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Benchmarking mouse contamination
removing protocols in patient-derived
xenografts genomic profiling
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Siyuan Zheng1,2,4

Patient-derived xenograft (PDX) models are widely used in cancer research. Genomic and
transcriptomic profiling of PDXs are inevitably contaminated by sequencing reads originated from
mouse cells. Here, we examine the impact of mouse read contamination on RNA sequencing
(RNAseq),Whole ExomeSequencing (WES), andWholeGenomeSequencing (WGS) data of 21 PDXs.
We also systematically benchmark the performance of 12 computational protocols for removing
mouse reads fromPDXs.We find thatmouse read contamination increases expression of immune and
stromal related genes, and inflates the number of somatic mutations. However, detection of gene
fusions and copy number alterations is minimally affected by mouse read contamination. Using gold
standard datasets, we find that pseudo-alignment protocols often demonstrate better prediction
performance and computing efficiency. The best performing tool is a relatively new tool Xengsort. Our
results emphasize the importance of removing mouse reads from PDXs and the need to adopt new
tools in PDX genomic studies.

Patient-Derived Xenograft (PDX) models are an important model sys-
tem for preclinical andmolecular cancer research. PDXs are generated by
implanting human tumor cells or tumor fragments into host animals,
often mice. The engraftment and subsequent passaging provide an
avenue for preserving tumor tissue in vivo, an application particularly
important for research on rare cancers1. The use of PDXs to advance
precision oncology entails genomic and transcriptomic sequencing to
catalogue their genetic and transcriptomic alterations. However, analysis
of PDX sequencing data is confounded by sequencing reads that origi-
nate from host cells2–4. With small sample sizes, previous studies have
shown that mouse reads can significantly increase artificial mutation
calls and skew gene expression levels if not filtered5–7. These observations
underscore the importance of removing host-derived reads from geno-
mic data when characterizing PDX models.

To address this need, several computational tools have been developed
todistinguishbetweenhumanandmouse reads6–11. These tools generally fall
into two categories, alignment-dependent and pseudo-alignment.
Alignment-dependent tools use existing aligners tomap sequencing reads to
human and mouse reference genomes, and then separate reads into source

organisms based on alignment information such as alignment scores, edit
distance, mapping quality, etc6,7,11. Pseudo-alignment tools typically use
methods such as k-mers to match and separate sequencing reads8–10. Per-
formance of these tools has been benchmarked6–8, but these benchmarking
efforts were rarely undertaken by a third party, and for alignment-
dependent tools, few benchmarking studies considered the choice of
aligners. Moreover, these efforts should be regularly undertaken to keep the
community up to date on new developments.

In this study, we assembled whole exome sequencing (WES), low pass
whole genome sequencing (WGS), andmRNA sequencing (RNAseq) of 21
PDX models generated from childhood solid tumors12. The matched nor-
mal samples were also available for the WES data. We compiled seven
popular tools, and for alignment-dependent tools, we included multiple
aligners that were recommended to work with the tool (Table 1). Most of
these protocols were tested on bothDNA andRNAsequencing data, except
when the alignerwas designed for only one data type.Wefirst examined the
impact of mouse read contamination on genomic data including gene
expression, mutations, gene fusions, and copy number alterations.We then
benchmarked the protocols for accuracy and computing efficiency. Our
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results show that a newer tool Xengsort outperformed other established
tools in prediction accuracy and computing efficiency.

Results
Impactofmouse readcontaminationonPDXtranscriptomicdata
To examine the impact of mouse read contamination on gene expression,
wefirst comparedgene expressionvalueswith andwithout removingmouse
reads. For simplicity, we call a sample sorted if the mouse reads were
removed, and unsorted if otherwise. Most genes showed highly similar
expression levels between sorted and unsorted samples across the tools
(Fig. 1a, Supplementary Fig. 1a; spearman correlation rho range, 0.980-
0.999; median, 0.997). However, some genes showed a higher expression in

unsorted samples, suggesting their expression was inflated by mouse reads.
Next, we identified these genes for each sample as regression outliers
(Methods). Different numbers of outlier genes were detected based on
different protocols (Supplementary Fig. 1b), suggesting varying perfor-
mance of the protocols. On average, the higher mouse read contamination
was, the more outlier genes were detected (Fig. 1b; spearman correlation
rho = 0.59, p = 0.0046). These observations indicate that mouse reads
inflated the expression of these genes.

