, ScoreCAM, an extension of GradCAM, does not use gradients.
Instead, it activates each feature map in the target layer individually and
forwards these to obtain the class score. The final saliencymap is derived by
linearly combining the activation maps with their respective scores. This
results in sharper and more precise visual explanations than GradCAM
provides. Together, these two methods offer insights into the regions of an
X-ray that our model considers essential for predictions.

Radiologist evaluation
To assess and contrast the precision of clinical doctors and the classification
judgments made by various deep learning models, we have enlisted the
participation of three distinct groups of radiologists varying in seniority.
Within this study, three expert groups (EG) with different seniority were
designed. Individuals classified as junior radiologists possessed 2–4 years of
experience (Q.L. and J.G.) and were responsible for analyzing 1500 mus-
culoskeletal radiograph reports annually (EG1). While senior radiologists
(Prof. P. and Prof. L.) had accumulated over 10 years of experience in the
field (EG3)42,47. In addition, we engaged another group of refresher radi-
ologists (M.W. and Y.Z.) with 8–10 years of experience referred as medium
seniority group (EG2). Each radiologist independently evaluated radio-
graphs and associated clinical data using a conventional PACS system, with
the diagnoses beingmadewithout prior knowledge of the pathological and/
or bacterial culture results. The inter-reader reliability among radiologists
were evaluated through Fleiss κ and Cohen κ53.

Statistics analysis
All statistical analyses were conducted using the opensource R software
(version 4.2.3; R Foundation). Evaluation of the classification performance
involved the use of the receiver operating characteristic (ROC) curve, along
with metrics such as the area under the curve (AUC), accuracy, sensitivity,
specificity, and confusion matrices. The mean AUC was specifically
employed to assess the average performance of these four distinct imaging
models. Statistical differences in clinicopathologic features among groups

were analyzed using the Kruskal–Wallis rank-sum test for continuous
variables and the chi-square test for categorical variables. Statistical differ-
ences between the AUC curves of different models were assessed using the
DeLong test54, while the statistical differences between the models and
radiologist experts were evaluated using the Cochran’s Q test55,56, which is
appropriate for multiple sets of paired data. Calculation of 95% confidence
intervals (CI) was performed using theWilsonmethod. P values below 0.05
were considered as statistically significant.

Data availability
The raw data collected and processed in this study are supervised under the
corresponding institutions. All of the imaging data in this study has been
desensitized and publicly releasedwith restricted access on Zenodo (https://
zenodo.org/) at https://doi.org/10.5281/zenodo.13858807. This DOI
represents all versions, and will always resolve to the latest one. The data are
available by emailing the corresponding author with all requests for aca-
demic use. The requirements will be evaluated concerning institutional
policies, and data can only be shared for non-commercial academic usage
with a formal material transfer agreement. All requests will be promptly
reviewed within a timeframe of 30 working days.

Code availability
The pipeline development and experiments are conducted in Python with
PyTorch as a primary tool. All of the codes for reproducing this study (Deep
learning pipeline for Tumors and Infections based on Radiographs Pre-
dicition) can be found at https://github.com/CSUXY-2YY/DeepTIRP.

Received: 1 August 2024; Accepted: 25 February 2025;

References
1. Choi, J. H. & Ro, J. Y. The 2020WHOclassification of tumors of bone:

an updated review. Adv. Anat. Pathol. 28, 119–138 (2021).
2. Ferguson, J. L. & Turner, S. P. Bone cancer: diagnosis and treatment

principles. Am. Fam. Physician 98, 205–213 (2018).
3. Molina, E. R., Chim, L. K., Barrios, S., Ludwig, J. A. & Mikos, A. G.

Modeling the tumor microenvironment and pathogenic signaling in
bone sarcoma. Tissue Eng. Part B Rev. 26, 249–271 (2020).

4. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics,
2023. CA Cancer J. Clin. 73, 17–48 (2023).

5. Bölling, T., Hardes, J. & Dirksen, U. Management of bone tumours in
paediatric oncology. Clin. Oncol. (R. Coll. Radiol.) 25, 19–26 (2013).

6. Zhang, W. et al. PRKDC induces chemoresistance in osteosarcoma
by recruiting GDE2 to stabilize GNAS and activate AKT. Cancer Res
84, 2873–2887 (2024).

7. Yu, S. & Yao, X. Advances on immunotherapy for osteosarcoma.Mol.
Cancer 23, 192 (2024).

8. Casali, P. G. et al. Bone sarcomas: ESMO-PaedCan-EURACAN
Clinical Practice Guidelines for diagnosis, treatment and follow-up.
Ann. Oncol. 29, iv79–iv95 (2018).

