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Unlocking the potential of TIGIT in
enhancing therapeutic strategies for
acute myeloid leukemia through
combined azacitidine therapy
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Immune checkpoint blockade (ICB) therapy has emerged as a pivotal advancement in cancer
treatment, yet its efficacy varies among patients and resistance can develop. This study focuses on
TIGIT, a newly identified immune checkpoint, to explore its expression, prognostic significance, and
therapeutic potential in hematologic malignancies, particularly acute myeloid leukemia (AML). In this
study, we found TIGIT highest expression levels in bone marrow and lymphoid tissues, with
enrichment in immune cells such as NK-T cells and regulatory T cells (Tregs). A prognostic model
incorporating TIGIT expression and other immune-related genes effectively stratified AML patients
into high-risk and low-risk groups, with the former displaying significantly shorter overall survival
times. Our model outperformed traditional prognostic factors, highlighting TIGIT’s potential as a
superior predictive biomarker. Additionally, our in vitro and in vivo studies showed that combining
tiragolumab with azacitidine (AZA) synergistically enhanced anti-tumor efficacy, reducing tumor
burden and extending survival in a murine AML model. Our findings underscore TIGIT’s role in
hematologic malignancies and its potential as a therapeutic target in AML. The combination of AZA
with TIGIT inhibition offers a promising new approach for AML treatment, warranting further clinical
evaluation.

Immune checkpoint blockade (ICB) therapy is currently a research hotspot
in thefield of cancer treatment. Breakthroughprogress has beenmade in the
research and drug development targeting immune checkpoints such as
programmed death-1 (PD-1) and its ligand (programmed death-ligand 1,
PD-L1), as well as cytotoxic T lymphocyte associated antigen-4 (CTLA-
4)1–3. Although drugs targeting PD-1 and CTLA-4 have achieved success in
clinical treatment of various tumors, their therapeutic effects remain
unsatisfactory for some tumors4. Additionally, the use of single-target
therapies in clinical settings can easily lead to drug resistance, prompting
researchers to continue exploring new immune checkpoints5.

TIGIT, also known as WUCAM, Vstm3, or VSIG9, is a newly dis-
covered immune checkpoint in recent years6. As a receptor of the immu-
noglobulin superfamily, it plays a crucial role in limiting adaptive and innate
immunity7. Zhang et al. found that the deletion of TIGIT specifically in NK
cells can inhibit tumor growth to a certain extent8. Blocking TIGIT with
monoclonal antibodies can reverse the exhaustion of antitumor NK cells in
various tumormodels, thereby improving the overall survival rate of tumor-
bearing animals9. The co-expression of multiple immune checkpoints on
T cells suggests that tumor cells can evade the attack of the immune system
through various pathways, which also implies that the combined use of
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drugs targeting these different pathways may exert a synergistic antitumor
effect10,11. Research conducted on mouse models of melanoma and lung
cancer metastasis has demonstrated that TIGIT antibodies, either alone or
combined with PD-1 antibodies, can prevent tumor growth by enhancing
the antitumor effects of CD8+ T cells12,13. In patients with head and neck
squamous cell carcinoma and mouse models, overexpression of TIGIT has
been observed on tumor-infiltrating CD8+ and CD4+ T cells, and this
overexpression is associated with the expression of the immune checkpoint
molecule PD-114. Indeed, blocking either TIGIT or PD-1 alone can enhance
the effector function of tumor antigen-specific CD8+ T cells and more
effectively suppress tumor growth15.

The novel immune checkpoint TIGIT exerts regulatory effects on
various cells, including NK cells, effector T cells, and DC cells, and the
mechanisms underlying these effects are diverse11. Although no drugs tar-
geting the immune checkpoint TIGIT have been approved for market
globally, more than 10 TIGIT antibodies are currently in clinical trials
worldwide. In clinical trials for non-small cell lung cancer and extensive-
stage small cell lung cancer, the survival rate of subjects in the tiragolumab
and atezolizumab combination therapy group was significantly higher
compared to the atezolizumab group16. In the study ofMK-7684 combined
with pembrolizumab for the treatment of metastatic solid tumors, both
treatment tolerability and safety were good, and no dose-limiting toxicities
were observed17.

TIGIT, as an underappreciated immune checkpoint in NK cells, is
poised to play a significant role in future antitumor treatment. While most
current research focuses on solid tumors, the role of TIGIT in hematologic
malignancies remains largely unexplored.We focus on TIGIT, exploring its
expression, distribution, prognostic impact, and therapeutic implications in
hematologic cancers.

Results
Single-cell RNA expression level of TIGIT in tissues
TIGIT plays a crucial role in the immune regulation within the body. Our
initial investigation focused on examining the expression of TIGIT across
various normal tissue types. The results revealed that TIGIT displayed the
highest expression levels in bonemarrow and lymphoid tissues, followed by
the kidney, urinary bladder, and gastrointestinal tract (Fig. 1a). To confirm
these findings, we cross-referenced TIGIT RNA expression data from other
databases. Both the Consensus and HPA databases indicated that TIGIT
RNA tissue specificity was predominantly found in lymph nodes, tonsils,
spleen, appendix, thymus, and bone marrow (Fig. 1b). Additionally, the
FANTOM5 database demonstrated that TIGIT protein expression was also
elevated in these tissues (Fig. 1c).