To better understand the genes whose expression is susceptible to
mouse read contamination, we identified 821 genes that were determined as
outliers in at least two samples and tested functional enrichment of these
genes (Methods). The outlier genes were significantly enriched in five gene

Table 1 | Overview of the tools benchmarked in this study

Protocols Input Aligner Output Algorithm Language Release

Disambiguate BAM, name sorted STAR, HISAT, BWA BAM Mapping score and quality Python, C++ 2016

Bamcmp BAM, name sorted STAR, HISAT, BWA BAM Mapping score and quality C++ 2017

XenofilteR BAM, coordinate sorted STAR, HISAT, BWA BAM Mapping score and quality R 2018

Xenome Fastq NA Fastq K-mer C++ 2012

BBSplit Fastq BBMAP Fastq K-mer Java 2020

Xengsort Fastq NA Fastq K-mer Python, numba 2021
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Fig. 1 | Impact of mouse reads on transcriptomic profiles. a An example of
expression correlation between sorted and unsorted samples. Each dot is a gene. X
axis, log scale expression in unsorted; Y axis, log scale expression in sorted.
b Correlation between levels of mouse read contamination (x axis) and the number
of genes detected as regression outliers (y axis). The x and y axis values are calculated

by averaging outputs from the protocols tested in the study. c Enrichment of outlier
genes in hallmark gene sets. X axis, FDR in -log10 scale. Dashed line indicates
FDR = 0.05. d No statistical difference is found between the number of fusions
between sorted and unsorted samples. Each dot represents one sample. P value is
calcuated using paired t-test.
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sets (Fig. 1c; FDR < 0.05), which can be roughly divided into stroma related
(myogenesis, pancreas beta cells), immune cell related (allograft rejection,
inflammatory response), and interestingly, KRAS signaling (KRAS signal-
ing up). Enrichment of immune and stromal related genes amongst outlier
genes is consistent with the notion that mouse immune cells and stromal
cells are the main source of mouse read contamination in PDXs.

We next tested the consistency of the pathway enrichment for the
outlier genes across the samples.Weused thehallmark gene signatures from
MSigDB13. For each gene signature, we compared signature score between
sorted and unsorted samples. The same gene signatures including myo-
genesis, allograft rejection, KRAS signaling were among the top differential
signatures. Importantly, these signatures exhibited almost unibiquitous
higher scores in the unsorted samples (Supplementary Fig. 1c).

On the other hand, genes that were most resistant to mouse read
contamination were enriched in gene sets that typically identify with cancer

cells including cell division, TP53 pathway, DNA repair, and cell metabo-
lism (Supplementary Fig. 1d).

Next, we evaluated the effect of mouse read contamination on gene
fusion identification. We observed slightly fewer gene fusions after
removing mouse contamination, but the difference was not statistically
significant (Fig. 1d; p = 0.35, paired t-test). The choice of mouse read
removal protocol had little effects (Supplementary Fig. 1e). Thus, these
results suggest mouse read contamination has limited impact on fusion
identification.

Finally, we examined mouse read contamination in PDX single cell
RNA sequencing (scRNAseq) data. Unlike bulk samples, sequencing reads
in scRNAseqdata are attributable to individual cells, which are derived from
either humanormouse. This dichotomy suggests that read classification can
be used to identify human or mouse cells. We applied Xengsort and Dis-
ambiguate to the scRNAseq data of a PDX sample. Indeed, the fraction of
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Fig. 2 | Impact of mouse reads on genomic profiles. a The number of somatic
exonic mutations is significant higher in unsorted samples. P = 7.0e-3, paired t-test.
bMutations called in unsorted samples have lower variant allele fraction. Each dot
represents the average of mutations from one sample. P = 9.2e-6, paired t-test.
c SBS46 exposure is higher based on mutations detected in unsorted samples. Each

