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A promptable CT foundation model for
solid tumor evaluation
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Carcinogenesis is inherently complex, resulting in heterogeneous tumors with variable outcomes and
frequentmetastaticpotential.Conventional longitudinal evaluationmethods likeRECIST1.1 remain labor-
intensiveandprone tomeasurementerrors,while existingAI solutions facecritical limitationsdue to tumor
heterogeneity, insufficient annotations, and lack of user interaction. We developed ONCOPILOT, an
interactive CT-based foundation model dedicated to 3D tumor segmentation, significantly refining
RECIST 1.1 evaluations with active radiologist engagement. Trained on more than 8000 CT scans,
ONCOPILOT employs intuitive visual prompts, including point-click, bounding boxes, and edit-points.
It attains segmentationaccuracy thatmatchesor exceeds state-of-the-artmethods, provides radiologist-
level precision for RECIST 1.1 measurements, reduces inter-observer variability, and enhances workflow
efficiency. Integratingclinical expertisewith interactiveAI capabilities,ONCOPILOT facilitateswidespread
access to advancedbiomarkers, notably volumetric tumor analyses, thereby supporting improvedclinical
decision-making, patient stratification, and accelerating advancements in oncology research.

The wide variability in tumor appearance and location makes precise
monitoring of oncological disease a critical challenge for both clinical care
and research. Effective evaluation is essential for assessing tumor
aggressiveness, predicting prognosis, and guiding treatment decisions.
RECIST v1.1 has long been regarded as the gold standard for assessing
solid tumors over time1, allowing for patient stratification based ondisease
response or progression.

However, this method has significant limitations: low information
yield from linear long-axismeasurement compared to total tumor burden2,3,
arbitrary and non-reproducible selection of target lesions leading to mis-
classificationof disease status4, and significant inaccuracies inmeasuring the
long axis, with inter-reader variability exceeding 20%5, further contributing
to classification errors.

Traditionally, long and short axes of the tumor are used as proxies for
estimating tumor size on CT scans. However, linear measurements are
increasingly considered inadequate as the field shifts toward more infor-
mative markers, such as volumetry6 and shape assessments, including
tumor eccentricity and irregularity7. Volumetric analysis, more sensitive to
change due to its proportionality to the cube of the radius, is advantageous
for detecting tumor burden changes, especially for tumors with irregular
shapes, where linear measurements fail8. Novel radiomics biomarkers

derived from volumetric analysis show promise in oncological evaluation,
notably in colon and lung cancers9,10.

Despite its promise, volumetricmeasurement is time-consuming11 and
impractical to perform manually. Early models relying on manual feature
extraction to deep-learning approaches using convolutional neural
networks12 have limited success. Most are organ-specific and effective pri-
marily in straightforward cases, suchas lungnodules, but strugglewithmore
complex lesions. Furthermore, these methods lack interactivity and
adaptability, restricting their clinical integration.

The emergence of foundation models, powered by transformer
architecture and self-attention mechanisms13, could alleviate these issues.
Pre-trained on extensive unannotated datasets in a self-supervised manner,
foundation models tend to outperform traditional deep-learning systems
when evaluated on a wide range of downstream-tasks14. Remarkably, these
models also exhibit emergent properties, where complex capabilities arise
naturally from their scale and training, further boosting their adaptability.
Their capacity for transfer learning and zero-shot classification allows them
to tackle previously unseen challenges-or do so with minimal fine-tuning-
making them a transformative force in medical imaging15,16. In computer
vision, for instance, they can generate reliable segmentation masks from
simple visual cues like bounding boxes or point-click inputs17. This ability to
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dynamically refine segmentations paves the way for more explainable AI,
enhancing usability for radiologists.

In response, we developed ONCOPILOT, an interactive foundation
model trained on more than 8000 publicly available CT scans of general
anatomy and tumors. ONCOPILOT aims to deliver precise RECIST mea-
surements and facilitate volumetric analysis, integrating seamlessly into the
radiologist’s workflow.

Results
Foundation model
ONCOPILOT is a foundation model adapted from SAM17, developed
specifically for segmenting biomedical images. Similar methods have
been concurrently explored in MedSAM18, SegVol19, and SAM-
Med3D20. It was pre-trained on a diverse dataset comprising normal

anatomy and oncological lesions, totaling 2374 CT scans including 104
anatomical structures (e.g., organs, bones) and 4 oncological lesions
regardless of histology and malignity (i.e., lung, liver, pancreas and
colon tumors) from the MSD dataset (Fig. 1a), without distinction
regarding their histological type or malignancy. To become specialized
for oncology the model was subsequently fine-tuned on a comprehen-
sive dataset of 6229 tumors from various organs (e.g., pancreas, bone,
liver, kidney, lung, lymph nodes).