In order to delve deeper into TIGIT expression within specific tissue
cell types, we analyzed the RNA single-cell type specificity of TIGIT. The
data indicated that TIGIT expression was particularly enhanced in blood
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Fig. 1 | A comprehensive analysis of RNA expression across various tissues and
cell types. a Bar chart showing the tags per million (TPM) for different tissues,
highlighting the relative abundance of RNA expression in each tissue type. b RNA
Expression Overview from Consensus and HPA Databases:The top panel (Con-
sensus Database) and bottom panel (HPA Database) display the normalized
transcripts per million (nTPM) for various tissues, indicating the level of RNA
expression across different tissues. c Bar chart depicting the tags per million
(TPM) for specific cell types within a tissue, providing a detailed view of RNA

expression at the cellular level. d Single Cell Type Specificity: Group Enhanced
(T cells, NK cells, and Dendritic cells): This bar chart shows the nTPM for specific
cell types within the groups of T cells, NK cells, and dendritic cells, highlighting
the enhanced expression in these cell types. e UMAP (Uniform Manifold
Approximation and Projection) plots for Bone Marrow: The left panel shows the
clustering of different cell types in the bone marrow based on RNA expression
profiles. The right panel displays a heatmap of gene expression levels for various
genes across the identified cell types.
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and immune cells (Fig. 1d). Utilizing single-cell sequencing, we investigated
the subpopulation expression of TIGIT in these key tissues. The results
demonstrated that immune cells, particularly T-cells in bone marrow,
lymph nodes, and spleen, exhibited relatively high TIGIT expression levels
(Figs. 1e and S1). In addition, single-cell sequencing data from GSE116256
indicated that TIGIT and its ligands are mainly expressed in NK cells and
CD8+ T cells, which was consistent with our Human Atlas data (Fig. S2).
According to relevant CCLE data, in hematological tumors, the expression
of TIGIT inAML,ALL, andCMLwas lower than that of its ligands (Fig. S3).
However, in pan-cancers, the expression of TIGIT in hematological tumors
was higher than that in other types of tumors, while the expression of its
ligands was lower than that in other types of tumors (Fig. S4). We further
examined the relevant data of core cell types, such as endothelial cells,
smooth muscle cells, fibroblasts, macrophages, neutrophils, mast cells, T-
cells, and plasma cells. Our analysis revealed that T-cells in subcutaneous,
visceral, breast, colon, heart muscle, and kidney tissues were closely asso-
ciated with TIGIT expression (Fig. 2a). Moreover, we categorized T-cells
based on their functional characteristics and examined TIGIT expression
across these distinct subsets. Our findings indicated that TIGIT displayed
elevated expression levels in NK-T cells and regulatory T cells (Tregs)
(Fig. 2b). Through UMAP analysis, we explored the immune cell type
specificities of hematopoietic tissues. Among all clusters identified, cluster 4,
representing T-reg cells, exhibited the strongest association with TIGIT
expression (Fig. 2c). Finally, as illustrated in Fig. 2d, we identified the top 10
genes that displayed the strongest positive correlation with Cluster 4.

Prognostic model development and validation
To further elucidate the prognostic significance of TIGIT in acute myeloid
leukemia (AML), we harnessed a panel of 15 genes from cluster 4, identified
through robust bioinformatic analyses as exhibiting strong correlationswith
regulatory T cells (Tregs) and TIGIT, to construct an innovative prognostic
model. The BeatAML dataset was meticulously selected as our primary
training cohort, whereas the TCGA and GSE37642 repositories served as
rigorous validation platforms. Employing Kaplan-Meier survival analysis,
we observed a marked disparity in overall survival (OS) durations, with
high-risk patients demonstrating significantly shorter OS times compared
to their low-risk counterparts across both training and validation cohorts
(Fig. 2e–g). Utilizing multivariate Cox regression forest plots, we discerned
that the risk score derived from our model not only exhibits robust prog-
nostic capabilities but also stands as an independentpredictor ofOS, rivaling
the predictive power of established clinical indices such as age, French-
American-British (FAB) classification, and ELN2017 (Figs. 2h–j and S5).
We dug into the relevant information in the database as deeply as possible.
Multivariate analyses in the BeatAML and GSE106291 databases both
indicated that, after being combined with the current available prognostic
information based on molecular characterization, this riskscore model
can still serve as an independent prognostic factor for poor prognosis
(Figs. 2j and S6).