dot represents the average of mutations from one sample. P = 9.4e-3, paired t-test.
d Copy number profiles are highly similar between sorted and unsorted samples.
Each block represents correlations of copy number profiles derived from applying
different protocols to one sample. Unsorted sample is positioned first in each block.
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mouse (or human) reads in individual cells followed a clear bimodal dis-
tribution (Supplementary Fig. 2a). In our sample, only 0.6% of the cells
showed a difference in mouse/human read fraction less than 10%. Dis-
ambiguate andXengsort reported highly consistent results regardingmouse
read fraction (Supplementary Fig. 2b). These results suggest the tools can be
effectively used on scRNAseq data despite their initial intent on bulk
samples.

Impact of mouse read contamination on PDX genomic data
We examined the impact of mouse read contamination on somatic muta-
tion calling usingWES data. Without mouse reads removal, the number of
exonic mutations detected in PDXs was on average about 30 times higher
than those after mouse reads removal (mean: 1,127 vs 38; p = 0.007, paired
t-test; Fig. 2a, Supplementary Fig. 3a). Thus, thepresence ofmouse reads can
introduce abundant mutation artifacts in the PDX.

To provide insights into the mutation artifacts caused by mouse read
contamination, we identified them as those uniquely detected in unsorted
samples. As a reference, mutations detected in sorted samples were considered
bona fide somatic mutations. Consistent with the idea that the artifacts were
caused by relatively few mouse reads, variant allele fraction of the mutation
artifactswasonaveragebelow0.1,much lower than thatofbonafidemutations
(p= 9.2e-6, paired t-test; Fig. 2b, Supplementary Fig. 3b) while the sequencing
coverages at the mutation loci were largely similar (Supplementary Fig. 3c).
Pairwise comparisons of mutation artifacts from genetically unrelated PDXs
showed an average overlap of 12.6% (Jaccard distance, Supplementary Fig.
3d and 3e). This was much higher than the overlap of bona fide mutations

(0.63%, p= 2.83e-11, paired t-test; Supplementary Fig. 3e), suggesting a sub-
stantial proportion of the artifacts can be recurrently detected in unrelated
PDXs. Such recurrence may be leveraged for filtering purposes.

We then did a mutational signature analysis using mutations found in
sortedandunsorted samples.Of all the signatureswedetected, only SBS46, a
signature thatwas thought tooriginate fromsequencing artifacts14, showeda
significant difference in signature exposure (0 in sorted vs. 0.18 in unsorted,
p = 0.009; Fig. 2c).

We observed similar copy number patterns in sorted and unsorted
samples. Except for one sample, copy number profiles between sorted and
unsorted samples were nearly identical (Fig. 2d, Supplementary Fig. 4) sug-
gestingaminor effect bymouse readcontaminationoncopynumberprofiles.

Mouse read contamination affects sequencing data differently
We next sought to understand susceptibility of the three sequencing data
modalities to mouse read contamination. We applied the mouse read
removal protocols toWGS,WES, andRNAseqdata.Averaging all the tested
protocols across the samples, WES data showed higher proportions of
human reads thanWGS andRNAseq data (median,WES, 98%;WGS, 93%;
RNAseq, 94%; Fig. 3a), likely because human exon-based enrichment
during WES library preparation excluded some mouse sequences. More
reads were classified as ambiguous in RNAseq than in WES and WGS
(Supplementary Fig. 5). The proportions of human reads reported in the
three data types were significantly correlated (Fig. 3b–d), especially between
WES and WGS (R = 0.97, p = 2.8e-13; Fig. 3b), suggesting mouse con-
tamination is dictated at the sampling rather than the sequencing level.
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Benchmarking the performance of mouse contamination
removal protocols
Tobenchmark theperformanceof themouse contamination removal protocols,
we synthesized ‘gold standard’ datasets by mixing human and mouse RNA
sequencing reads at varying proportions (9:1, 8:2, and 6:4). To mimic PDX
sequencing,wegeneratedmouse readsby sequencingmousebloodsampleswith
human sequencing kits. Since the organism of origin was known for each read,
we could test the protocols for their ability to correctly classify the reads. Overall,
all the protocols we tested recovered human readswith high accuracy across the
three syntheticdatasets (Fig. 4a–c).Thepseudo-alignment toolXengsort showed
thebest performance, followedcloselybyBBSplit. The choiceof aligners alsohad
an impact on performance. For instance, Disambiguate and Bamcmp showed
better prediction accuracies when coupled with STAR than HISAT.

