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Liquid biopsy is a promising non-invasive technology that is capable of diagnosing cancer. However,
current ctDNA-based approaches detect only a minority of early-stage disease. We set out to improve
the sensitivity of liquid biopsy by harnessing tumor recognition by T cells through the sequencing of the
circulating T-cell receptor repertoire. We studied a cohort of 463 patients with lung cancer (86% stage I)
and 587 subjects without cancer using gDNA extracted from blood buffy coats. We performed TCR β

chain sequencing to yield a median of 113,571 TCR clonotypes per sample and built a TCR sequence
similarity graph tocluster clonotypes into TCR repertoire functional units (RFUs). TheTCR frequencies of
RFUswere tested for associationwith cancer status and RFUswith a statistically significant association
were combined into a cancer score using a support vectormachinemodel. Themodel was evaluated by
10-fold cross-validation and comparedwith a ctDNA panel of 237mutation hotspots in 154 lung cancer
driver genes and 17 cancer related protein biomarkers in 85 subjects. We identified 327 cancer-
associated TCR RFUswith a false discovery rate (FDR) ≤ 0.1, including 157 enriched in cancer samples
and170enriched incontrols. Levelsof 247/327 (76%)RFUswerecorrelatedwith thepresenceof anHLA
allele at FDR ≤ 0.1 and tumor-infiltrating lymphocyte TCRs from multiple RFUs bound HLA presented
tumor antigen peptides, suggesting antigen recognition as a driver of the cancer-RFU associations
found. The RFU cancer score detected nearly 50% of stage I lung cancers at a specificity of 80% and
boosted the sensitivity by up to 20 percentage pointswhen added to ctDNAand circulating proteins in a
multi-analyte cancer screening test. Overall, we show that circulating TCR repertoire functional unit
analysiscancomplementestablishedanalytes to improve liquidbiopsysensitivity for early-stagecancer.

Despite recent advances in cancer therapies, more than 600,000 cancer-
related deaths are expected annually in the United States and stark differ-
ences in outcomes persist between individuals diagnosedwith early vs. late-

stage disease1. Large studies have established the benefit of cancer screening
across a range of indications and modalities. These include the landmark
national lung screening trial (NLST) that demonstrated the benefit of using
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low-dose CT (LDCT) to detect early-stage lung cancer2,3, and the DeeP-C
study that established the benefit of multitarget stool DNA testing for
colorectal-cancer screening4. Unfortunately, many individuals do not
undergo recommended testing, and cancer types responsible for 70% of all
cancer-related deaths are still unaddressed by current screening tools1,5.
Furthermore, current inclusion criteria for screening for lung cancer, based
onage and tobacco exposure, areflawedand fail to includemany individuals
at risk while exposing others at low risk to complications from invasive
testing or anxiety derived from false positive findings. Better characteriza-
tion of screening findings to discriminate between true positives and false
positives is also an unmet clinical need. Thus, further technological
improvements in early detection are needed.

Recent studies have focused on complementary approaches to estab-
lished cancer screening techniques. In particular, the feasibility of cancer
detection in blood samples is being explored given the value of circulating
tumor DNA (ctDNA) in identifying actionable mutations6–8 and of protein
biomarkers in monitoring cancer progression and treatment response9.
Because blood is an excellent source of diagnostic informationdue to its ease
of sampling and rich analyte content, blood-based cancer screening creates
opportunities for both improving single-cancer detection and more com-
prehensive multi-cancer early detection (MCED) tests. Several analytes
found in blood plasma are being explored as stand-alone assays or as
complements to imaging10, including methylated ctDNA11,12, mutated
ctDNA13, protein biomarkers13, and ctDNA fragmentomics14.

The performance of early cancer detection using a blood plasma
analyte is determined by the analyte’s concentration and the sensitivity/
specificity of the test. In early-stage cancer, relatively lower tumor burden
and invasiveness leads to low plasma analyte tumor fraction and, conse-
quently, limited sensitivity15,16. For example, while blood plasma biomarkers
canbe used to detect up to90%of late-stage lung cancers17, the sensitivity for
detecting early-stage lung cancer at high specificity has been reported to be
only ~20% withmethods based on ctDNA17,18. If blood-based liquid biopsy
is to achieve its potential as a cancer screening method, additional analytes
and techniques are needed to increase the sensitivity for early-stage disease.

The immune response to tumors is an essential element of cancer
biology19 and apotential source of biomarkers in early-stage disease20. T cells
recognizing the same antigen have been shown to harbor recurrent TCRs or
TCRmotifs21,22, and this phenomenon has been used successfully to develop
diagnostic tests for infectious diseases such as COVID-19 and CMV23,24.
Further studies have shown that TCRs with putative shared antigen speci-
ficity based onTCR sequence similarity can be grouped together to increase
the statistical power for detecting disease associations, including those in the
cancer domain25–27. The goal of our study was to develop TCR repertoire
sequencing as a novel component of blood-based cancer screening tests.

Lung cancer was selected as the initial indication for developing a TCR
repertoire sequencing method for blood-based cancer screening, given the
known clinical benefit of its early detection, limitations of current blood-
based methods, and the presence of an adaptive immune response28,29. We
collected blood samples froma large cohort of patientswith lung cancer and
additional blood samples from a similarly sized cohort of individuals who
had undergone low-dose CT screening or bronchial biopsy and were found
not to have lung cancer or were not otherwise known to have the disease.

We developed an NGS assay to sequence the TCR β chain from blood
buffy coats and implemented computational algorithms toorganize adataset
of tens of millions of TCRs into TCR repertoire functional units (“RFUs”)
based on TCR sequence similarity30. Grouping TCRs into RFUs that likely
recognize the same or related antigens30 allowed a cross-sample comparison
of immune responses, enabling a case-control association studyofRFUTCR
counts with cancer status. We used cancer-associated RFUs to train a
machine learning model for lung cancer prediction and demonstrated that
this TCR-based predictor is complementary to established biomarkers.

We detail how this was achieved in the sections below by (1) describing
the lung cancer case and control sample cohort collected in the study; (2)
defining the concept of circulating TCR repertoire functional units and
summarizing the size and distribution of these units across all the samples in

thecohort; (3) identifyingwhichTCRRFUsareassociatedwith thepresenceof
lung cancer through a cancer case / non-cancer control statistical association
study; and (4) combining cancer-associated RFUs into a unified prediction
model of lung cancer status. We then estimate the additional predictive value
of this TCRRFU lung cancer status predictionmodel when considered in the
context of current circulating tumor DNA (ctDNA) and protein biomarker
cancer prediction approaches. Finally, we explore the biological basis of this
TCRcancerprediction signal byanalyzing a separate set of lung cancer tumor-
infiltrating lymphocytes (TIL). Overall, we show that incorporating TCR
repertoire sequencing in a liquid-biopsy early detection assay is a promising
avenue for improving the sensitivity for early-stage disease.