ONCOPILOT is designed to interactively segment oncological lesions
in 3D, utilizing visual prompts such as a bounding box (referred to as bbox)
around the lesion of interest or a point-click (referred to as point) inside it
(Fig. 1b).To simulate thedynamic refinementof thepredicted segmentation
masks by radiologists we developed an editing mechanism (referred to as
point-edit, see Methods) which performs 4 successive prompting of the

Fig. 1 | ONCOPILOTFoundationModel Training
and Evaluation. AOverview of the datasets used for
training the ONCOPILOT segmentation model,
including the distribution across train, test, and
validation sets. B Diagram illustrating the ONCO-
PILOT segmentation model’s workflow. The model
accepts visual prompts (either point-clicks or
bounding boxes) of 3D tumor volumes and outputs
corresponding 3D segmentation masks. Optional
editing allows for real or simulated radiologist
interaction, where positive and negative edit-points
can be set manually in a viewer environment or
automatically during evaluation.
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model with negative and positive edit-points targeting over-segmented and
under-segmented areas respectively.

Segmentation performance
The state-of-the-art baseline for comparing ONCOPILOT’s performance
was the model used in the ULS23 oncological lesion segmentation
challenge21, based on nnUnet22.

ONCOPILOT matched or surpassed the ULS23 model21 in all eva-
luation metrics-point, point-edit, and bbox-across all lesion types, with the
exception of lung tumors, where only the point-edit model demonstrated
superior performance (Fig. 2a, with examples of successful segmentations in
Fig. 2b). ONCOPILOT achieved mean DICE scores of 0.70 (95% CI:
0.69–0.71) for point mode, 0.70 (95% CI: 0.68–0.71) for bbox mode, and
0.79 (95% CI: 0.78–0.80) for point-edit mode, compared to 0.70 for the
baseline.

The distribution of lesion sizes by organs is provided in Supplementary
Fig. 1b. To be noted, the test dataset was imbalanced, with over 40% of the
lesions being lung tumors (further addressed in the Discussion section).

Morphology analysis
The segmentation masks produced by the model in point mode were
influenced by the lesion morphology and size. Indeed, ONCOPILOT
exhibited lowerDICEscores for lesionswith irregular, non-spherical shapes,
with a mean DICE of 0.66 (95%CI: 0.63–0.69) for tumors with a sphericity
index below 0.6, compared to 0.71 (95% CI: 0.7–0.73) for more spherical
tumors in point mode (p < 0.001, Fig. 3a, Supplementary Fig. 2a).

Similarly, smaller lesions yielded lower DICE scores, with amean of
0.67 (95% CI: 0.65–0.69) for lesions with a long axis <15 mm versus 0.73
(95% CI: 0.72–0.75) for larger lesions (p < 0.001, Fig. 3b, Supplementary

Fig. 2b). This trend persisted when using volume as a metric: lesions
under 1 mL had a mean DICE of 0.67 (95% CI: 0.66–0.69), compared to
0.74 (95% CI: 0.72–0.76) for larger lesions (p < 0.001, Fig. 3c, Supple-
mentary Fig. 2c).

Crucially, interactive editing mitigated these biases, eliminating sig-
nificant differences (p > 0.05) in DICE scores between lesions of varying
sphericity, long axis, or volume in point-edit mode. This approach also
reduced disparities in DICE between lesion types (Fig. 3d). Additionally,
when usingRECISTmeasurements for the long axis instead ofDICE scores,
interactive editing significantly reduced measurement errors, with the
median error decreasing from 14.1% in point mode to 9.6% in point-edit
mode (p < 0.001). This level of accuracy is consistentwith the reported inter-
reader variability among radiologists for single-lesion measurements5

(Fig. 3e).

ONCOPILOT evaluation against radiologists
To evaluate ONCOPILOT’s accuracy in clinical setting its long axis mea-
surements were compared to those of radiologists. A validation set of 67
tumors from theULS23DeepLesion dataset was used, selected according to
RECIST v1.1 guidelines (long axis ≥10mm for solid lesions, short axis
≥15mm for lymph nodes) and segmentation quality.