To substantiate the predictive accuracy of our prognostic model, we
conducted time-dependent receiver operating characteristic (ROC) curve
analyses to evaluate the area under the curve (AUC), which quantifies the
balance between sensitivity and specificity. In the BeatAML dataset, the
AUC for predicting 5-year OS was notably high at 0.832 [95% confidence
interval (CI): 0.75–0.90] for the integrated risk score group, outperforming
the risk score alone (0.637 [95% CI: 0.54–0.73]), age (0.742 [95% CI:
0.65–0.83]),WBC count (0.536 [95%CI: 0.44–0.63]), and the ELN2017 risk
stratification system (0.691 [95% CI: 0.61–0.77]) (Fig. 2k). Similarly, in the
TCGAdataset, the integrated risk score group achieved an exceptionalAUC
of 0.959 [95% CI: 0.92–1.0] for 5-year survival prediction, markedly sur-
passing the performance of the risk score alone (0.781 [95%CI: 0.63–0.93]),
age (0.772 [95% CI: 0.62–0.92]), FAB classification (0.562 [95% CI:
0.41–0.71]), and WBC count (0.652 [95% CI: 0.47–0.84]) (Fig. 2l). In the
GSE106291 dataset, the integrated risk score group exhibited an AUC of
0.757 [95%CI: 0.647–0.8663] for 5-yearOSprediction, againdemonstrating
superior predictive accuracy compared to the risk score alone (0.649 [95%

CI: 0.5255–0.7723]) and ELN2017 (0.723 [95% CI: 0.6194–0.8259])
(Fig. 2m). In the GSE37642 dataset, the integrated risk score group also
exhibited a higher AUC of 0.745 [95% CI: 0.69-0.80] for 5-year OS pre-
diction (Fig. S5). Collectively, these compelling results underscore that the
incorporation of our novel risk score significantly enhances the precision of
OS prediction in AML patients, outstripping the predictive capabilities of
traditional prognostic factors.

Clinical features and prognosis of TIGIT
Accordingly, we endeavored to investigate the prognostic value of TIGIT in
hematological malignancies. Notably, the forest plot prognostic analysis
suggested that TIGIT expression could serve as a predictor of favorable
overall survival (OS) rates across nearly all hematological malignancies
(Fig. S7). We especially observed that TIGIT holds considerable prognostic
significance in various acute myeloid leukemia (AML) datasets (Fig. 3a).
Moreover, we examined the mutational status of TIGIT in AML. The
mutational landscape of TIGIT revealed that patients exhibiting low TIGIT
expression tend to possess a greater mutational load (Fig. 3b). Among
prevalent AML mutation genes, FLT3 mutations were more frequently
identified in individuals with low TIGIT expression, whereas TP53 and
RUNX1 mutations were predominantly found in those with high TIGIT
expression (Fig. 3b). We further explored the correlation between TIGIT
expression and common molecular genetics in AML. Analyses using
GSE13159, GSE147515, and BeatAML datasets revealed no significant
differences in TIGIT expression among AML patients with different
chromosomal abnormalities (Fig. S8). Additionally, there were no sig-
nificant differences in TIGIT expression between patients with different
prognostic risks (Fig. S9). This may suggest that the TIGIT-related prog-
nostic model we constructed could be independent of currently used
molecular genetic prognostic warningmodels andmight serve as one of the
independent prognostic factors.

Additionally, we utilized single-cell RNA sequencing data from AML
patients at diagnosis and their matched samples post-chemotherapy to
assess TIGIT expression across immune cell subtypes. Uniform Manifold
Approximation and Projection (UMAP) analysis demonstrated that TIGIT
expression levels in total bonemarrow (BM) cells were significantly lower at
diagnosis compared to those in matched samples following chemotherapy
(Fig. 3c). This finding was further corroborated in additional beatAML
datasets, where TIGIT expression was found to be diminished in patients
presenting with high tumor burdens, encompassing both treatment-naive
and relapsed cases (Fig. 3d). Furthermore, heatmap analyses unveiled
substantial disparities in epigenetic-associated genes between the high and
low TIGIT expression cohorts. In primary patient samples, TIGIT expres-
sion was elevated in patients attaining remission post-chemotherapy but
reduced in treatment-naive individuals (Fig. 3e). Our analysis of the
GSE106291 data suggests that there is no significant difference in the
expression of TIGIT among ND-AML, s-AML, and t-AML (Fig. S10).
Consistently, bisulfite sequencing PCR (BSP) results substantiated that the
methylation status of both thepromoter andgenebody regionsof theTIGIT
gene was appreciably heightened in treatment-naive patients compared to
those in remission, potentially constituting one of the underlying
mechanisms driving differential TIGIT expression (Fig. 3f and g).

AZA enhances TIGIT expression and synergizes with TIGIT inhi-
bitors in AML treatment
Given that Azacitidine (AZA) can regulate tumor-related gene expression
by affecting DNAmethylation levels, we explored the potential association
between AZA and TIGIT. Initially, we measured TIGIT expression levels
before and after AZA treatment in threeAML cell lines and found thatAZA
significantly increased TIGIT mRNA expression in all three leukemia cell
types (Fig. 4a). Moreover, TIGIT protein levels were alsomarkedly elevated
(Fig. 4b). Consequently, we further examined themethylation levels of CpG
islands in the promoter and gene body regions of theTIGIT gene before and
after AZA treatment. Intriguingly, AZA treatment resulted in a significant
reduction in methylation levels of CpG islands in both the promoter and
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gene body regions, with the promoter region showing themost pronounced
decrease (Fig. 4c).