Results
Dataset for the discovery of lung cancer-associated TCR RFUs
To identify the RFUs associated with cancer status (Fig. 1), we assembled a
cohort of blood samples from 463 patients diagnosed with lung cancer
(Supplementary Data 1). The cohort was enriched for subjects with stage I
disease (Fig. 2a) and spanned all the major lung cancer subtypes (Fig. 2b).
Blood samples from 587 subjects without lung cancer were collected as
control samples, with the majority of individuals meeting the current
inclusion criteria for lung cancer screening (Fig. 2c–d). We used a custom
TCR sequencing assay (Methods) to sequence 128,902,511 productive TCR
clonotypes. The median productive TCR clonotypes per sample was
113,571, which was comparable between cancer patients and non-cancer
controls (Fig. 2f, g). After filtering for the most abundant CDR3 lengths of
10–16 residues and removing any clonotypes with unique molecular
identifier (UMI) read count below each sample’smedianUMI read count ×
0.75 to preferentially remove naïve T cell clonotypes, 69,027,705 total clo-
notypes remained and were used for further analysis.

TCR repertoire functional unit definition
A dataset of approximately 70 million TCR clonotypes is computationally
prohibitive to standard clustering algorithms such as hierarchical clustering,
owing to their iterative approach and reliance on a distance matrix. To group
our TCRs into RFUs, we first created an approximate nearest neighbor graph
on theTCRs26 usingaCDR3sequencedissimilaritymetric27,31,witheachgraph
nodecorresponding toadistinctdeduplicatedTCRVgeneandaCDR3amino
acid sequence. We applied a non-parametric (no prior assumption of cluster
count or shape)Oðn log n Þ time complexity TCR clustering algorithm to this
graph to assign nodes to RFUs or as non-clustered singletons32. An RFU is
defined as a clusterwith at least twonodes or a singletonnodewith at least two
instances of the TCR sequence in the dataset.

We generated several candidate RFU sets by varying the maximum
TCR dissimilarity cutoff (parameter dc), which controlled the clustering
sparsity. Five of the dc cutoffs were 0.5, 5, 11, 12, and 22; these values
correspond to sequence similarities ranging from full CDR3 amino acid
identity (0.5) to one mismatch or indel + an additional conservative mis-
match allowed (22). Three dc cutoffs, 1.1, 1.2, and 2.2, were additionally
considered after dividing the sequence distance by thenumberof considered
residues in the CDR3 alignment.

The clustering analysis generated between ~74 K and 7M RFUs
depending on the dc setting (Fig. 3a, Supplementary Table 1). The RFUs
followed a power law distribution in size (Fig. 3b, c), with a small number of
large RFUs and many small RFUs.

Lung cancer-associated RFU discovery
With the defined RFUs, we next turned to cancer case/non-cancer control
association testing to identify the cancer-associated RFUs. Owing to the
large number of RFUs and their predominantly small size, there is a sig-
nificant multiple testing burden imposed by small RFUs, for which we have
minimal statistical power to detect cancer associations at our sample size. To
address this for the case-control analysis, we restricted the set of candidate
RFUs to the most common RFUs with TCR clonotypes observed in at least
15 individuals and with multiple (≥8) distinct clonotypes present in at least
three individuals, regardless of cancer status. This resulted in 6375 RFUs
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being tested for cancer association (Supplementary Table 1). While RFUs
obtainedwith different dc settings partially overlap, clusteringTCRs across a
range of dc cutoffs allows us to find the optimal balance between the
population prevalence and the degree of putative shared antigen specificity
of each RFU for cancer association testing.

We observed that the per-subject distribution of RFU TCR counts
(number of TCR clonotypes from an RFU present in an individual) can be
modeled analogously to gene expression levels measured using RNA-seq,
with the level of an RFU computed as the sum of its constituent TCR
clonotype counts. Therefore, we used the well-established gamma-Poisson
generalized linear model33 to test for RFU association with cancer status.
This model accounts for variable depth of sequencing and RFU count
overdispersion and allows us to incorporate demographic and technical
covariates such as age, gender, race, and TCR repertoire depth into the
analysis.

We identified a total of 327 RFUs associated with cancer status at false
discovery rate (FDR) ≤ 0.1 across the eight dc cutoffs, including 157 that
were enriched in cancer samples with fold change between 1.03 and 2.26,
and 170 that were enriched in non-cancer controls with a fold change

between 1.05 and 17.2 (Fig. 4a, Supplementary Data 2). Of the 327 cancer-
associated RFUs, TCR clonotype counts for 157 RFUs were also correlated
with subject age, while 136 were correlated with race, and 88 to gender at
FDR ≤ 0.1 (Supplementary Data 3). Of the 327 RFUs, 124 had a repeated
TCR centroid across different dc cutoffs, indicating that they were over-
lapping RFUs.

HLA type correlation with cancer-associated RFUs
To explore the biological basis of TCR RFU associations with cancer status,
we evaluated the correlation between RFU TCR counts and per-subject
HLA types.We reasoned that if TCRRFU cancer associations are driven by
antigen recognition, then RFU TCR counts should be correlated with the
presence of particular HLA alleles, and the identity of correlated alleles may
shed light on thebiology at play. SubjectHLAtypeswere imputed fromTCR
sequence data using HLAGuessr34 (Methods) and resulted in average of 9.7
called alleles (3.8 Class I, 5.9 Class II) per subject, with the expected dis-
tribution of common and rarer alleles (Supplementary Fig. 1a, b). NoHLA
allele was significantly enriched in either cancer cases or non-cancer con-
trols (Fisher’s exact test, FDR ≤ 0.1).

Fig. 2 | Case-control cohort statistics.Cohort distribution of cancer stage (a), cancer histology (b), smoking status (c), age (d), gender and race (e), TCR repertoire depth as
measured by clonotype count (f) and TCR repertoire depth as measured by TCR UMI count (g).

Fig. 1 | Overview of the TCR RFU workflow. (1) TCR β chain of circulating T cells
from blood buffy coats is deeply sequenced using an NGS-based assay. (2) Filtered
TCRs are clustered into repertoire functional units (RFU) using sequence similarity
as the distance metric. (3) A generalized linear regression model is applied to each

RFU to discover RFUs that are individually associated with cancer status after
accounting for demographic and technical covariates. (4) Significantly cancer-
associated RFUs are used jointly to train amachine learning model to predict cancer
status. Figure created in part using BioRender.com.
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Fig. 3 | Overview of RFU clustering results. (a) The tallies of TCR clonotypes
clustered into an RFU (green) or remaining as an unclustered clonotype (brown) for
each dc setting. (b) The number of RFUs generated by using each dc cutoff. (c) The

number of RFUs (Y-axis) that are composed of a given range of TCR clonotypes (X
axis) for the clustering results of each clustering setting (panels).