ONCOPILOT demonstrated radiologist-level performance in point,
point-edit, and bboxmodes (Fig. 4a, b). Therewas no statistically significant
difference (p > 0.05) between the different ONCOPILOT models when
evaluated against radiologists, with a median absolute error in long axis
measurement of 1.3 mm (95% CI: 1–2.1) for radiologists (8.6% of the
median lesion size) versus 1.1mm (95% CI: 0.9–1.3) for ONCOPILOT in
point-edit mode (7.4%), 1.6mm (95% CI: 1–3) in point mode (10.8%), and
1.5mm (95% CI: 0.9–2.3) in bbox mode (10.4%).

Fig. 2 | ONCOPILOT performance against base-
line. A Radar plot (left) and table (right) displaying
segmentation mean DICE scores across 7 lesion
types for 3 different ONCOPILOT models (point,
point-edit, bbox) compared to the best-performing
baseline from the ULS23 segmentation challenge on
the 10% held-out test set. B Examples of successful
segmentations from the test set, comparing point
mode (left columns) and bbox mode (right col-
umns). The top row shows the visual prompt pro-
vided to the model, the middle row displays the
ground truthmask for that slice, and the bottom row
presents the ONCOPILOT model’s predicted
segmentation.
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ONCOPILOT integration into radiologist’s workflow
To assess whether ONCOPILOT could serve as an AI companion, its
integration into the workflow was evaluated. ONCOPILOT enhanced the
reproducibility and efficiency of radiologist measurements, with an inter-

reader deviation of 1.7 mm when assisted by ONCOPILOT versus 2.4 mm
manually (Fig. 4c, d, p < 0.05), leading to an increase of ICC(2,1) from 0.88
to 0.93. Additionally, radiologists demonstrated a fastermeasurement speed
using ONCOPILOT, with an average time of 17.2 s per measurement

Fig. 3 | ONCOPILOT Performance on Different
Lesion Types. A Bar plot showing the mean DICE
scores from ONCOPILOT segmentation masks in
point mode (red) and point-edit mode (blue) for
spherical lesions (sphericity > 0.6) versus irregular
lesions (see Methods for the sphericity formula).
B Bar plot showing the mean DICE scores from
ONCOPILOT segmentation masks in point mode
(red) and point-edit mode (blue) for large lesions
(long axis > 15 mm) versus smaller lesions. C Bar
plot showing the mean DICE scores from ONCO-
PILOT segmentationmasks in pointmode (red) and
point-edit mode (blue) for voluminous lesions
(volume >1 mL) versus smaller lesions. D Boxplot
displaying the distribution of DICE scores produced
byONCOPILOT in pointmode (red) and point-edit
mode (blue) across various lesion types in the 10%
held-out test set, with median values and inter-
quartile ranges highlighted. E Boxplot showing
RECIST measurements error against the ground
truth, derived fromONCOPILOT's predictedmasks
in point mode (red) and point-edit mode (blue)
across different lesion types in the 10% held-out test
set, highlighting median values and interquartile
ranges. The long axis is defined as the longest pos-
sible line in the axial plane across the predicted 3D
mask. ***: p < 0.001; n.s: non-significant.
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compared to 20.6 s with manual annotations (p < 0.05). Notably, this
improvement in speed was achieved without focusing on speed optimiza-
tion, as it operated on a non-optimized web-based platform (showcased in
SupplementaryFig. 3a–e).Most of themeasurement timewas spent locating
the lesion within the exam, suggesting that ONCOPILOT could be further
accelerated with targeted improvements.

Segmentation performances on a external dataset
To demonstrate out-of-distribution generalizability, we evaluated ONCO-
PILOTonanexternalmulticentric cohort of real-world patients undergoing
longitudinal oncological evaluation.Moreover,we comparedONCOPILOT
to the ULS23 baseline and to non-specialized models: the state-of-the-art
promptable foundation model SAM-Med3D-turbo20 and ONCOPILOT-
zero the pre-trained version of ONCOPILOT (see Methods).

On this dataset, ONCOPILOT achieved a mean DICE score of 0.79
(95%CI: 0.75–0.84), 0.68 (95%CI: 0.63–0.74), and 0.70 (95%CI: 0.65–0.76)
for point-edit, point, and bbox modes, respectively. These results match or
slightly exceed the ULS23 baseline, which exhibited a mean DICE of 0.66
(95% CI: 0.61–0.71) (see Supplementary Fig. 4a).

