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Pathological complete response (pCR) can guide surgical strategy and postoperative treatments in
triple-negative breast cancer (TNBC). In this study, we developed a Breast Cancer Response
Prediction (BCRP) model to predict the pCR in patients with TNBC. The BCRP model integrated multi-
dimensional longitudinal quantitative imaging features, clinical factors and features from the Breast
Imaging Data and Reporting System (BI-RADS). Multi-dimensional longitudinal quantitative imaging
features, including deep learning features and radiomics features, were extracted from multiview
B-mode and colour Doppler ultrasound images before and after treatment. The BCRP model achieved
the areas under the receiver operating curves (AUCs) of 0.94 [95% confidence interval (Cl), 0.91-0.98]
and 0.84 [95%Cl, 0.75-0.92] in the training and external test cohorts, respectively. Additionally, the low
BCRP score was an independent risk factor for event-free survival (P < 0.05). The BCRP model
showed a promising ability in predicting response to neoadjuvant chemotherapy in TNBC, and could

provide valuable information for survival.

Breast cancer is the malignancy with the highest incidence of morbidity and
mortality in women worldwide'. Triple-negative breast cancer (TNBC)
subtype represents 15% of all breast cancer, and has the worst prognosis due
to a lack of targeted therapies™’. Neoadjuvant chemotherapy (NACT) is a
frequently utilized treatment modality for non-metastatic TNBC. Unfor-
tunately, the responses to NACT vary considerably among patients, with
some exhibiting positive outcomes while others show poor responses®.
Pathologic complete response (pCR) is commonly utilized as a metric
for assessing the effectiveness of NACT and has been confirmed as a sur-
rogate endpoint for long-term prognosis in breast cancer’. In comparison to
the other subtypes, the pCR of TNBC exhibited the most robust correlation

with prognosis’. Patients diagnosed with TNBC who achieve pCR may
benefit from reduced requirements for extensive breast surgery and
decreased reliance on intensive postoperative adjuvant therapies’*. Never-
theless, the confirmation of pCR requires surgical pathology evaluation,
leading to a delay. Unfortunately, currently, few established biomarkers are
available for predicting pCR preoperatively’. Hence, there is an urgent
demand in clinical practice for preoperative methods to assess pCR, which
can assist in clinical management and decision-making.

Ultrasound (US) imaging serves as the most commonly used imaging
tool for monitoring the efficacy of NACT in clinical practice. Compared
with X-ray and MRI, US imaging has advantages in monitoring treatment
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response due to its radiation-free, rapid, and reproducible nature. US images
can capture data pertinent to treatment response; yet, the visual information
they provide is limited'"’, and the interpretation of these images by humans is
inherently subjective. To address these challenges, high-throughput infor-
mation extracted from US images through machine learning techniques,
including radiomics and deep learning, has demonstrated significant pro-
mise in predicting the effectiveness of NACT in breast cancer'' ™. Never-
theless, previous studies have been constrained by certain limitations. First,
previous studies have not fully utilized US image information. They fre-
quently rely on a single B-mode US image, not considering multiview or
multimodal US images in consideration'' ™. Second, previous research does
not consider Breast Imaging Data and Reporting System (BI-RADS)
features''™". Finally, previous researches lack prediction models of the
treatment response specifically for TNBC subtype''™", and limited data
from a single center impedes the research on TNBC'“'"". The aforemen-
tioned challenges emphasize the need for additional research.

In this study, we aimed to integrate multimodal US-based information
to enhance the performance of the predictive model. We employed machine
learning techniques to thoroughly analyze longitudinal US information
using multiview B-mode and color Doppler images. Subsequently, we
integrated the image data with clinical factors and BI-RADS features to
develop and validate a Breast Cancer Response Prediction (BCRP) model.

Results
Patient characteristics and BI-RADS information
A total of 283 female patients provided a total of 1698 B-mode and color
Doppler images for inclusion in the study (Supplementary Fig. 1). In the
training cohort (TC), there were 173 patients; 91 patients (52.6%) achieved
PCR. The external testing cohort (ETC) comprised 110 patients; 35 patients
(31.8%) achieved pCR. The mean age of the TC was 49.0 (standard devia-
tion: 10.4; range: 23.0 to 79.0) years, while the ETC was 46.7 (standard
deviation: 8.6; range: 27.0-69.0) years. The majority of lesions exhibited
characteristics consistent with T2 invasive ductal carcinoma, accompanied
by lymph node metastasis and high Ki67 expression (>30%)'°. The primary
treatment involved Anthracycline and Taxane drugs for at least six cycles.
It is worth noting that the ETC comprised a greater percentage of
young premenopausal women with elevated T and N stages, and the
masses in TC were more likely to exhibit calcification and posterior
echo enhancement. The detailed clinical baseline characteristics of the
patients and the BI-RADS characteristics of the lesions were outlined in
Tables 1 and 2, respectively.