Fig. 4 | Testing a cancer prediction model that uses cancer-associated RFUs.
(a) Volcano plot of RFU-cancer associations. The boxplots on either side of the
volcano plot show covariate-adjusted RFU TCR counts of a positively and a nega-
tively cancer-associated RFU, as indicated by the dashed arrows. (b) ROC curves for

train and test folds from 10-fold cross-validation, broken down by cancer stage. (c)
Stage I cancer sensitivity based on cross-validated test fold cancer scores as shown in
(b). (d) Comparison of cross-validated cancer prediction scores by cancer stage or
benign lung nodule status.
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Of the 327 cancer-associated RFUs, TCR counts of 163 (50%) were
found to be significantly correlated with the presence of one or more HLA
alleles in cancer subjects, and 212 (65%) were correlated in the non-cancer
controls (t-test, FDR ≤ 0.1). A total of 247/327 (76%) RFUs correlated with
at least one HLA allele when all subjects were considered together. Inter-
estingly, most significant associations (92% in cancer patients and 81% in
non-cancer controls) were with HLA class II alleles (Supplementary Fig. 1c,
d, Supplementary Data 4), highlighting a potentially key role of CD4 T cell
responses in the tumor microenvironment in the TCR RFU cancer asso-
ciations we found35,36.

Cancer prediction from RFUs
Wenext investigatedwhether lung cancer-associatedRFUs could be used as
biomarkers for the early detection of lung cancer. To this end, we imple-
mented a machine learning (ML) model to predict cancer status from
cancer-associated RFUs and evaluated it using 10-fold cross-validation
(CV); the overall dataset was thus split into 10 sets of 90% train/10% test
sample subset pairs randomly. Importantly, for this analysis, both clustering
and RFU cancer case-control association testing were independently repe-
ated within each train fold, thus avoiding train-test leakage introduced by
using cancer RFUs defined using the whole dataset. Additionally, to mini-
mize RFU-level bias arising from demographic and technical covariate
imbalances between the cancer and control cohorts, we used each RFU’s
TCR counts corrected for the fitted effect of the demographic and technical
covariates as the ML features (Supplementary Fig. 2, Supplementary Data
3). The covariate-adjusted RFU features were used to train a bagging clas-
sifier of support vector machine (SVM) classifiers with a linear kernel
(Methods). Performance is reported as an average across the 10 test sample
subsets. We observed an average cross-validation train fold performance
receiver-operator curve (ROC) area under the curve (AUC) of 0.81 and test
ROC AUC of 0.72 (stage 0-I: 0.71, and stage II-IV: 0.74) (Fig. 4b).

Importantly, model predictions did not appear to be driven by batch
effects related to the source of the samples (Supplementary Fig. 3d, Sup-
plementary Data 1) or technical factors leading to variable TCR repertoire
depth (Supplementary Fig. 3b, c). Likewise,model scores were not driven by
various demographic covariates (Supplementary Fig. 3e–g) and were uni-
formly higher in cancer patients than in age-matched non-cancer controls
(Supplementary Fig. 3a). Model scores were also higher in cancer patients
than in non-cancer controls known to have heart disease and/or chronic
obstructive pulmonary disease (COPD) (Supplementary Fig. 3h), and were
uniform across various lung cancer subtypes (Supplementary Fig. 3i).
Notably, 48% of stage I subjects (test samples of each cross-validation fold)
could be detected by the model at a specificity of 80% (Fig. 4c), and the
model could differentiate between lung cancer and benign nodules (Fig. 4d),
highlighting the promise of this early detection approach. TCR cancer
prediction score did not significantly differ between cancer stages (p = 0.42)
(Supplementary Fig. 4).

The greatest imbalances between our cases and controls involved age
and TCR repertoire depth (Fig. 2). To confirm that the ML model scores
were not drivenby these covariates, wefitted a linear regressionmodel using
cancer status, age,TCRrepertoire clonotype counts, andUMIreadcounts as
predictors for the RFUTCR score as the response. The resulting p values for
the cancer status, age, TCR clonotype count, and TCR UMI count were
9:5 × 10�22, 9:1 × 10�4, 5:5 × 10�4 and 2:3 × 10�3, indicating that the final
cancer prediction score was predominantly driven by a sample’s cancer
status as opposed to its age or TCR repertoire depth.

Uncovering the cancer signal requires TCR grouping by
sequence similarity
To estimate the benefit of the TCR clustering (RFU formation) step for
cancer prediction, we applied the same cross-validation procedure to fea-
tures derived from individual unclustered TCRs. Using filtered TCRs as the
starting point, we fitted the GLMmodel to the TCR counts of each unique
TCR sequence based on theV gene, J gene, andCDR3 amino acid sequence.
Significantly cancer-associated unique TCR sequences (FDR ≤ 0.1) were

used as features in the SVMmodel. Across CV folds, there were, on average,
only 5.6 significantly cancer-associated TCRs (range: 3–8), which were all
used for the prediction model. Themean CVAUC for this TCRmodel was
only 0.59. The significantly lower feature count and CV AUC of TCRs vs.
RFUs are consistent with the hypothesis that TCR-cancer associations are
too weak to be discovered individually, and that a stronger signal can be
achieved by combining TCRs with similar sequences26.

Lung cancer-associated plasma protein biomarkers
We next sought to assess the potential contribution of this TCR-based
signature to the early detection of cancer in the context of established tumor
analytes.Wefirst reviewed the literature on protein biomarkers with known
or suggested roles in lung cancer detection in plasma. Two large, well-
designed case-control studies have recently evaluated multiplexed protein
biomarker panels for their association with either imminent lung cancer
diagnosis or pulmonarynodulemalignancy37,38. A total of 54distinct protein
markers were reported to be potentially associated with either diagnosed
lung cancer or malignant nodules in the two studies.

To compare the predictive performance of the published protein bio-
markers with our TCR signature, we generated circulating protein level data
from 235 study subjects, including 109 cancer patients and 126 non-cancer
controls. The demographic and tumor property distributions of these sub-
jects closely matched the overall distribution (Supplementary Figure 5, and
Figure 2).Weused theOlinkOncology and InflammationExplore®panels to
assay protein markers associated with these biological pathways. Of the 54
publishedcancer-associatedproteinmarkers, 26were coveredby thesepanels
and could be used to replicate the reported results (Supplementary Table 2).

Of these 26 proteins, 18 were significantly associated with cancer status
in our cohort at an FDR < 0.05.Notably, 17 of the 18 proteinswere positively
associated with cancer status in both the published reports and our dataset.
One additional protein (ALPP) was associated with cancer status in our
cohort (FDR < 0.05) but in the opposite direction (positive in the published
study38 but negative in our data). The eight remaining proteins tested were
not significantly associated with cancer status in our dataset. The 17 suc-
cessfully replicatedprotein biomarkerswereused in the subsequent analyses.