AZA is one of the clinically approved therapeutic agents for AML18;
however, its monotherapeutic efficacy is restricted, typically requiring
combinationwith venetoclax or alternative targeted agents/chemotherapies
to treat AML19. In this context, the prognostic risk model of TIGIT impli-
cates it as a promising predictive biomarker for AML prognosis, leading us
to hypothesize that inhibitors targeting the TIGIT pathwaymight synergize
with targeted agents to eradicate AML tumor cells. To validate our
hypothesis, we treated AML cell lines OCI-AML3, Kasumi-1, and
MOLM13 with the TIGIT inhibitor tiragolumab in conjunction with aza-
citidine, followed by co-culture with umbilical cord blood-derived natural
killer (UCB-NK) cells. Cellular viability assessments demonstrated that

UCB-NK cells could synergize with tiragolumab and azacitidine to elim-
inate leukemic cells (Fig. 4d). Furthermore, we sought to substantiate these
findings using mononuclear cells isolated from the bone marrow (BM) of
newly diagnosed AML (ND-AML) patients. Specimens were stratified
according to theNK cell proportion within the BM. Concordant with the in
vitro studies, patient samples exhibiting low NK cell proportions treated
with tiragolumab displayed diminished viability compared to those with
highNKcell proportions (Fig. 4e). The synergistic effect of tiragolumabplus
azacitidine was somewhat greater than that of the single drugs (Fig. 4e).

Tiragolumab synergizes with Azacitidine to Kill AML cells in Vivo
To ascertain the in vivo therapeutic efficacy of tiragolumab, we utilized
lentiviral vectors encoding the MLL-AF9 oncogene to infect hematopoietic
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Fig. 3 | TIGIT expression, methylation, and survival probabilities in AML. a The
survival probability curves for TIGIT in AML patients, comparing high and low
TIGIT expression groups. The p-values (p = 0.0016 and p = 0.013) indicate statis-
tically significant differences in survival between the groups. b The mutation count
distribution across different sample groups (LowExp and HighExp) for various
genes. The bar chart shows the percentage of mutations for each gene, highlighting
the differences between the groups. c The UMAP plots represent the clustering of
AML samples at different time points (D0, D14, D15, D18) and overall (Before and
After). The plots show the distribution and changes in cell populations over time.

dTIGIT expression levels across different clinical stages (Initial Diagnosis, Residual,
Remission, Relapse, Unknown). The p-value (p = 0.018) indicates a significant dif-
ference in TIGIT expression between these stages. e The methylation patterns of
genes related to the TIGIT group, showing variations in methylation levels across
different samples. f The methylation status of the TIGIT gene promoter and gene
body in remission and initial diagnosis samples. Green dots represent methylated
regions, while empty dots represent unmethylated regions. g The methylation rates
between remission and initial diagnosis samples, showing the distribution and dif-
ferences in methylation levels.
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stem cells harvested from humanized TIGIT knock-in mice. Following
engraftment via bonemarrow transplantation, we successfully established a
murine model of AML expressing human TIGIT (hTIGIT) (Fig. 4f). Sur-
vival analyses demonstrated that tiragolumab exerted significant antitumor
activity in vivo, with concomitant administration of azacitidine resulting in
marked prolongation of median survival time (Fig. 4g). Furthermore,

quantitative assessments of spleen dimensions and mass revealed sub-
stantial reductions post-treatment, with imaging studies illustrating a pro-
nounced decrease in spleen size towards normative values upon combined
therapy (Fig. 4h). To evaluate the impact of treatment on tumor burden, we
employed GFP fluorescence to monitor the presence of neoplastic cells
within peripheral blood, bone marrow, and spleen compartments. Data
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analysis revealed a significant attenuation in GFP-positive tumor cell
populations following combination therapy, thereby underscoring the
potential efficacy of this synergistic approach for the treatment of AML
(Fig. 4i, j).

Discussion
Immune checkpoint blockade therapy represents a significant advancement
in cancer treatment by leveraging the immune system to combat tumor
cells5. However, the effectiveness of current ICB therapies, such as those
targeting PD-1 and CTLA-4, varies among patients and can lead to resis-
tance in some cases4. This has prompted extensive research into alternative
immune checkpoints like TIGIT, which hold promise as new therapeutic
targets. Our study has delved into the expression patterns and prognostic
significance of TIGIT in hematologic malignancies, with a particular focus
on AML. We found that TIGIT expression is most pronounced in bone
marrow and lymphoid tissues, aligning with its role in immune regulation.
Single-cell RNA sequencing further revealed that TIGIT is abundantly
expressed in immune cells such as NK-T cells and Tregs, highlighting its
crucial role in modulating immune responses. Joint analysis of multiple
databases shows that TIGIT has certain correlations with other immune
regulatory molecules, but without regularity. For example, it is positively
correlated with PD-L1 (CD274), CTLA4, and LAG3, but has no clear cor-
relation with other immune molecules such as CD276, PVR, TGFB1, and
ULBP1 (Fig. S11). To assess the prognostic value of TIGIT, we developed
andvalidatedaprognosticmodel incorporatingTIGITexpressionandother
genes related to Tregs and immune regulation. Six genes including TIGIT
were found to be associated with the risk score. Theywere FOXP3, PTTG1,
TIGIT,RTKN2, BATFandBTG3 respectively. FOXP3 is a key transcription
factor for Tregs and maintains immune tolerance20. Tumor cells inhibit
effector T cells through TIGIT and simultaneously induce Treg differ-
entiation. BATF+ Tfh promotes immunosuppressive antibodies, while
TIGIT directly inhibits effector immune cells, forming a double barrier21.
This model effectively stratified patients into high-risk and low-risk groups,
with the former exhibiting significantly shorter overall survival times.
Notably, ourmodel’s risk score outperformed traditional prognostic factors
like age,ELN2017, andwhite blood cell count, underscoring its potential as a
superior predictive biomarker.