Performance of models based on longitudinal US images

A total of 24 delta deep learning features were incorporated into the con-
struction of deep learning (DL) model, achieving the area under the receiver
operating curve (AUC) values of 0.88 [95% confidence interval (CI),
0.83-0.93] and 0.77 [95%CI, 0.66-0.87] in the TC and ETC, respectively.

The radiomics (Rad) model was developed utilizing radiomics features,
achieved AUC values of 0.84 [95%CI, 0.78-0.90] and 0.72 [95%CI,
0.62-0.83] in the TC and ETC, respectively. Additional details can be found
in Supplementary Table 1.

The Image model was developed through the integration of the Rad
scores and DL scores, leading to improved performance as evidenced by
AUCG: of 0.90 [95%ClI, 0.85-0.95] for TC and 0.80 [95%CI, 0.71-0.90] for
ETC. Generally, the Image model showed better predictive ability than
either DL or Rad models in both cohorts (Supplementary Table 2). The
performance of each model was detailed in Table 3. Furthermore, the
selected deep learning features had weak correlation with the radiomics
features, indicating they were not redundant but complementary (Supple-
mentary Fig. 2).

Performance of the clinic and BR models

The Clinic model finally incorporated two clinical factors, N stage and
Ki67, achieving AUCs of 0.66 [95%ClI, 0.58-0.74] and 0.55 [95%ClI,
0.43-0.66] in the TC and ETC, respectively. The incorporation of the

Table 1 | Baseline patient clinical characteristics

Clinical TC (n=173) ETC (n=110) P value
characteristics n (%) n (%)
Age (years) 0.046*
Mean + SD 49.0+10.4 46.7 + 8.6
Range (23.0-79.0) (27.0-69.0)
Menopause 0.049*
Premenopausal 96 (55.5) 74 (67.3)
Postmenopausal 77 (44.5) 36 (32.7)
T stage 0.002*
T 16 (9.2) 7 (6.4)
T2 130 (75.1) 68 (62.4)
T3 15(8.7) 17 (15.6)
T4 12 (6.9) 17 (15.6)
NA 0(0.0) 1(0.9)
N stage <0.001*
NO 71 (41.0) 16 (14.7)
N1 70 (40.5) 49 (45.0)
N2 26 (15.0) 25 (22.9)
N3 6(3.5) 29 (17.4)
NA 0(0.0) 1(0.9)
Histologic type 0.500
IDC 160 (92.5) 104 (94.5)
Others 13(7.5) 6 (5.5)
Ki67 0.109
<30% 21 (12.1) 19 (18.1)
>30% 152 (87.9) 86 (81.9)
NA 0(0.0) 5(4.5)
NACT regimen <0.001*
Anthracycline-based 4(2.3) 11 (10.1)
Taxane-based 74 (42.8) 7 (6.4)
Anthracycline and 95 (54.9) 91 (83.5)
Taxane-based
NA 0(0.0) 1(0.9)
Platinum 0.296
No 141 (81.5) 84 (76.4)
Yes 32 (18.5) 26 (23.6)
NACT cycle 0.437
<6 24 (13.9) 19 (17.3)
>6 149 (86.1) 91 (82.7)

P values were calculated using the chi-square test, Fisher’s exact test, or Mann-Whitney U test. An
asterisk indicates a significant P value. IDC invasive ductal carcinoma, NACT neoadjuvant
chemotherapy.

two factors of posterior feature and calcification into the BI-RADS
model (BR) had AUCs of 0.63 [95%CI, 0.54-0.71] and 0.58 [95%CI,
0.46-0.69] in the TC and ETC, respectively. The evaluation of inter-
observer agreement revealed a substantial level of agreement for edema
(kappa = 0.70) and shape (kappa = 0.75), while for the remaining BI-
RADS features, the agreement was observed to be almost perfect
(kappa > 0.80).

Performance of the BCRP model

The BCRP model, which incorporated the predictions of DL, Rad, Clinic,
and BR models, demonstrated an AUC of 0.94 [95%CI, 0.91-0.98] and 0.84
[95%ClI, 0.75-0.92] in the TC and ETC, respectively. As shown in Fig. 1a, b,
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Table 2 | Baseline patient BI-RADS characteristics

BI-RADS TC (n=173) ETC (n=110) P value

characteristics n (%) n (%)

Shape 0.004*
Oval or round 71 (41.0) 27 (24.5)
Irregular 102 (59.0) 83 (75.5)

Orientation 0.081
Parallel 127 (73.4) 70 (63.6)
Not parallel 46 (26.6) 40 (36.4)

Margin <0.001*
Circumsctribed 90 (52.0) 28 (25.5)
Not circumscribed 83 (48.0) 82 (74.5)

Echo pattern 0.012*
Complex cystic-solid 6 (3.5) 14 (12.7)
Hypoechoic 120 (69.4) 71 (64.5)
Heterogeneous 47 (27.2) 25 (22.7)