Lung cancer prediction using protein biomarkers
We trained a support vectormachine classifier (linear basis function kernel,
regularization parameter C = 0.01) for lung cancer prediction using the 17
validated protein biomarkers. Forward feature selectionwith 5-fold internal
CV resulted inmodels with an average of 4.4 features selected, achieving an
overall cross-validatedROCAUCof 0.70 (Fig. 5a). In linewith expectations,
this protein-based model showed much stronger performance for the pre-
diction of late-stage cancer (stage IV CV AUC= 0.89) than for early-stage
disease (stage I CV AUC= 0.66).

Cancer detection with recurrent ctDNA lung cancer driver
mutations
Next, we implemented a broadly used ctDNA assessment approach to
further evaluate the TCR RFU-based cancer prediction in the context of
established plasma-based early detection methods. We generated ctDNA
mutation data for 100 subjects comprising 61 patients with cancer and 39
non-cancer controls (Supplementary Table 3). Targeted sequencing was
performed on 237 mutation hotspots in 154 lung cancer driver genes
(Supplementary Data 5)13,39 using commercially available Illumina®
sequencing library construction and hybridization target capture reagents
(Methods). The matching genomic DNA (gDNA) from each subject was
sequenced alongside the ctDNA samples to identify and exclude ctDNA
mutations derived from clonal hematopoiesis of indeterminate potential
(CHIP). The average unique molecule coverage on the targeted mutation
sites was >1,500x and >875x for ctDNA and gDNA samples, respectively.

After NGS variant calling and filtering (Methods) and excluding
mutations found in matching gDNA samples, 28 mutations were called
across the 100 subjects (Fig. 5b, Supplementary Data 6). A logistic
regression (LR) model with forward feature selection using mutation

https://doi.org/10.1038/s41698-025-01036-y Article

npj Precision Oncology |           (2025) 9:245 5

www.nature.com/npjprecisiononcology


count and average mutation allele frequency as features was trained
using 5-fold CV to classify the subjects as positive or negative for
ctDNA. As expected, more mutations were identified in individuals
with stage III-IV disease, allowing the majority of these patients to be
detected. In contrast, the sensitivity was lower for early-stage disease, in
line with prior literature13,16 (Fig. 5c).

The only genes with driver mutations observed in multiple patients
were TP53 (15/100) and KRAS (3/100). The TCR RFU-based cancer pre-
diction scores were not associated with either TP53 (p = 0.65) or KRAS
mutation status (p = 0.40) (Supplementary Fig. 6).

Lung cancer prediction with a multi-analyte liquid biopsy incor-
porating TCR RFUs
Having trained individual cancer predictionmodels for TCR RFUs, protein
biomarkers, and ctDNA mutations, we sought to measure the added con-
tribution of the TCR component to detecting early-stage cancer. Of the
1050, 235, and 100 subjects with TCR, protein, and mutation dat,a
respectively, 85 were processed for all three analytes (Supplementary Table
4). For each analyte class, we recorded whether each sample’s cross-
validation score passed the thresholddeterminedby a given target specificity
level when the sample was in the held-out set during the cross-validation.
This provided an unbiased, cross-validated sensitivity estimate for each
individual analyte and allowed us to compare which cases were called
positive by various subsets of analytes (Supplementary Table 5).

We observed a substantial gain in sensitivity for stage I cancer when
TCR RFU biomarkers were added to ctDNA mutations and proteins, with

an up to ~20%-point increase observed at the target specificity levels typical
for single cancer type screening tests (Fig. 5d). In contrast, TCR RFUs
achieved limited improvement in the detection of stage II-IV cancers (Fig.
5e), which could be explained by the high level of performance achieved by
current plasma analytes in advanced disease.

Analysis of RFU TCRs in tumor infiltrating lymphocytes
Lastly, we sought to further characterize the biological basis for the
association of circulating TCR RFUs with cancer status by studying
tumor infiltrating lymphocytes (TIL) in a separate set of 20 lung cancer
patients who underwent surgical resection (Supplementary Data 7).
Surgical tumor specimens were processed into single cell suspensions,
andTILwere isolated by fluorescence-activated cell sorting (FACS) using
standard cell surface marker stains and 19 antigen-specific dextramers
(Methods). The dextramers targeted common cancer antigens, including
the MAGE genes, viral antigens, and nonsense peptide (i.e., negative)
HLA binding controls, and had unique sequence feature barcodes to
allow multiplexing. Dextramers were matched to each subject according
to HLA type (Supplementary Data 8). Isolated TIL were subjected to
single-cell gene expression and TCR sequencing using the 10x Genomics
platform, resulting in an average of 2111 T cells analyzed per patient
(Supplementary Data 9). An average of 1218 genes were observed to be
expressed in the analyzed T cells, with an average of 0.98 TCR β chains
and 0.87 TCR alpha chains observed per cell. Sequencing of feature
barcodes corresponding to antigen-specific dextramers resulted in an
average of 37 feature barcodes per cell.

Fig. 5 | Combining complementary biomarkers to predict lung cancer. (a) Cross-
validated ROC curve of SVMmodel score using the protein expression features only.
(b) Circulating DNA mutation counts in the assayed subjects by cancer stage. (c)
Cross-validated ROC curve of prediction score from logistic regression with forward

feature selection using themutation features only. Cancer detection sensitivity using
different subset of analytes for stage I and stage II-IV lung cancer is shown in (d) and
(e), respectively.
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T cell subtypes of cancer-associated RFUs
T cell subtypes were evaluated from the gene expression profiles using
CellTypist40,41 (Methods), which revealed that themajority of assayedT cells
were cytotoxic, while regulatory T cells and helper T cells were the second
and third most abundant groups (Supplementary Fig. 7). Rarer T cell
subtypes, such as mucosal-associated invariant T (MAIT) cells, appear in a
subset of patients, highlighting the inter-subject heterogeneity in the anti-
tumor immune response (Supplementary Fig. 8).

We sought to assess whether TCRs identified as members of cancer-
associated RFUs in our case-control cohort were preferentially carried by
any specific T cell subtype. To do this, we intersected 17,551 distinct TCR β
chain clonotypes carried byT cells in the 20TIL surgical patients with TCRs
found in the 327 cancer-associated RFUs. Because the 20 patients subjected
to TIL single cell sequencing were distinct from the 1,050 subjects in the
blood buffy coat RFU discovery, this analysis only revealed patterns
apparent for publicTCRs that are shared acrossunrelated subjects.A total of
1772 such public TCR clonotypes were found to overlap between single cell
TIL and buffy coat case-control datasets.

Using these shared cancer-associated TCRs, we evaluated whether
clonotypes carried by each cell type were more likely to be found in the
cancer-associated set. Although no single cell-type enrichment reached
statistical significance after correction for multiple testing, MAIT cells
tended to be enriched in cancer-associated RFU TCRs (p < 0.05; Supple-
mentary Fig. 9). The clonotypes associated with MAIT cells were also pre-
ferentially associated with TRBV6-2 (p = 6.8e−04), TRBV6-4 (p = 5.1e
−15), and TRBV20-1 (p = 1.9e−05).