For comparison, ONCOPILOT-zero and SAM-Med3D (turbo version,5
edits) achieved a mean DICE of 0.58 (95% CI: 0.53–0.64) and 0.44 (95% CI:
0.38–0.5) respectively, demonstrating that specialized model soutperform
generic ones.

To be noted, ONCOPILOT’s performance on lung lesions was
superior in this validation cohort compared to previously reported results,
with a mean DICE of 0.71 (95% CI: 0.60–0.80) vs 0.68 (95% CI: 0.66–0.70)
for point, and 0.80 (95%CI: 0.73–0.86) vs 0.66 (95%CI: 0.65–0.69) for bbox.
Consistently, the lung tumors in the external validation cohort were far

Fig. 4 | ONCOPILOT Integration Into Radiologist’s Workflow. A Diagram and
results comparing ONCOPILOT in point, point-edit, and bbox modes against three
radiologists for the long-axis measurement of diverse oncological lesions. Median
absolute error (mm) and median relative error (% of lesion size) are shown. p values
from t-tests compare ONCOPILOT models to radiologists for long-axis measure-
ment error, without statistical significance p ≥ 0.05. The long axis is the longest line
in the axial plane across the predicted 3D mask. B Boxplot (bottom) of ONCOPI-
LOT's tumors long-axis measurement performance against radiologists. Left:

median absolute error (mm) vs. ground truth. Right: median relative error (% of
lesion size).Median and interquartile ranges are shown.CDiagramof an experiment
evaluating radiologists' inter-operator variability and measurement time while
measuring tumors' long-axis using a digital viewer for manual vs. ONCOPILOT-
assisted (bbox mode) long-axis assessments. D Boxplots show radiologists' inter-
operator variability inmeasurement error (left) andmeasurement time (right) using
manual vs. ONCOPILOT-assisted annotations across diverse tumors, with t-test
p values; n = 3.
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biggerwith amedian large-axis of 23mmvs 9mm (Supplementary Fig. 4b).
Some successful and failed segmentation cases from the external cohort are
displayed in Supplementary Fig. 5.

Discussion
In summary,ONCOPILOTmatched state-of-the-art performance in tumor
segmentation across a diverse set of oncological lesions, achieving
radiologist-level accuracy in RECIST 1.1 measurements. The model’s flex-
ibility, enabled by interactive visual prompts and refinement capabilities in a
radiological viewer, marks a significant advancement in integrating an
explainable AI copilot into the imaging workflow while keeping the radi-
ologist in the loop. This strategy not only minimizes inter-reader variability
and reduces measurement time, but also offers greater flexibility than rigid,
task-specific segmentation models.

Indeed, while recent advances have improved segmentation models
considerably, they still sometimes generate errors-ranging from significant
failures reminiscent of generative model hallucinations to more subtle
inaccuracies along tumor boundaries. For example, delineating certain
tumors poses inherent challenges that demand nuanced expert intervention
and manual refinement, especially when dealing with heterogeneous
tumors, necrotic lymph node clusters, confluent lesions, or diffuse infil-
trative masses. Consequently, retaining radiologist oversight is crucial,
underscoring the value of an interactive editingmode.Without the ability to
correct initial segmentation shortcomings, the clinical adoption of these
tools could be severely limited.

Clinical evaluation of this segmentation model is needed to establish
how these gains in efficiency and precision translate into meaningful
improvements in real-world longitudinal oncological evaluation and
influence disease status assessment. Addressing the management of mul-
tiple lesions per patient across various time points, in line with RECIST 1.1
guidelines, is a critical prerequisite for future studies.

Additionally, it will be important to examine the learning curve and
workflow implications for radiologists employing this segmentation tool,
especially for the editing mechanism, as well as to identify potential pitfalls
in its use, given that human-AI collaborations do not always yield optimal
outcomes23. However, due to the straightforward nature of our visual
prompts, relying solely onboundingboxes and clickpoints,we are confident
that these segmentation tools can be easily mastered by users across a wide
range of skill levels.

Regarding ONCOPILOT suboptimal performance on lung tumors,
lesion size appears to be the main factor involved, highlighting a limitation
of our model that should be addressed in future versions. Indeed, lung
tumors in the test set were predominantly small nodules of uncertain
oncological relevance, in part not acceptable under the RECIST 1.1 guide-
lines with amedian size of 9mm compared to 20mm for non-lung tumors.
This disproportionate representation (more than 40%) of lung lesions in the
test dataset skewed the overall results, disadvantageous to our model’s
performance. This hypothesis is supported by the more convincing per-
formance of ONCOPILOT on the lung lesions from the external validation
cohort, which were larger.