We next analyzed misclassified reads. Mouse reads misclassified as
human origin were the remaining contamination in the data. In the 9:1 mix
dataset, themaximum0.1%of the total reads, reported by BBSplit, belonged
to this category (Supplementary Fig. 6a). Even in the 6:4 mix dataset where
more mouse reads were present, only the maximum 0.4% of the total reads
were of mouse origin.

Human reads that were misclassified as of mouse origin represented
data loss since they would be removed as mouse reads. In all three mix
datasets, less than 1.7% of the total reads belonged to this category (Sup-
plementary Fig. 6b).

Tounderstand if the choice of themouse reference genomewouldhave
any impact on read classification, we ran Xengsort and Disambiguate on
three PDXs using genomes of four mouse strains (A/J, BALB/C, C57BL/
6NJ, NOD/ShiLtJ) and GRCm38/mm10 (Supplementary Table 1). We
found that both tools generated highly similar classification results based on
the five reference genomes. The difference of reads classified as of human or
mouse origin was no more than 0.5% using different reference genomes by
both tools. These results suggest the choice of the mouse reference genome
does not have a significant impact on read classification.

Finally, we compared computing time for the mouse contamination
removal protocols across the three data types. Here, the running time also
included the alignment step if an aligner was integral to the protocol.When
tested with four 3.4 GHz CPUs, the alignment-dependent protocols gen-
erally took a longer running time than pseudo-alignment protocols, mostly
because the alignment step took longer (Fig. 4d, Supplementary Fig. 7). The
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Fig. 4 | Benchmarking accuracy and computing efficiency. a Percentage of cor-
rectly classified human reads in ground truth dataset comprising 90% human reads
and 10%mouse reads. Y axis, fraction of correctly classified human reads over all the

reads. b Same to a but with 80% human reads and 20%mouse reads. c Same to a but
with 60% human reads and 40% mouse reads. d Computing speed of the tested
protocols. Y axis, time consumed with 4 CPUs.
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pseudo-alignment tool was the fastest followed by Xenome. However, even
Xenome tookmore than two times longer than Xengsort. Thus, Xengsort is
a highly efficient and accurate tool.

Discussion
In this study we systematically evaluated the impact of mouse read con-
tamination on genomic and transcriptomic profiling of PDXs. We showed
that expression of stromal and immune related genes could be artificially
increased ifmouse readswere not removed.Mouse read contamination also
substantially inflated the number of exonicmutations, thoughWESwas less
susceptible to mouse contamination thanWGS and RNAseq.We observed
a limited impact of mouse read contamination on detection of gene fusions
and copy number alterations. Altogether, these results suggest removing
mouse reads from PDX sequencing data is necessary.

We benchmarked commonmouse reads removal protocols using gold
standard datasets.We found all protocols were effective at removingmouse
reads. The performance difference was minor, usually within 5% of the
human reads. An pseudo-alignment tool Xengsort outperformed other
tools in both prediction accuracy and computing efficiency. The improve-
ment of computing efficiency is particularly noticeable, as Xengsort uses
only a fraction of time compared with other tools. Because adopting more
efficient tools can save a significant amount of computational resource, we
recommend the PDX research community to use Xengsort for removing
mouse reads from genomic and transcriptomic sequencing data.