9. Liu, J. et al. Anticancer and bone-enhanced nano-hydroxyapatite/
gelatin/polylactic acid fibrous membrane with dual drug delivery and
sequential release for osteosarcoma. Int. J. Biol. Macromol. 240,
124406 (2023).

10. Meltzer, P. S. & Helman, L. J. New horizons in the treatment of
osteosarcoma. New Engl. J. Med. 385, 2066–2076 (2021).

11. Li, J. et al. Primary bone tumor detection and classification in full-field
bone radiographs via YOLO deep learning model. Eur. Radiol. 33,
4237–4248 (2023).

12. Caracciolo, J. T., Temple, H. T., Letson, G. D. & Kransdorf, M. J. A
modified lodwick-madewell grading system for the evaluation of lytic
bone lesions. AJR Am. J. Roentgenol. 207, 150–156 (2016).

13. Kovacs,S.K.,Manassaporn, A.,Nielsen,G.P.&Hung,Y.P.Molecular
and immunohistochemical testing of bone tumours: review and
update. Histopathology 82, 794–811 (2023).

https://doi.org/10.1038/s41698-025-00855-3 Article

npj Precision Oncology |            (2025) 9:72 11

https://zenodo.org/
https://zenodo.org/
https://doi.org/10.5281/zenodo.13858807
https://github.com/CSUXY-2YY/DeepTIRP
www.nature.com/npjprecisiononcology


14. Tao, Y. et al. Qualitative histopathological classification of primary
bone tumors using deep learning: a pilot study. Front. Oncol. 11,
735739 (2021).

15. Rozeman, L. B., Cleton-Jansen, A.M. &Hogendoorn, P. C. Pathology
of primary malignant bone and cartilage tumours. Int. Orthop. 30,
437–444 (2006).

16. Kellish,A.S.etal.Reliabilityandaccuracy in radiographicmeasurements
of musculoskeletal tumors. J. Orthop. Res. 40, 1654–1660 (2022).

17. Ulaner, G., Hwang, S., Landa, J., Lefkowitz, R. A. & Panicek, D. M.
Musculoskeletal tumours and tumour-like conditions: common and
avoidable pitfalls at imaging in patients with known or suspected
cancer: Part B: malignant mimics of benign tumours. Int. Orthop. 37,
877–882 (2013).

18. Ulaner, G., Hwang, S., Lefkowitz, R. A., Landa, J. & Panicek, D. M.
Musculoskeletal tumors and tumor-like conditions: common and
avoidable pitfalls at imaging in patients with known or suspected
cancer: Part A: benign conditions that may mimic malignancy. Int.
Orthop. 37, 871–876 (2013).

19. Anderson, M. E., Wu, J. S. & Vargas, S. O. CORR (®) tumor board: do
orthopaedic oncologists agree on the diagnosis and treatment of
cartilage tumors of the appendicular skeleton? Clin. Orthop. Relat.
Res. 475, 2172–2175 (2017).

20. Benz,M.R., Crompton, J.G. &Harder, D. PET/CT variants andpitfalls
in bone and soft tissue sarcoma. Semin. Nucl. Med. 51, 584–592
(2021).

21. Rozenberg, A. et al. Clinical impact of second-opinion
musculoskeletal subspecialty interpretations during a
multidisciplinary orthopediconcology conference. J. Am.Coll. Radiol.
14, 931–936 (2017).

22. Rozenberg, A. et al. Secondopinions in orthopedic oncology imaging:
can fellowship training reduce clinically significant discrepancies?
Skelet. Radiol. 48, 143–147 (2019).

23. Mullowney, M. W. et al. Artificial intelligence for natural product drug
discovery. Nat. Rev. Drug Discov. 22, 895–916 (2023).

24. Topol, E. J. High-performance medicine: the convergence of human
and artificial intelligence. Nat. Med. 25, 44–56 (2019).

25. Zhu, W., Xie, L., Han, J. & Guo, X. The application of deep learning in
cancer prognosis prediction. Cancers 12, 603 (2020).

26. Chen, X. et al. Recent advances and clinical applications of deep
learning in medical image analysis.Med. Image Anal. 79, 102444
(2022).

27. Painuli, D., Bhardwaj, S. & Köse, U. Recent advancement in cancer
diagnosis using machine learning and deep learning techniques: a
comprehensive review. Comput Biol. Med. 146, 105580 (2022).