ONCOPILOT not only enhances the precision and consistency of
RECIST-based oncological assessments but also goes beyond traditional
RECIST measurements by enabling volumetric analysis and uncovering
previously unexplored radiomic features. Volumetric biomarkers, such as
tumor growth rate and total tumor burden, combined with morphology-
basedmarkers, offermore comprehensive and accurate indicators of tumor
mass and aggressiveness compared to conventional long and short axis
measurements. These novel radiomic biomarkers will better accommodate
the variability in tumor presentations, providing a more precise character-
ization of oncological disease.

This study leverages publicly available baseline and data21 as well as
open-sourcemodel architecture17, demonstrating that foundationmodels
are already capable of delivering impactful results in the biomedical field
without significant technical hurdles. ONCOPILOT showcases the pro-
mising potential of this technology, with future iterations expected to be

significantly more advanced and effective, which will require extensive
clinical validations. These results reinforce our belief that foundation
models are a pivotal step toward the next generation of AI-assisted
radiology.

Through this work, we aim to demonstrate oncological evaluation as
the first use case for the native integration of foundation-model-based AI
assistants into the radiologist’s workflow, paving the way for improved
patient stratification, optimized clinical trial monitoring, more informed
treatment decisions, and ultimately enhanced patient care.

Methods
Foundation model
ONCOPILOT is trained to perform segmentation tasks on 2D images using
prompts such as a bounding box, a point, or a mask. It generates a 3D
prediction of an anatomical structure from the input image and visual
prompts. The segmentation is propagated sequentially along the z-axis,
starting from the initial 2D slice, until the object’s boundaries are reached,
resulting in a segmentationmask. Alternatively, propagation can stop based
on predefined criteria.

Our fondation model was initialized using SAM model weights17 and
underwent supervised training on diverse anatomical segmentation tasks to
provide an intermediary model, ONCOPILOT-zero. It is then fine-tuned
specifically on tumors todeliver thefinalmodel,ONCOPILOT.Themodel’s
objective is a combination of DICE and cross-entropy loss. The model is
trained to segment various anatomical structures on all axes and is
prompted using either a point that is sampled randomly on the mask, a
bounding box that is sampled around the mask with a random pixel offset,
or a mask that is rotated from -10 to 10 degrees, scale up or down by up to
10%, move up, down, right or left by up to 10% and finally eroded and
dilated. Random windowing augmentation is performed with a shift of
up to 10%.

Finally, the model is fine-tuned on tumors following the same proce-
dure. The pre-training took 40 h using 32 V100 GPUs (1280 GPUh) with a
constant learning rate of 10−5. The fine-tuning required 10 h on a Nvidia
4090 GPU and uses the same configuration.

Baseline
The baseline model (nnUnet-ResEnc+SS) was evaluated on the 10% held-
out test set from their labeled dataset of 38,693 lesions. It takes as input
volume-of-interest images of size 128 × 256 × 256 padded to the minimum
intensity value when necessary. To simulate a radiologist’s click on the
lesion, the volume-of-interest is centered on the lesion.

Datasets
ONCOPILOT’s pre-training was performed using publicly available data-
sets with medical images and segmentationmasks for general anatomy and
oncological lesions:
• 1204 CT scans from TotalSegmentator v124, with 104 labeled anato-

mical structures (27 organs, 59 bones, 10 muscles, 8 vessels).
• 743 diverse tumors from the DeepLesion dataset25, curated and seg-

mented for the ULS23 challenge21, referred to as ULS23 DeepLesion.
• 697 bone oncological lesions and 120 pancreatic tumors from the

Radboudumc hospital, available through the ULS23 dataset21.
• 470 volumes from the multimodal MSD challenge26, using only the

Lung, Colon, Pancreas datasets.
• 700 lung nodules from the LNDb dataset27.
• 300 kidney tumors from the KITS23 dataset28.
• 832 liver tumors from the LiTS dataset29, also part of the MSD

challenge.
• 932 mediastinal and abdominal lymph nodes from the NIH-LN

dataset30.
• 2236 lung oncological lesions from the LIDC-IDRI dataset31.

A 90% training set was selected randomly, leaving 10% as a held-out
test dataset, following the ULS23 challenge methodology. A validation set
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comprising 67 tumors≥10mm(≥15mmfor lymphnodes)was reserved for
comparison against radiologists, selected from the ULS23 DeepLesion
training set.