Antigen recognition of TCR clonotype in cancer-
associated RFUs
We then considered which of the studied antigens might be recognized by
the clonotypes identified as members of cancer-associated RFUs. To this
end, we tested the association between dextramer-specific feature barcodes
and clonotypes in each subject separately. Clonotypes that bound to nega-
tive control dextramers were excluded. Using Fisher’s exact test, we found
24 significant associations involving eight subjects with FDR ≤ 0.1, includ-
ing both cancer and viral antigens (Supplementary Data 10).

Of the 15 clonotypes found to be associated with cancer antigen-
specific dextramers, four clonotypes in three subjects were found to be
members of a cancer-associated RFU. All four were associated with dex-
tramer binding cancerMAGEantigens andwere found inT cells ofmultiple
subtypes (Supplementary Data 11). One clonotype in subject NSC028
demonstrated cross-reactivity andbounddextramers tobothMAGEA1and
CMV epitopes.

Discussion
In this study, we aimed to address the current limitations of blood-based
cancer screening tests for early-stage lung cancer. Given that early-stage
tumors shed little ctDNA into the blood, we leveraged the anti-tumor T cell
response, which was assessed by sequencing the circulating T-cell receptor
repertoire and analyzing cancer-associated TCR repertoire functional units
(RFUs). Cancer TCR RFUs combined with a machine learning model
detected up to half of stage I lung cancer cases, and this signal proved
complementary and additive to established tumor-derived analytes, such as
circulating proteins or tumor DNA.

There is a strong rationale for the inclusion of TCR repertoire
sequencing in blood-based cancer screening tests. Tumor immune sur-
veillance by T cells is a key mechanism of cancer control and offers an
orthogonal principle of detection, assessing host response rather than a
tumor-shed analyte such as ctDNA. T cell proliferation may even act as an
amplifier of subtle signals from small tumors, in a way that a rapidly cleared
analyte such as ctDNA cannot. Tumor antigen recognition is encoded by
T-cell receptor sequences, which can easily be assayed in circulation byNGS
using buffy coat genomic DNA. T-cell receptor sequencing also integrates
seamlessly into existing liquid biopsy workflows using the remaining buffy

coat fraction from the same blood draw currently used to obtain plasma
for ctDNA.

To put our work in context, we note that the refinement of high-
throughput TCR-sequencing technologies and the deeper knowledge of
the biological relevance of T-cells in the development of disease states has
led to an increasing interest in TCR profiling as a diagnostic, monitoring,
or treatment adjunct tool in multiple clinical settings. TCR sequencing
allows for the analysis of immune response, providing information on the
composition of TCR repertoires and facilitating the discovery of TCR-
antigen interactions. Multiple diseases may benefit from the application
of TCR sequencing to the clinical setting, from infectious diseases to
cancer42. For instance, as of May 2025, over 200 trials using TCR
sequencing/repertoire profiling were included in clinicaltrials.gov, with
over 150 focused on cancer. In the context of oncology, TCR sequencing
helps to understand intratumor heterogeneity and thus to learn about
cancer immunity and predicting therapeutic responses to
immunotherapy43. TCR sequencing is also useful to follow tumor evo-
lution through immune monitoring and to refine current T cell–based
therapies, improving their specificity or helping in the monitoring and
tracking of T-cell clonotypes after administration.

Unlike other biomarkers, sensitivity for early-stage lung cancer using
TCR RFUs remained nearly the same as for late-stage disease, which is in
line with a recent study on ovarian cancer early detection30. A possible
explanation is immunoediting44, where during early tumor progression the
immune system enters the ‘elimination’ phase by production of anti-tumor
T cells, which leads to an amplified signal in the peripheral blood repertoire.
Indeed, the T cell response against malignant transformation can occur as
early as the pre-cancer stage45.Hence, it is not surprising to see a similar level
of cancer-associated RFU signal in patients with stage I lung cancer as in
patients with more advanced disease.

We examined the biological basis of these newTCRRFUbiomarkers
by evaluating their association with each subject’s HLA type and their
potential for tumor antigen recognition in a separate TIL dataset. We
found that TCR RFUs were likely dominated by CD4 T cell/class II HLA
targeted responses, suggesting that the immune response in the tumor
microenvironment plays a pivotal role. Furthermore, several relevant
class I/CD8 T cell responses and even possible MAIT responses were
suggested by TIL analysis, highlighting additional possible contributions
to the overall signature found.MAIT cells localize tomucosal tissues such
as the lung epithelium, function through antigen recognition that does
not rely on classical major histocompatibility complex, and have innate-
like properties that can respond quickly to infections and stress46,47. Our
observations suggest that this unconventional subtype may also con-
tribute to a circulating T cell signature of cancer. Although the target
antigens of our cancer-associated RFUs are currently unknown, collec-
tively, these observations are consistent with low-level immune
responses mounted by highly prevalent, broadly cross-reactive T cells
against self-antigens present in the tumor microenvironment or over-
expressed in cancer cells.

Although intriguing, our study had several limitations that should be
considered in its interpretation. Blood for our cancer cases was generally
obtained close to or after the time of diagnosis (though before treatment),
which may have overestimated the robustness of the biomarker in the lung
cancer screening setting. In addition, a minority of our controls were not
confirmedbyCT scan to be free of lung cancer, whichmay have reduced the
observed TCR RFU signal if some of these cases had undetected, asymp-
tomatic disease. The case-control analysis relied onTCR β chain sequencing
only, which likely reduced the antigen specificity inherent in the RFUs due
to missing TCR α chain pairing information. Notably, although our cross-
validation approach was comprehensive and comprised the entire RFU
discovery process, additional unseen samples for held-out RFU validation
were not available. Finally, the TIL analysis was limited because it used a
small number of unrelated subjects to assess only a small portion of the
possible relevant antigenic space.
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Notwithstanding these limitations, we demonstrated that it is possible
to detect the presence of lung cancer in blood by analyzing the circulating
TCR repertoire using the abundantly available and currently unused buffy
coat blood fraction. Indeed, most liquid biopsy trials archive unused buffy
coat as a matter of course, creating an opportunity for supplementary
analysesof previousplasma-based studies in thenear term.Whencombined
with established analytes, TCR repertoire analysis has the potential to enable
cancer detection at earlier stages and prevent cancer death.

Methods
Blood sample collection and processing
Generally, blood samples for the study were collected from subjects using
two 10mL Streck Cell-Free DNA Blood Collection Tubes (Streck-BCT).
Buffy coat and plasma samples were prepared with a single spin fractio-
nation protocol. Whole blood within 48 h of collection was centrifuged at
1600 g for 10min at room temperature. The plasma was then slowly
removed so as not to disturb the buffy coat layer below and aliquoted into
cryovials. The remaining buffy coat was then removed and stored in cryo-
vials. (An exceptionwas theUniversity ofNavarra cancer patient cohort and
a subset of the U.S. CRO B cancer cohort, which were collected in EDTA
tubes and processed into fractions the same day, usually within 5 h). All
Buffy coat and plasma aliquots were stored at −80 °C until needed for the
genomic, proteomic, or cell-free DNA assays.