28. vonSchacky,C. E. et al.Multitask deep learning for segmentation and
classification of primary bone tumors on radiographs. Radiology 301,
398–406 (2021).

29. Murphey, M. D. et al. From the archives of AFIP. Imaging of giant cell
tumor and giant cell reparative granuloma of bone: radiologic-
pathologic correlation. Radiographics 21, 1283–1309 (2001).

30. Miller, T. T. Bone tumors and tumorlike conditions: analysis with
conventional radiography. Radiology 246, 662–674 (2008).

31. Delorme, S. & Baur-Melnyk, A. Imaging in multiple myeloma. Eur. J.
Radiol. 70, 401–408 (2009).

32. van de Meent, M. M., Pichardo, S. E. C., Rodrigues, M. F., Verbist, B.
M. & vanMerkesteyn, J. P. R. Radiographic characteristics of chronic
diffuse sclerosing osteomyelitis/tendoperiostitis of the mandible: a
comparison with chronic suppurative osteomyelitis and
osteoradionecrosis. J. Craniomaxillofac. Surg. 46, 1631–1636 (2018).

33. Gould, C. F., Ly, J. Q., Lattin, G. E. Jr., Beall, D. P. & Sutcliffe, J. B. 3rd
Bone tumor mimics: avoiding misdiagnosis. Curr. Probl. Diagn.
Radiol. 36, 124–141 (2007).

34. Hill, B.G., Krogue, J.D., Jevsevar, D. S. &Schilling,P. L.Deep learning
and imaging for the orthopaedic surgeon: how machines “read”
radiographs. J. Bone Jt. Surg. Am. 104, 1675–1686 (2022).

35. Kijowski, R., Liu, F., Caliva, F. & Pedoia, V. Deep learning for lesion
detection, progression, and prediction of musculoskeletal disease. J.
Magn. Reson Imaging 52, 1607–1619 (2020).

36. Liu, P. et al. Deep learning to segment pelvic bones: large-scale CT
datasets and baselinemodels. Int. J. Comput. Assist Radiol. Surg. 16,
749–756 (2021).

37. Noguchi, S. et al. Deep learning-based algorithm improved
radiologists’ performance in bone metastases detection on CT. Eur.
Radiol. 32, 7976–7987 (2022).

38. Arthur, A. et al. A CT-based radiomics classification model for the
prediction of histological type and tumour grade in retroperitoneal
sarcoma (RADSARC-R): a retrospective multicohort analysis. Lancet
Oncol. 24, 1277–1286 (2023).

39. Hallinan, J. et al. Deep learning model for automated detection
and classification of central canal, lateral recess, and neural
foraminal stenosis at lumbar spine MRI. Radiology 300, 130–138
(2021).

40. Wennmann, M. et al. Combining deep learning and radiomics for
automated, objective, comprehensive bone marrow characterization
from whole-body MRI: a multicentric feasibility study. Invest. Radiol.
57, 752–763 (2022).

41. Zheng,H.D. et al.Deep learning-basedhigh-accuracyquantitation for
lumbar intervertebral disc degeneration fromMRI. Nat. Commun. 13,
841 (2022).

42. Ye, Q. et al. Automatic detection, segmentation, and classification of
primary bone tumors and bone infections using an ensemble multi-
task deep learning framework on multi-parametric MRIs: a multi-
center study. Eur. Radiol. 34, 4287–4299 (2023).

43. Bitarafan, A., Nikdan, M. & Baghshah, M. S. 3D image segmentation
with sparse annotation by self-training and internal registration. IEEE
J. Biomed. Health Inf. 25, 2665–2672 (2021).

44. Pereira, H.M.,Marchiori, E. & Severo, A.Magnetic resonance imaging
aspects of giant-cell tumours of bone. J. Med. Imaging Radiat. Oncol.
58, 674–678 (2014).

45. He, Y. et al. Deep learning-based classification of primary bone
tumorson radiographs: a preliminary study.EBioMedicine62, 103121
(2020).

46. Mongan, J.,Moy, L. & Kahn,C. E. Jr. Checklist for artificial intelligence
inmedical imaging (CLAIM): a guide for authors and reviewers.Radiol.
Artif. Intell. 2, e200029 (2020).

47. Eweje, F. R. et al. Deep learning for classification of bone lesions on
routine MRI. EBioMedicine 68, 103402 (2021).

48. Heidari, M. et al. Enhancing efficiency in vision transformer networks:
design techniques and insights. Preprint at https://arxiv.org/abs/
2403.19882 (2024).

49. Liu, Z. & et al. Swin transformer: hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV) 10006-10017 (IEEE, 2021).