Many studies have shown that tumor cells interact with immune and
stromal cells. A recent study showed tumor purity, due to immune and
stromal cell infiltration, is largely retained in PDXs15. This observation
suggests that PDXs can be a useful model to study tumor-immune/stromal
cell interactions. Removing signals of immune and stromal cells from PDX
sequencing data obviously ablates the opportunity to study these interac-
tions. However, should one use mouse reads to study the interactions,
technical confounders need to be carefully gauged as standard library pre-
paration kits for PDX genomic profiling including bulk sample, single cell,
and spatial omics sequencing, are designed for human sequences and thus a
drop in efficiency is expected for capturing mouse sequences. Tissue dual
RNA sequencing can be an alternative16, but proof-of-principle studies in
PDXs are currently lacking. Provided with proper tools, any interactions
observed between human tumor cells andmouse immune and stromal cells
must be validated in the human tumor microenvironment.

In summary, we analyzed the impact of mouse read contamination on
PDX genomic profiling and benchmarked the performance of popular
mouse read removal tools. We showed that Xengsort outperformed other
tools in computing efficiency and classification accuracy.

Methods
Sample collection
Sequencing data used in this study were generated at Genome Sequencing
Facility ofGreeheyChildren’sCancerResearch Institute.Details of pediatric
tumor collection, patient-derived xenografts (PDX) generation, DNA and
RNAsequencing library preparationwere done by the collaborative effort of
many labs and were described in a previous study12. Here, we only included
21 PDXs with matched germline tissue, so we can better evaluate the per-
formance of downstream analyses after mouse reads removal.

Generation of benchmarking data
Benchmarking data were generated by mixing mouse and human RNA-
sequencing data. Buffy coat of NSG mice (host) and patient normal tissue
(1823_PT) was used for mouse and human RNA-seq library preparation
respectively following the protocols described above. Sequencing was done
withNovaSeq platformwith 100PE (paired end) run, generating 64,877,973
mouse and51,057,950human reads pool. TrimGalore17 (v0.6.10)wasfirstly
used to remove the adapters and poor-quality reads from FASTQ files.
These human reads and mouse reads were further tagged with “HUMAN”
or “MOUSE” in the identifier line of FASTQ files. Next, we generated the
human-mouse RNA-seq benchmarking datawith a total of 10million reads

by randomly selecting the human and mouse reads from the pool, and
mixing them at different proportions (9:1, 8:2, and 6:4). 50 iterations of
random sampling were taken for each proportion to create a total of 150
different benchmarking FASTQ files.

Mouse reads removal
We included three pseudo-alignment and three alignment-based protocols
to evaluate their performance of mouse reads removal. Those pseudo-
alignment protocols Xenome10, Bbsplit9 (v38.84), and Xengsort8 (v2.0.5)
were directly implemented to remove mouse reads. Note that BBSplit uses
BBMap as its aligner, but since BBMap uses k-mers for matching, we still
consider BBSplit a pseudo-alignment tool. For those alignment-based
protocols, FASTQ files were separately aligned to the mouse reference
genome (GRCm38, GENCODE vM19) and human reference genome
(GRCh38,GENCODEv29)18. BWA-MEM19 (v2.2.1)wasused to alignDNA
sequencing data, HISAT220 (v2.1.0) and STAR21 (v2.7.10b) were used to
align RNA sequencing data to the reference genome.Disambiguate11 (v1.0),
XenofilteR7, and Bamcmp6 were then used on those aligned BAM files to
remove mouse reads contamination from PDXs. All these tools were exe-
cuted by default parameters, and the codes were available: https://github.
com/mukund-bhandari/PDX_Sorting_Protocols. Pseudo-Alignment and
alignment-based toolswere also applied to RNA-seq benchmarking dataset.
To evaluate the performance of different mouse read removal tools, we
further compared the human andmouse reads IDs of those output BAMor
FASTQ files to those of the original human-mouse mixture. SAMtools22

(v1.13) was used to extract sequence read IDs for those BAM files, and a
custom script was used to extract sequence read IDs for those FASTQ files.