Clinical trial data further bolsters the potential of TIGIT as a therapeutic
target22. For instance, a phase I/II clinical trial assessing the safety and efficacy
of tiragolumab, an anti-TIGIT antibody, in combination with atezolizumab,
an anti-PD-L1 antibody, in non-small cell lung cancer patients, reported a
higher objective response rate (ORR) and progression-free survival (PFS) for
the combination therapy compared to atezolizumab monotherapy23. Speci-
fically, the ORR was 38.8% for the combination therapy versus 24.1% for
atezolizumab alone, and the median PFS was 5.6 months compared to
3.9 months, respectively24. Similarly, another phase I/II trial evaluating the
safety and efficacy of MK-7684, another anti-TIGIT antibody, in combina-
tion with pembrolizumab, an anti-PD-1 antibody, in patients with advanced
solid tumors, demonstrated a favorable safety profile and promising anti-
tumor activity [NCT02964013]25. TheORR for the combination therapywas
24%, with some patients experiencing durable responses.

IL-12 could promote NK cell polarization towards the Th1 phenotype,
upregulate IFN-γ secretion, enhance anti-tumor activity, and simultaneously

induce TIGIT expression26. IL-15, on the other hand, promotes NK cell
proliferation and survival through IL-15Rα and enhances cytotoxicity by
releasing perforin/granzyme B, but prolonged stimulation may lead to
functional exhaustion27. Our research indicated that umbilical cord blood-
derived NK cells, after being treated with appropriate levels of IL-12 and IL-
15, could expand and proliferatemore effectively, and in combination with a
TIGIT inhibitor, could exert enhanced anti-tumor effects.

In the context of AML, our study discovered that azacitidine, an FDA-
approved therapeutic agent for AML, significantly increases TIGIT
expression by decreasing methylation levels in its promoter and gene body
regions. This finding implies a potential synergistic effect betweenAZA and
TIGIT inhibitors.We analyzed and compared theRNAexpression andflow
cytometry expression results of TIGIT in tumor cells from10AMLpatients.
Correlation analysis indicated that inAML, RNAexpression correlates with
flow cytometric expression of TIGIT (Fig. S12). This suggests that FCM
evaluation of TIGIT in Tregs might guide the choice of chemotherapy. Our
in vitro and in vivo studies indeed showed that combining the TIGIT
inhibitor tiragolumab with AZA enhances anti-tumor efficacy, resulting in
substantial reductions in tumor burden and extended survival in a murine
model of AML. The success of this combination therapy can be attributed to
AZA’s dual role in upregulating TIGIT expression and exerting direct anti-
tumor effects, while tiragolumab blocks the inhibitory signals mediated by
TIGIT, thereby bolstering the overall immune response against the tumor.
This synergistic approach not only improves treatment efficacy but also
potentiallymitigates the riskof resistancedevelopmentby targetingmultiple
pathways simultaneously. Clinical trial data on the combination of AZA
with other immunotherapies further support this strategy28,29. For example,
a phase II study evaluating the safety and efficacy of azacitidine in combi-
nation with nivolumab, an anti-PD-1 antibody, in relapsed/refractory AML
patients reported an ORR of 33% and a median overall survival of
10.3months [NCT02534303]30.Although this trial didnot specifically target
TIGIT, it illustrates the potential benefits of combining DNA methylation
inhibitors with immune checkpoint inhibitors in AML treatment.

This study still has the following limitations: (1) Current mainstream
bioinformatics databases (including TCGA, BeatAML, and GEO) lack
complete datasets of commonly used prognostic indicators; (2) Due to data
limitations, we could only perform limited-dimensional feature mining
based on existing data. Regarding the aforementioned deficiencies, we will
further analyze the relationship between this prognostic risk factor and
currently routine prognostic-related factors in a multi-center study. (3) As
there is no murine TIGIT inhibitor at present, we chose humanized TIGIT
mice for our animal model. However, these mice have a deficiency in the
integrity of the immune cell lineage, specifically manifested as incomplete
coverage of T cell subsets and the absence of immunememory cells, among
other issues. (4) Indeed, due to the substantial individual differences among
patients, there are certain variations in the proportion of intrinsic NK cells.
Some reports have indicated that AMLpatients with a high level of intrinsic
NK cells tend to have a better prognosis, while those with a low level of
intrinsicNKcells have a poorer prognosis31. Fromour research results, it can
be observed that patients with a high NK group have better killing effects
either when Tiragolumab is used alone or in combination with AZA. Our
current study cannot rule out whether this is related to the presence of
intrinsic NK cells.