Segmentation process
Themodel had access to the entire volume and visual prompts. The volume
was thresholded using a wide windowing range of [−500, 1000] HU, which
yielded optimal results on the diverse ULS23 DeepLesion dataset (Supple-
mentary Fig. 1a).

The model initially outputs a 2D segmentation mask for the middle
slice. Then, autoregressive propagation of segmentation masks occurs
across adjacent slices, using the prior mask as a prompt for the next slice,
thus producing a 3D segmentation mask.

ONCOPILOT was evaluated using three experimental settings simu-
lating real-life visual prompts:
• Boundingbox: A2Dboundingboxoutlines the lesion fromthemiddle

slice of the ground-truth mask, expanded by a 15-pixel offset.
• Point-click: A single point is placed at the barycenter of the ground-

truth mask or the nearest point within the mask.
• Point-edit: To simulate radiologist interactions, the 3D segmentation

mask from point-clickmode is refined by up to 4 edits, targeting areas
with prediction errors (either reducing over-segmentation or expand-
ing under-segmentation).

On theULS23DeepLesiondataset, eachsegmentation inference froma
visual prompt takes approximately 50 ms allowing real-time edits. The
initial exam preprocessing step takes around 7 seconds for the entire CT
scan on a Nvidia 4090 GPU, can be performed asynchronously, and is only
performed once per exam.

Segmentation performances
DICE scoreswere reported to compare segmentationmodels’performances
on the test sets. 95% confidence intervals (CI) were computed using the
standard normal distribution approach, assuming the normality of the
sampling distribution.

Morphology analysis
A sphericity index is used to evaluate shape regularity, calculated as the ratio
of the surface area of a perfect sphere to the surface area of the ground-truth
segmentation mask for objects of equal volume. A perfect sphere has a
sphericity index of 1, while irregular structures have values closer to 0. The
formula is

S ¼ π1=3 � ð6VÞ2=3
A

ð1Þ

where S represents sphericity, V the object volume, and A the surface area.
Independent Student’s t tests were performed to compare mean DICE/
RECIST measurements across predefined size, volume and sphericity
groups.

RECIST measurement
ONCOPILOT’s RECIST measurements were based on the segmentation
masks in bounding box, point, and point-edit modes. The primary mea-
surementwas the long axis of the lesion, simplified and restricted to the axial
plane, even for lymph nodes. The axial plane is generally recommended as
thedefault plane forRECIST1.1measures onCTscans, evenwhenprovided
with isotropic sequences, to ensure comparison with non-isotropic follow-
ups or previous exams1.

Measurements from ONCOPILOT and three radiologists with
≥18 months of experience were compared against measurements inferred
from ground-truth segmentation masks to calculate measurement errors.
Wilcoxon Signed-Rank tests were performed to compare median RECIST
measurements across different visual prompts versus radiologists mea-
surements. 95% confidence intervals (CI) for median measurement errors

were computed using the standard normal distribution approach, assuming
the normality of the sampling distribution.

Radiologists used a web-based viewer for both manual and
ONCOPILOT-assisted measurements. They could freely adjust the win-
dowing and navigate the volume but without multi-planar reconstruction.

ONCOPILOT integration into radiologist’s workflow
Inter-operator variability was calculated as the absolute deviation of each
radiologist’s measurement from the overall average for each lesion, using
manualmeasures orONCOPILOT-assisted with bounding box prompts. A
paired Student’s t test was performed to compare interoperator deviation
with and without ONCOPILOT assistance. ICC(2,1) (two-way random
effects model for absolute agreement) coefficients were reported with and
without ONCOPILOT. Measurement duration was defined as the time
from the initial display of the CT to the final measurement. A paired Stu-
dent’s t-test was performed to compare mean measurement durations.

Segmentation performance on a external multicentric dataset
A private anonymized external dataset was curated from Gradient Health
data platform. 37 patients from multiple centers in North and South
America who underwent CT examination for RECIST 1.1 longitudinal
analysiswere included, totaling 87 lesions. The lesionswere segmented in 3D
by one radiologist followed by a review from another. This dataset was used
uniquely for testing the model, without any overlap with the training data-
sets. DICE scores were reported, as well as their stratification by lesion type.

Data availability
No datasets were generated or analysed during the current study.

Code availability
Due to intellectual property constraints, the code used to train and evaluate
ONCOPILOT is not publicly available at the time of publication.
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