RNAseq data analysis
After mouse reads removal, Kallisto23 (v0.46.2) was applied to the human
FASTQ files to calculate transcript permillion (TPM). For alignment-based
protocols, SAMtools was firstly applied to convert human BAM output to
FASTQ format, which was further applied to Kallisto. Meanwhile, Kallisto
was also applied to raw PDX FASTQ files before mouse reads removal for
evaluating the performance of different mouse reads removal tools.

We compared the gene expression matrix between those with and
without mouse contamination removal for each sample. Linear regression
was applied, standard deviation (SD) and the residual value of each gene
were calculated to evaluate the consistency of different gene expression
matrices. Genes with residual values larger than 2*SD were regarded as
outlier genes. Correlation between sorted and unsorted gene expressionwas
calculated by spearman correlation.When correlating the number of outlier
genes and the proportion of non-human reads, we used the average from all
protocols across the samples for both variables.

Gene set enrichment analysis
Gene outliers were identified as common genes that were found in at least
twodifferent unsorted patients.Gene enrichmentwas applied to these genes
to identify the pathways that were highly affected by mouse reads con-
tamination. Besides, gene enrichment analysis was also applied to genes that
were not identified as outlier genes among all the unsorted samples. When
evaluating the consistency of pathway enrichment pattern for outer genes,
we scored Hallmark gene signatures from MSigDB13 using ssGSEA24. Sig-
nature scores were compared between sorted and unsorted samples using
Wilcoxon rank sum test.

Gene fusion identification
STAR-Fusion25 (v1.13.0) was used to detect gene fusion, and in silico
validation using FusionInspector26 was also performed. Considering the
fusion junction and spanning reads might be classified as unmapped and
human-mouse ambiguous reads, we combined the unmapped reads,
human reads and ambiguous reads after removing the mouse reads. For
alignment-based protocols, we firstly combined those BAM files, that
then converted the combined file into the FASTQ format using SAMtools
for further analyses.
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DNA data preprocessing
After mouse reads removal, GATK27 (v4.4.0.0) best practice workflow was
applied to remove duplicates and recalibrate for all PDX, paired PT and
germline BAM files. For pseudo-alignment protocols, FASTQ files of
human reads were re-mapped to human reference genome using BWA-
MEM. For alignment-based protocols, BAM files of human reads were used
for further analysis.

Somatic mutations
MuTect2 (GATK v4.2.3.0) was used to identify somatic single nucleotide
polymorphisms (SNPs), multiple nucleotide polymorphisms (MNPs), and
indels fromthewhole exome sequencing (WES)data.TheBcftools28 (v1.15.1)
tool was used to filter variants and indels and only those that passed quality
filterswere selected. To remove potential germline variants, we annotated the
somatic mutation candidates using ANNOVAR29, and removed those var-
iants in gnomAD 3.0. The remaining mutations were further used for
comparing the performance of different mouse reads removal protocols.

Mutation signature identification
Based on exonic mutations, SigProfilerMatrixGenerator was used for gen-
eratingmutational signatures of each patient. For protocols withmore than
20 exonicmutations, SigProfilerAssignmentwas applied tomutationprofile
to extract the mutational signature. Next, we identified the proportion of
signature SBS46 that significantly increased in unsorted samples.

Somatic copy number alterations
CNVkit30 (v0.9.10) was applied to detect the somatic copy number. We
firstly generated the reference CNVkit file based on germline WES BAM
files. Then, CNVkit batch and call were used to identify the copy number
variations. To better compare the copy number differences between dif-
ferent protocols, we converted the CNVkit segmentation files into 1Mb bin
copy number ratio matrix, and compared the copy number profile between
sorted and unsorted groups.

Time utilization
For time calculation, all mouse contamination removal protocols were run
with default parameters on Microsoft Azure platform. Four different PDX
samples were selected and executed with 4 3.4 GHz CPUs on a computing
node with a memory of 342 Gb.

Data availability
The PDX sequencing data is available at EGAEuropeanGenome-Phenome
Archive (EGAS00001006710). The mouse sequencing data generated with
human library preparation kit is made available on Zenodo (doi: 10.5281/
zenodo.14775572).
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