Fig. 4 | The effects of Azacitidine and Tiragolumab on various cell lines and their
impact on leukemia in a mouse model. The expression levels of TIGIT in Kasumi-
1, OCI-AML3, and MOLM13 cell lines treated with DMSO or Azacitidine. The
upper panel (a) displays the quantitative data, while the lower panel (b) shows the
Western blot analysis. c The methylation status of the TIGIT promoter region in
these three cell lines. Green circles indicate methylated regions, while white circles
indicate unmethylated regions. d The cell viability of Kasumi-1, OCI-AML3, and
MOLM13 cell lines under different treatment conditions, includingmock,UCB-NK,
UCB-NK with Azacitidine, UCB-NK with Tiragolumab, and UCB-NK with both
Azacitidine and Tiragolumab. e The cell viability under conditions involving high
and lowNK cells, with and without treatments. The synergistic effect of tiragolumab

plus azacitidine was calculated by CompuSyn software. fA schematic illustration of
the experimental setup for the mouse model, showing the process of leukemia cell
injection, infection, and treatment with different compounds. g Kaplan-Meier
survival curve depicting the survival rates of mice over time after leukemia cell
injection, comparing different treatment groups (vehicle, TIGIT, Azacitidine, and
Azacitidine + TIGIT). h Photographs of spleens from treated mice, showing the
physical changes due to different treatments. i The distribution of cells in peripheral
blood (PB), bone marrow (BM), and spleen (SP) under different treatment condi-
tions by Flow cytometry. jThe percentage of leukemia cells in PB, BM, and SP under
different treatment conditions.
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In summary, our study highlights the importance of TIGIT in hema-
tologic malignancies, particularly in AML. TIGIT expression serves as a
valuable prognostic biomarker, and its upregulation by AZA, combined
with TIGIT inhibition, presents a novel and potentially highly effective
therapeutic strategy. The clinical trial data discussed above provide robust
evidence supporting the efficacy and safety of this combinatorial approach.
Future clinical trials should evaluate the safety and efficacy of this combi-
natorial approach in AML patients, with the potential to revolutionize the
treatment landscape of this disease. Additional research should explore the
broader implications of TIGIT in other hematologic malignancies and its
potential role in other cancer types. Gaining a deeper understanding of the
molecular mechanisms governing TIGIT regulation and its interplay with
other immune checkpoints will be essential for developing more effective
and personalized immunotherapies.

Methods
Primary samples and cell culture
Mononuclear cells from the bone marrow of patients with initial onset and
those who achieved remission after chemotherapy in Guangzhou First
People’sHospital were extracted and cultured inDMEMmediumwith 10%
fetal bovine serum and cytokines. All participants provided written
informed consent in accordance with the regulations of the Institutional
Review Boards of the Hospitals in agreement with the Declaration of Hel-
sinki. This work has been approved by the Ethnics Committee of
GuangzhouFirstPeople’sHospital (S-2024-136). TheAMLcell lines such as
Ontario Cancer Institute-AcuteMyeloid Leukemia-3 (OCI-AML3, this cell
line is derived from the peripheral blood of a 57-year-old male patient
diagnosed with AML-M4 in 1987, carrying an NPM1 gene mutation (type
A) and a DNMT3A R882C mutation), Kasumi-1 (this cell line is derived
from the peripheral blood of anAsianmale AMLpatient, characterized by a
translocation between chromosomes 8 and 21, resulting in the fusion of the
AML1 gene with the ETO gene to form the AML1-ETO protein), and
MOLM13 (Established in 1997 from the peripheral blood of a 52-year-old
female patient with AML-M5 type. It carries anNPM1 genemutation (type
A, i.e., NPM1c) and an FLT3-ITD mutation) were obtained from the Yu
Shan-he’s laboratory.

Data acquisition
The transcript level expression data of TIGIT in different tissues and dif-
ferent cancers types were obtained from Human Altas32. The clin-
icoprognosis and clinicopathologic information and gene expressiondata of
patients with hematological malignancies, including B-cell lymphoma
(GSE10846, GSE34171), AML (GSE37642, GSE106291, GSE116256,
GSE13159 andGSE147515), T-cell lymphoma (GSE58445,GSE90579), and
myeloma (GSE4204, GSE2658), are derived from the GEO database. In
addition, the analysis of AML patients also utilized relevant data from
TCGAandBeatAML, respectively. The expressionprofileswerenormalized
by Log2 transformation.

Single-cell expression and prognostic analysis
Single-cell RNA sequencing (scRNA-seq) analysis was conducted on var-
ious tissues33. Initially, cells intended for scRNA-seq underwent quality
control to ensure they were single-suspension cells without prior enrich-
ment. Subsequently, the sequencing data required a minimum of 4000 cells
and at least 20 million read counts. Ultimately, TIGIT expression in tissues
was visualized using UMAP. Moreover, scRNA-seq data from AML
patients at diagnosis and their matched samples post-chemotherapy,
obtained fromGSE116256, were utilized for immune cell subtype analysis34.
UMAP analysis revealed the discernible TIGIT expression in immune cells
within the total BM cells of AML samples at diagnosis and corresponding
samples after chemotherapy.