Participants signed written informed consent, and study-related pro-
cedures were conducted in accordance with theDeclaration ofHelsinki and
applicable national, state, and local regulations. Sample collection at each
site was approved by a local institutional reviewboard (IRB) or independent
ethics committee (IEC). Samples and data from patients included in the
study provided by the Biobank of the University of Navarra were processed
following standard operating procedures under approval by the University
of Navarra Research Ethics Committee (reference #2023.159). Additional
approvals were given by Dana-Farber Cancer Institute IRB #98-063 and
Rush University Medical Center IRB #22012505.

Extraction of cfDNA and gDNA
Nucleic acids were extracted from the frozen archived patient plasma and
buffy coat using Promega Maxwell® instruments and associated kits.
Extraction of genomic DNA from buffy coat was performed using the
Maxwell BloodKit (ASB1400) and protocol. Because of the highmass input
requirements of TCR repertoire analysis, two 300 µL aliquots of buffy coat
were used per patient, and the resulting gDNA combined at the end of
extraction. Briefly, each aliquot was first combined with a cell lysis buffer
and ProteinaseK and incubated at 56 °C for 15min. These digested samples
were then loaded into wells of theMaxwell Blood Kit cartridges and run on
the Maxwell RSC Instrument with the associated extraction program. The
final gDNA was quantified using the Thermofisher Qubit Instrument.

Extraction of cell-free DNA from plasma was performed using the
Maxwell cfDNALVPlasmaKit (AS1840) and protocol. The thawed single-
spunplasmawasprepared for loadingon the kit byfirst performing a second
high-speed centrifugation, to remove cell debris, at 20,000 x g for 20min at
room temperature. This double-spun plasma was removed and added to a
50mL conical tube without disturbing the cell pellet. An equal volume of
Promega bead binding buffer, relative to input plasma volume,was added to
each sample along with Promega binding beads. This plasma and bead
slurry was then incubated and shaken on the PromegaHSM Instrument for
90min. Thismixturewas put on amagnet to capture the binding beads. The
plasma and binding buffer were discarded, and the unpurified, con-
centrated, cell-free DNA was eluted from the pelleted beads. This final
elution was added to the wells of the Maxwell Kit cartridge and run on the
Maxwell RSC Instrument with the associated extraction program. The final
cfDNA was quantified using the Thermofisher Qubit Instrument and
fragment lengths profiled using the Agilent Tapestation. Samples were
quality controlled for library construction by requiring both a total cfDNA
yield greater than 5 ng and an absence of gDNA contamination using
Agilent cfDNA Screen Tapes (Agilent #5067-5630).

Protein analysis with Olink platform
One of the single-spun plasma aliquots described above was provided to
Olink® as an input for the Proximity Extension Assay (PEA). Plasma
samples were stored before plating at−80oC. Each sample was plated using
100 µL of plasma and shipped to Olink on dry ice. The PEA Assay was
conducted to determine expression levels of proteins in cancer and
inflammation-related pathways, including the 17 proteins used above48.

Multiplex PCR Assay (mRFU) for characterizing the rearranged
TCR β chain receptor sequences
Extracted genomic DNA from the buffy coat was used as input to the assay.
The TCR β chain was sequenced by targeting 58 TCRBV gene segments and
13TCRBJgene segments forPCR-basedenrichment.Candidategene-specific
primers were generated in silico using the GRCh38 reference genome and
Primer3 software. The gene-specific sequences were used to generate mRFU
assay primers by adding Illumina-compatible sequences to the 5’ end of the
sequence, as shown in Supplementary Fig. 8. The V primers also contained a
unique molecular identifier (UMI) sequence made up of 12 random nucleo-
tides for error correction and quantitation. Two primer pools were created by
equimolar mixing of the V primers (Pool 1) and the J primers (Pool 2).

ThemRFUAssaywasmadeupof 3 reactions designed to enrich for the
target TCR rearrangements and to add Illumina sequencing adaptors. The
first reaction was a single primer extension using DNA polymerase and
primer Pool 1 as shown in Supplementary Fig. 9. After a 1.0x Ampure clean
up, the extension product was taken into a low-cycle PCR reaction to
amplify the genomic regions with fully rearrangedV-J sequences. This PCR
used the 20 unique bases of the Illumina Read1 Primer Sequence as a
forward primer and the multiplexed J gene-specific primer Pool 2 as a
reverse primer. This product was cleaned up using a dual-sided Ampure
clean-up to remove the long genomic sequences and to remove the primer
and short off-target products. Lastly, an 18-cycle PCR (PCR2) was run to
attach full-length Illumina P5/P7 sequences with sample barcodes. These
libraries were then sequenced on an Illumina®Novaseq targeting a depth of
~50M reads per sample.

RFU TCR clonotype count model
Anegative binomial generalized linearmodel (NB-GLM)wasfitted for each
RFU using DESeq249. DESeq2 size factors (the NB-GLM offset term) were
calculated using function “pooledSizeFactors()” in R package Scuttle50. The
response variable per sample was computed as the total number of TCR
clonotypes assigned to the RFU. The linear predictors of the model are as
follows (Supplementary Data 12).
– Cancer status
– Age
– Gender
– Race (Caucasian, Black, Hispanic, and Unknown/Other)
– TCR amplification V-J primer lot
– Third-order polynomial terms for median UMI count across

clonotypes of each sample
– Third-order polynomial terms for the total UMI count of each sample

RFU cancer associations p-values were calculated using the likelihood
ratio test. Only RFUs with a depth-normalized RFU count of ≥8 in at least
3 subjects were considered for multiple testing correction using Benjamini-
Hochberg FDR.

Clustering/RFU formation
We implemented a fast non-parametric clustering algorithm, CFSFDP, to
cluster TCRs32. The original algorithm requires a dissimilarity matrix
between all data points, which is computationally prohibitive for a dataset of
tens of millions of TCRs. We thus implemented the following improve-
ments to the original CFSFDP algorithm:
– Instead of computing and storing a pairwise dissimilarity matrix

exhaustively, we build an approximate nearest neighbor (ANN) index26

using PynnDescent (https://github.com/lmcinnes/pynndescent). We
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used a previously developed TCR dissimilarity metric27,31 and used the
ANN index tofind the nearest kneighbors of a givenTCR in the index in
a computationally efficient fashion. Since this dissimilarity metric is
applicable to comparingTCRsofdifferentVgenes andCDR3 lengths,we
are able to cluster the entire TCDR dataset into a single RFU clustering.