50. Tan, M. & Le, Q. V. EfficientNet: rethinking model scaling for
convolutional neural networks. In Proceedings of the 36th
InternationalConferenceonMachineLearning, Vol. 97 (eds.Kamalika,
C.&Ruslan, S.) 6105--6114 (PMLR,ProceedingsofMachineLearning
Research, 2019).

51. Mozaffari, J., Amirkhani, A. & Shokouhi, S. B. A survey on deep
learning models for detection of COVID-19. Neural Comput. Appl.
1–29 (2023).

52. Deng, J. et al. ImageNet: a large-scale hierarchical image database. In
2009 IEEE Conference on Computer Vision and Pattern Recognition
248–255 (IEEE, 2009).

53. Ragab, H. et al. DeePSC: a deep learning model for automated
diagnosis of primary sclerosing cholangitis at two-dimensional MR
cholangiopancreatography. Radiol. Artif. Intell. 5, e220160 (2023).

54. Kato,M. et al. Amachine learningmodel for predicting the lymphnode
metastasis of early gastric cancer not meeting the endoscopic
curability criteria. Gastric Cancer 27, 1069–1077 (2024).

https://doi.org/10.1038/s41698-025-00855-3 Article

npj Precision Oncology |            (2025) 9:72 12

https://arxiv.org/abs/2403.19882
https://arxiv.org/abs/2403.19882
https://arxiv.org/abs/2403.19882
www.nature.com/npjprecisiononcology


55. Hou, P. et al. A paradigm shift in oncology imaging: a prospective
cross-sectional study to assess low-dose deep learning image
reconstruction versus standard-dose iterative reconstruction for
comprehensive lesion detection in dual-energy computed
tomography. Quant. Imaging Med. Surg. 14, 6449–6465 (2024).

56. Cochran,W. G. The comparison of percentages in matched samples.
Biometrika 37, 256–266 (1950).

Acknowledgements
The authors would like to express our gratitude to BioRender (https://app.
biorender.com/) for assistance in creating the figures (Figs. 1, 2, 5, and 6). The
authors are very grateful for the active participation of radiologists with diverse
seniority: junior radiologist group (Q.L. and J.G.); medium seniority group (M.W.
and Y.Z.); senior radiologist group (Prof. P. and Prof. L.). This work was
supported by the National Natural Foundation of China (82272664, 82172500
and 32300528), The Science and Technology Innovation Program of Hunan
Province (2023RC3085, 2023RC3080), Hunan Provincial Health High-Level
Talent Scientific Research Project (R2023054), Hunan Provincial Natural Sci-
ence Foundation of China (2022JJ30843), the Science and Technology
Development Fund Guided by Central Government (2021Szvup169), Hunan
Provincial Administration of Traditional Chinese Medicine Project (D2022117),
Hunan Provincial Health High-Level Talent Scientific Research Project
(R2023054), Key Project of Scientific Research of the Education Department of
HunanProvince (24A0008), the Excellent Youth Foundation of HunanScientific
Committee (2024JJ2084), the Scientific Research Fund of Hunan Provincial
Education Department (23B0023) and the Scientific Research Program of
Hunan Provincial Health Commission (B202304077077). The study sponsors
did not have any role in the study design, the collection, analysis and inter-
pretation of data; preparation, review, or approval of the manuscript; and
decision to submit the manuscript for publication.

Author contributions
C.T. and H.D.X. conceived and designed the study, performed the data
analysis. H.W. and Y.H. contributed to the data collection, results
interpretation, and manuscript preparation. L.W., C.B.L. and Z.Q.L. were
participated in data collection. Z.H.L. was responsible for the supervision of
the project. All authors read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41698-025-00855-3.

Correspondence and requests for materials should be addressed to
Haodong Xu or Chao Tu.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s41698-025-00855-3 Article

npj Precision Oncology |            (2025) 9:72 13

https://app.biorender.com/
https://app.biorender.com/
https://doi.org/10.1038/s41698-025-00855-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjprecisiononcology

	Deep learning models in classifying primary bone tumors and bone infections based on radiographs
	Results
	Characteristics of study participants
	Classification performance of models
	Comparison of performance between the ensemble framework and radiologists
	Inter-reader reliability
	Visual interpretation of models
	Radiologist interpretation

	Discussion
	Methods
	Research participants and data
	Image preprocessing and annotation
	Design of the imaging models
	Model training and evaluation
	Model ensemble
	Visualization and examples
	Radiologist evaluation
	Statistics analysis

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