Quantitative Real-Time PCR (qRT-PCR)
TIGIT expression levels were quantified using qRT-PCR. For this purpose,
we employed the commercially available assay (ESscience; QP002) and

adhered strictly to the manufacturer’s instructions. The relative expression
data were analyzed employing the widely accepted 2−ΔΔCtmethod, which
allows for the comparison of gene expression between different samples.
The specific primers utilized for amplifying the TIGIT gene were as follows:
Forward Primer: TCTGCATCTATCACACCTACCC; Reverse Primer:
CCACCACGATGACTGCTGT. These primers were meticulously
designed using the Primerbank database, ensuring high specificity and
efficiency in amplifying the target sequence.

TIGIT-related prognosis model
TIGIT-related genes (TRGs) were delineated based on Human Altas ana-
lysis. The BeatAML cohort was adopted as the training dataset, whereas the
TCGA and GSE37642 cohorts were selected as external validation datasets
to substantiate the extensibility of our conclusions. To screen for prognostic
pertinent genes, we implemented the log-rank analysis, which evaluates the
disparity in survival profiles between two cohorts based on their optimal
cutoff expression values, with a stringent significance threshold of P < 0.05
established to solely retain statistically significant correlations. Furthermore,
we devised a prognostic TRGs signature through the employment of the
least absolute shrinkage and selection operator (LASSO) regression analysis.
This sophisticated statistical approach utilizes penalized maximum like-
lihood estimators to precisely identify a subset of genes exhibiting the most
substantial predictive capacity for patient outcomes while concurrently
mitigating the risk of overfitting. The model development process incor-
porated tenfold cross-validation, a robust resampling technique that parti-
tions the dataset into ten equal subdivisions and iteratively employs nine-
tenths for training purposes and the remaining one-tenth for validation,
thereby ensuring a comprehensive and reliable assessment of model per-
formance. The TRGs riskscore (RS) for eachAMLpatient was calculated by
using the following formula:

Scores ¼
Xn

i¼1

expi � βi

Patients were classified into high- and low-risk categories based on the
optimal RS cutoff. Kaplan-Meier and time-dependent ROC analyses were
conducted to assess the prognostic accuracy and reliability of the TRGs
signature.

Mutation profiling and methylation analysis
KEGG pathway enrichment analysis was conducted to delineate the
underlying physiological functionalities across the high-risk and low-risk
cohorts. A threshold of a normalized p-value < 0.05 was established as the
criterion for statistical significance. Furthermore, the immune cell infiltra-
tion scores for a panel of 22 distinct immune cell types were determined
utilizing the ESTIMATE deconvolution algorithm35. Extract 1 µg of total
genomic DNA; perform bisulfite conversion utilizing the EZ DNA
Methylation-Gold Kit (Zymo) in accordance with the manufacturer’s
protocol; design methylation-specific primers employing the QUMA
software36; amplify the target sequences post-bisulfite conversion via Bland-
Tag-PlusPCR; and assess theCpGmethylation status of the amplified target
regions using the QUMA analytical tool.

Reagent
TIGIT inhibitor (Tiragolumab, A2028) and Azacitidine (S1782) were
obtained from Selleck.

Cell viability assay
Cell viability was examined using the Cell Counting Kit-8 assay (CCK8)
(Dojindo) according to the manufacturer’s instructions. AML cell lines and
primary samples were plated (5000~50,000 cells/well) in a 96-well plate and
incubated in a humidified cell incubated with an atmosphere of 5% CO2 at
37 ◦C. Following cell exposure to Tiragolumab and Azacitidine for 48 h, the
CCK-8 reagent was added, and incubation was continued for another 2 h.
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Optical density was detected by a microplate reader at a wavelength
of 450 nm.

Flow cytometric analysis
Murine peripheral blood (PB), bone marrow (BM), and spleen (SP) cells
were prepared in FACS buffer (PBS containing 1%FBS) and incubatedwith
fluorochrome-labeled antibodies. Data acquisition was performed on an
LSR II flow cytometer (Becton Dickinson), followed by analysis using
FlowJo software (TreeStar).

Umbilical cord blood-derived natural killer cells (UCB-NK)
The UCB-NK samples originated from the Shandong affiliate of the China
Cord Blood Bank. Incrementally cultivated UCB-NK cells were grown in
RPMI-1640 medium (Gibco, New York) supplemented with 10% FBS
(BiochromAG, Berlin, Germany).Moreover, the cultures were treated with
50 ng/mL human interleukin-12 (IL-12, PeproTech) and 10 ng/mL
interleukin-15 (IL-15, PeproTech)37. Low concentrations of IL-12 (10 ng/
mL)might tend tomaintain activity, while high concentrations (50 ng/mL)
can enhance proliferation but also require attention to toxicity. Generally,
when used in combination with IL-15, it could synergistically promote NK
cell expansion and enhance function. These cells were subsequently co-
cultured with OCI-AML3, Kasumi-1, and MOLM13 cell lines in 96-well
plates.