– In the original CFSFDP algorithm, the density of each data point is
calculatedbyexhaustively enumerating thenumberofneighborswithina
dissimilarity cutoff of dc, which is an O(n2) operation for n data points.
Instead, we use the ANN index to search for all the neighbors of each
TCR within dc. Since an ANN index returns neighbors in the order of
similarity, this involves only searching for the neighbors of each TCR up
toadissimilarity≤dc. Similarly,wequery theANNindex to search for the
nearest TCR of higher density for each TCR instead of performing an
exhaustive pairwise search.

We skip the computationally expensive step of computing the “halo”
regions of each cluster. Instead, we accept the joining of two TCRs if their
similarity ≤ dc.

Prior to clustering, TCR clonotypes were deduplicated to distinct V
gene, J gene, and CDR3 amino acid sequences, given that TCRs with an
identical V gene, J gene, and CDR3 amino acid sequence have a TCR
dissimilarity of 0 and are trivially clustered together regardless of dc. The
three N-terminal and two C-terminal residues in the CDR3 were excluded
from the dissimilarity calculation in linewithpast studies25,26, and theVgene
sequence of each TCRwas combinedwith the CDR3 sequence dissimilarity
into an overall TCR-TCR dissimilarity score27.

The approximate runtime of TCR deduplication and indexing using
PyNNDescent on our dataset ( ~ 70M input TCR clonotypes) is 4–5 h with
24 provided Intel Xeon CPU cores and 140GB of peakmemory usage. The
approximate runtime of the density calculation and TCR clustering (using
the TCR index) is 1 h with 24 provided Intel Xeon CPU cores and 100 GB
peak memory usage.

TCR to RFU assignment in cross-validation
TCRs from samples in the CV test splits were matched to the most similar
TCR in the repertoires of the corresponding CV train split using the
approximate nearest neighbor index of the train samples’ TCRs. If the
dissimilarity between a query TCR and its nearest train TCR ≤ dc, the query
TCR was assigned to the RFU of the train TCR. If the train TCR was a
singleton TCR, then the query TCR was left unassigned.

HLA genotype inference
HLA inference was carried out using HLAGuesser (https://github.com/
statbiophys/HLAGuessr) using default parameters. HLAGuesser prob-
ability of 0.45 was used as the threshold to define an HLA allele as present.
We analyzed HLA-A, B, C, DRB1, DPB1, DQA1, and DQB1 gene alleles
that had a frequency≥ 0.05 in an in-house dataset of ~100 subjects forwhich
we had performed sequencing-based HLA genotyping and could verify
inference accuracy. This yielded a set of 70 calledHLA alleles for correlation
analysis against RFUs counts (see below). Average AUC between HLA-
Guessr and HLA sequencing was 0.94.

HLA gene tested # alleles tested

A 10

B 12

C 10

DPB1 8

DQA1 10

DQB1 10

DRB1 10

Feature selection and machine learning modeling
RFUswith amultiple testing corrected false discovery rate≤ 0.1were used as
input features for ML. To derive input feature values for MLmodeling, the
fitted GLM coefficients were used to derive the likelihood for each sample
under the assumption that the sample is a cancer (Lcancer ¼
Lðyjcancer; othercovariatesÞ) or a non-cancer sample (Lnon�cancer ¼
Lðyjnotcancer; othercovariatesÞ). The covariate-adjusted ML input feature
is then defined as log Lcancer � log Lnon�cancer. The features were centered to
0 and scaled to 1 in train samples before being passed to ML modeling.

We employed a bagging classifier of 100 support vector machine
classifierswith a linear kernel.Model training andevaluationwasperformed
using Python package scikit-learnwith the following parameters: C = 0.001,
max_features = 0.5.

For the ML model using single-TCR derived features, the same
approach was followed for deriving ML feature values. The same bagged
SVM model was used, except max_features was set to 1.0.

Circulating tumor DNA mutation analysis
Library construction and hybridization-based target capture using Inte-
grated DNA Technologies (IDT) xGen™ reagents was used to prepare the
DNA samples for next-generation sequencing on the Illumina® platform.
The circulating tumor DNA assay required preparation of two libraries for
each subject: a cell free (cfDNA) library from the plasma and a genomic
DNA (gDNA) library from 300 ng of the buffy coat. While the extracted
cfDNAwasnaturallypresent as theneededshort fragments, gDNArequired
an upfront shearing on the Covaris® ML230 Platform to enter library
construction. After gDNA shearing, both gDNA and cfDNA libraries went
through the same IDT xGen ccfDNA and FFPE Kit library preparation
protocol. Briefly, the DNA ends were repaired to generate blunt ends, fol-
lowed by a single-stranded ligation of a sequencing adapter to the 3’ end of
the insert. A second ligation step followed, using an adaptor UMI fragment
that acts as a primer to gap fill the 5’ side of the insert. Adapter-ligatedDNA
library underwent PCR amplification to enrich fragments containing
adapters on both ends and to incorporate sample-specific indices that allow
formultiplexingduring sequencing.Thefinal librarieswere quantifiedusing
theThermofisherQubit Instrument andqualitycontrolled for amplicon size
using the Agilent Tapestation Instrument.

Following library preparation, hybridization was performed using
the xGen™ NGS Hybridization Capture Kit and Biotinylated xGen™
Lockdown Probes custom-designed to target the mutated genes of
interest. Briefly, the cfDNA and gDNA sequencing libraries were heat
denatured and allowed to reanneal in the presence of a high con-
centration of biotinylated target probes. After an overnight annealing,
streptavidin-coated magnetic beads were added to the hybridization
mixture. The streptavidin-biotin bonding allowed enrichment of target
sequences using a magnet to pellet the paramagnetic streptavidin-
coated beads. The pelleted beads were washed to remove non-
specifically bound DNA fragments and any remaining excess probes,
and the bound library was put through a final round of PCR amplifi-
cation to generate sufficient material for sequencing. The final hybrid
captured libraries were quantified using the Thermofisher Qubit
Instrument and quality controlled for amplicon size using the Agilent
Tapestation Instrument.

The final target-captured library was sequenced using Illumina®
Novaseq platform, targeting 400M read pairs for cfDNA and 200M read
pairs for gDNA.

Bioinformatics methods for ctDNAmutation analysis
Sequencing data were demultiplexed using Illumina BaseSpace, and read
pairs were aligned to the human reference genome GRCh38 using BWA
MEM (v0.7.17). Downstream Unique Molecular Identifier (UMI) proces-
sing and read collapsing to duplex consensus sequenceswere generatedwith
fgbio (v2.0.2). Consensus sequences were then re-aligned to the human
genome using BWAMEM (v0.7.17) and quality filtering with fgbio (v2.0.2)
performed, requiring a minimum of 2 reads for a consensus sequence.
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Variant calling was performed using VarDict (v1.8.3). VarDict VCF (Var-
iant Call Format) output files were annotated using snpEff (v5.1).