Western blotting
Antibodies were purchased from FineTest (anti-TIGIT, FNab10904), and
Santa Cruz (anti-GAPDH).

Animal models of TIGIT
TheMSCV-MLL/AF9-IRES-GFP ecopack plasmid, generously provided by
Dr. Yu Shanhe’s laboratory at the Shanghai Institute of Hematology, Ruijin
Hospital affiliated with Shanghai Jiao Tong University, was utilized to
transfect 293 T cells via Lipofectamine 2000-mediated transfection. Viral
supernatants were harvested at 48 hours and 72 hours post-transfection,
respectively, followed by centrifugation, filtration, and storage at−80 °C for
future utilization.

BALB/c-hTIGITmice were procured fromNanjing Bioway Company
Limited and housed under specific pathogen-free (SPF) conditions at the
Animal Center of South China University of Technology. At the onset of
experimentation, mice were aged between 6 to 8 weeks. Each experimental
cohort comprised a minimum of six animals, which were randomly allo-
cated to distinct treatment groups. All experimental procedures strictly
adhered to theNational Institutes of Health (NIH) guidelines for the ethical
care and use of laboratory animals.

Eight-week-old female BALB/c-hTIGIT mice received an intraper-
itoneal injection of 5-FU (5mg/mouse), and five days post-injection, bone
marrow cells were harvested and cultured in Cocktail medium (DMEM
supplemented with 20% FBS, 20 ng/ml IL-3, 20 ng/ml IL-6, 50 ng/ml SCF,
20%WEHI-3 cell supernatant, and antibiotics) containing viral supernatant
for 48 hours. Cells were subsequently centrifuged at 650 × g for 2 hours,
resuspended in fresh culture medium, and incubated overnight. On the
subsequent day, the infection process was repeated once. Cells were then
resuspended in PBS and injected into eight-week-old female BALB/c mice
(which had been irradiated with a total of 900 Gy in two fractions, 4 hours
apart, with each fraction delivering a lethal dose of 450 Gy) via the tail vein
(200 μl containing 4 × 105 cells). Following the development of MLL-AF9
leukemia, bone marrow and spleen cells from GFP-positive (MLL-AF9/h-
TIGIT) primary cells were cryopreserved in liquid nitrogen.

Primary cells isolated from MLL-AF9/h-TIGIT mice were adminis-
tered via tail vein injection into eight-week-old female BALB/c-hTIGIT
mice. Three days following injection, animals were randomly assigned to
treatment cohorts. The Vehicle group received intravenous injections of
saline (200 μl) for a duration of ten consecutive days, the Azacitidine group
was treated with intravenous injections of 200 μl (100mg/kg Ara-C, HY-
13605, MCE), and the h-TIGIT group received intravenous injections of

200 μl every three days (10mg/kg Tiragolumab, Selleck). Peripheral blood
samples were collected from control mice at day 12 to assess GFP positivity
and monitor leukemia progression. Mice were euthanized 14 days post-
transplantation, and bonemarrow and spleenGFP positivity were analyzed
via flow cytometry to evaluate treatment efficacy. All animal studies were
approved by the Animal Ethics Committee at Guangzhou Medical Uni-
versity (Guangzhou, P.R. China).

Combination Index Analysis
The CompuSyn software (version 1.0; ComboSyn, Inc., Paramus, NJ, USA)
was employed to calculate the combination indexes based on the average
fraction of viable cells in the cytotoxicity assays38. The combinatorial effects
were categorized into four groups: strong synergism (CI = 0.1–0.3), distinct
synergism (CI = 0.3–0.7), mild synergism (CI = 0.7–0.9), and additive
(CI = 0.9–1.1).

Statistical analysis
Continuous variables were subjected to statistical analysis employing either
the Student’s t-test or the Wilcoxon signed-rank test, depending on the
normality of the data distribution. Comparative assessments of overall
survival (OS) between distinct groups were accomplished utilizing the log-
rank test, a widely accepted method for evaluating differences in survival
distributions. The time-dependent Receiver Operating Characteristic
(ROC) package was deployed to construct ROC curves and ascertain the
AreaUnder the Curve (AUC) values, which serve as ameasure of predictive
accuracy. Independent prognostic indicators were derived through rigorous
application of univariate and multivariate Cox proportional hazards
regression analyses, facilitating the identification of factors significantly
associated with patient outcomes. All statistical analyses were conducted
using specialized software packages, specifically R (version 4.0.4) and SPSS
(version25.0), bothofwhicharewidely recognized for their robust statistical
capabilities. Statistical significance was determined by a two-sided P-value
threshold of less than 0.05. In the context of drug combination studies, the
CompuSyn software (Inc., Paramus, NJ, USA) was utilized to analyze
combination indices (CI) based on viability data obtained from cytotoxicity
assays39. The interpretation of CI values followed established conventions:
CI values less than 1 indicated synergistic interactions, whereas values
greater than 1 implied antagonistic effects. Notably, lower CI values cor-
related with enhanced synergistic efficacy, underscoring the potential ben-
efits of specific drug combinations. *p < 0.05, **p < 0.01, **p < 0.001.

Data availability
No datasets were generated or analysed during the current study.
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