Both cfDNA and gDNA samples were processed separately with the
analysis pipeline above, generating a VCF file for each sample. Raw muta-
tion calls were first filtered by retaining position overlap with regions from
154 cancer driver genes and the entire TP53 gene. For gDNA variant calls,
we required the “FILTER”field tobe “PASS”. For the cfDNAvariant callswe
applied the following filters: Allele Frequency (AF) must be 0.1% < AF <
40.0%, Total Depth (DP) > 100, FILTER field must be “PASS”, mutation
type must be “coding” or “splice site” only, and mutation must not be
present in the matched gDNA sample. We did not require a minimum
variant depth for gDNA mutations.

TCR calling from raw sequencing data
1. Sequencing data from each sample was combined into a single pair of

FASTQ files.
2. Raw reads were aligned to the GRCh38 reference genome using BWA

MEM (https://github.com/lh3/bwa). Only reads with mapping quality
≥ 10 were kept.

3. Raw reads with the same UMI were collapsed into UMI families using
Fgbio, generating unmapped “UMI read pairs” (http://
fulcrumgenomics.github.io/fgbio/). Only UMI reads constituted
from at least two raw reads were kept.

4. Only UMI read pairs with BQ ≥ 45 for all the consensus bases
were kept.

5. Forward and reversemates of theUMI read pairs were collapsed into a
single consensus molecule using AdapterRemoval v251.

6. The UMI consensus read reads were aligned to the GRCh38 reference
genome. Split read alignment information was recorded by the soft
clipping and hard clipping of each read’s alignment positions. Only
consensus reads mapping to both a V and a J were kept. The highest-
scoring V and J alignments were used as the V-J genes of each
consensus read.

7. The nucleotides spanning the CDR3 region of each consensus read
were inferred from the split read alignments (soft and hard clipping
information) using the conserved 5’-cysteine and 3’-phenylalanine as
the boundary positions. This regionwas translated to the CDR3 amino
acid sequence of the TCR. TCRs with an in-frame CDR3 (no frame
shifts between the 5’-C and 3’-F) andwithout stop codons in theCDR3
were used as productive TCRs in the cancer prediction analyses.

8. Each unique V gene, J gene, and CDR3 nucleotide sequence combi-
nation was considered a distinct TCR clonotype. The number of UMI-
collapsed consensus reads of each TCR clonotype was recorded as its
“UMI count”.

Single-cell TCR sequencing analysis
Subjects for the TIL studies were prospectively consented lung cancer
patients undergoing clinically indicated resection of their cancers at Brig-
ham andWomen’s Hospital, without history of neoadjuvant treatment for
lung cancer or history of other cancers. Patients with Stage I, II, and
resectable stage III NSCLC were included, taking consecutively consented
cases of all types to reflect population prevalence, with consideration given
to the appropriateness of available tissue for the planned single-cell analyses.
After allocating portions of the resected specimen to clinical needs, excess
fresh remaining tissue was provided for research in tubes containing
DMEM over ice.

Fresh tumor specimens were minced in a 10 cm plate with media
(DMEM+ 10%FBS), penicillin-streptomycin (Fisher Scientific), 100 U/mL
collagenase type IV (Life Technologies), and 2.5mg/mL DNAse I (Sigma
Aldrich), then incubated for 45min at 37 C. Single-cell suspensions were
isolated by straining through a 40 µm filter. Red blood cells were lysed using
RBC Lysis Buffer (BioLegend). Cells were incubated with Zombie Green
Fixable Viability Kit (BioLegend), blocked with Human TruStain FcX
(BioLegend), and stained with human anti-CD3-PECy7 (clone UCHT1,
BioLegend), anti-CD8-PerCPCy5.5 (clone RPA-T8, Fisher), and patient
HLA-specific PE-conjugated dextramers (Immudex, Supplementary Data

8). Viable T cells were isolated via the FACS Melody instrument (BD
Biosciences) according to the gating schema (Supplementary Fig. 12).

Once isolated, the target cell population was input to a ChromiumX
via manufacturer’s protocol described in Chromium Next GEM Single
Cell 5’Reagent Kits v2 (Dual Index) with Feature Barcode technology for
Cell Surface Protein & Immune Receptor Mapping with Feature Bar-
coding technology for Cell Surface Protein (CG000330 Rev G). Briefly,
Gel Bead-in-Emulsion reverse transcription (GEM-RT) reaction, clean-
up, and PCR amplification steps were performed to generate sequencing
libraries. A portion of the cleaned cDNA was used to construct cell
surface protein libraries (Chromium 5’ Feature Barcode Kit). TCRV(D)J
targeted enrichment library preparation (Chromium Single Cell V(D)J
Enrichment Kit, Human T cell) was then performed. Libraries were
uniquely indexed for multiplexed sequencing and sequenced on a
NovaSeq 6000 using 150 bp paired-end reads targeting 50 M reads total
(Supplementary Fig. 11).

Cell Ranger v7.1 (https://www.10xgenomics.com/support/software/
cell-ranger/latest) multi was run to generate FASTQ files from gene
expression, VDJ, and feature barcode libraries. Human reference refdata-
gex-GRCh38-2020-A and refdata-cellranger-vdj-GRCh38-alts-ensembl-
7.1.0 were provided as references for alignment. Dextramer feature barcode
sequences were also provided and used as input. Cell Ranger was run as a
single command, providing a configuration file for each of the inputs to the
multi-tool.

CellTypist v1.6.3 (https://github.com/Teichlab/celltypist) was used to
annotate each cell with cell type. The sample_filtered_feature_bc_matrix.h5
output from Cell Ranger was used as the input to CellTypist. Cell type
predictions were generated using the Immune_All_High.pkl model.

Data availability
Source data for the study is either included in the paper supplement or
deposited at https://figshare.com/. This includes TCR sequences for the
N = 1050 subjects in the case/control cohort (https://doi.org/10.25452/
figshare.plus.28063118), Olink® protein measurement results for
N = 235 subjects (https://doi.org/10.25452/figshare.plus.28067195), the
somaticmutation calls forN = 100 subjects (SupplementaryData 6), and the
single cell data for theN = 20TIL cohort. (https://doi.org/10.25452/figshare.
plus.28067336).

Code availability
Datawas analyzed as described in theMethods section using R (v4), Python
(v3.11), and Linux shell-based tools. The end-to-end Snakemake workflow
used to discover cancer-associated RFUs and generate machine learning
features for train and test data is available at https://github.com/
serumdetect/cdp-analysis-public. The workflow depends on our package
for clustering TCRs using an approximate nearest neighbor TCR index,
which is available at https://github.com/serumdetect/tcrnn-public. The
package depends on a custom branch of PyNNDescent where an overflow
bug was fixed (https://github.com/serumdetect/pynndescent/tree/
768d050fa54eb66311bafacf02071faf84a53d74). Machine learning model
training and testing were performed on themachine learning features using
the Python package scikit-learn v1.6.1.
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