Posterior feature 0.002*
No posterior feature 28(16.2) 31(28.2)
Enhancement 99 (57.2) 56 (50.9)
Shadowing 28(16.2) 22 (20.0)
Combined pattern 18 (10.4) 1(0.9)

Calcification 0.001*
No 71 (41.0) 68 (61.8)
Yes 102 (59.0) 42 (38.2)

Vascularity 0.188
Absent 16 (9.2) 5(4.5)
Internal vascularity 44 (25.4) 36 (32.7)
Vessels in rim 113 (65.3) 69 (62.7)

Architectural distortion 0.146
No 13 (7.5) 14(12.7)
Yes 160 (92.5) 96 (87.3)

Duct change 0.715
No 169 (97.7) 106 (96.4)
Yes 4(2.3) 4 (3.6)

Skin change 0.560
No 162 (93.6) 101 (91.8)
Yes 11 (6.4) 9(8.2)

Edema 0.771
No 165 (95.4) 106 (96.4)
Yes 8(4.6) 4 (3.6)

P values were calculated using the chi-square test or Fisher’s exact test. An asterisk indicates a
significant P value. BI-RADS breast imaging data and reporting system.

these values exhibited a statistically significant increase compared to any
individual model within both TC and ETC (P < 0.05). Figure 1c illustrated a
significant agreement between the predicted pCR as determined by the
BCRP model and the observed outcomes in both TCand ETC (P > 0.05), the
Brier scores were 0.13 and 0.19. Figure 1d demonstrated that BCRP pro-
duces greater net gains compared to other models over the relevant
threshold range among the entire cohort.

In the TC, the optimal threshold of BCRP scores was determined to be
0.55 based on the maximum Youden index. DL scores played a pivotal role
in BCRP’s decision-making process, with Rad scores being of secondary
importance, followed by BR and Clinic scores (Fig. 2a, b). Local inter-
pretation examined the mechanisms by which the BCRP model generated

predictions for individual cases. Figure 2c, d illustrated the BCRP decisions
for a patient achieving pCR and non-pCR, respectively, both of which were
accurately predicted. As illustrated in Fig. 2c, the values of the four scores
pushed decision towards pCR. Conversely, as depicted in Fig. 2d, the overall
values pushed decision towards non-pCR. In addition, we defined a high
sensitivity threshold of 0.33. In the TC and ETC, this threshold achieved
sensitivities of 98.9 and 97.1%, respectively. The model’s performance under
the high sensitivity threshold is listed in Supplementary Table 3. The con-
fusion matrices under different thresholds can be seen in Supplementary
Fig. 3.

Upon employing heatmaps to visualize the decision-making process of
the DL model, it was observed that the US image data within the lesion
significantly contributed to the prediction of pCR (Fig. 3a, c). Conversely, for
non-pCR patients, the model was unable to extract effective predictive
information from within the tumor (Fig. 3b, d).

Preoperative predictors of survival

The follow-up of patients was finished at 22 June 2024, and the median
follow-up time was 51 (interquartile range: 34-68) months. Maximally
selected log-rank statistics were employed to ascertain the optimal cutoff
value of 0.59, and all patients were categorized into low and high score
groups. Compared with low-score patients, the high-score groups had a
better EFS (P < 0.05), as shown in Fig. 4. The BCRP scores were found to be
an independent risk factor for event-free survival (EFS) in both univariate
and multivariate Cox regression analyses (Supplementary Table 4). Using
independent risk factors, the final Cox regression model demonstrated a C
index of 0.75 [95%ClI, 0.68-0.81].

Discussion

In this study, we collected TNBC cases from multiple medical centers.
Each patient underwent examination using multiview B-mode and
color Doppler US imaging, both pre- and post-NACT. We developed
and validated a predictive model (BCRP), which combined quantita-
tive US imaging features based on imaging, radiologist’ assessment of
image features, and baseline clinical parameters. The BCRP con-
sistently outperformed the DL, Rad, Clinic, and BR models, both in TC
and ETC. This highlighted the superiority of integrating multimodal
information over depending on unimodality for evaluating the
response to NACT, which is in line with previous studies''*. It is
noteworthy that BCRP scores exhibited a significant correlation with
EFS and facilitated the stratification of patient prognosis.

Of the 126 patients with pCR, BCRP successfully identified 99
(78.6%) who might benefit from relieving surgery and postoperative
treatment. However, 27/126 (21.4%) patients were incorrectly predicted
asnon-pCR, and 22/157 (14.0%) patients were incorrectly predicted to be
pCR. Previous studies have shown that vacuum-assisted core biopsy
(VACB) demonstrated a sensitivity of 90% and specificity of 100% in
detecting residual disease in the breast'’, and patients achieving a pCR in
the breast exhibited a very low risk (4.1%) of axillary metastasis”. For
patients predicted to be non-pCR, the use of VACB might be avoided due
to its invasive nature, as 83.3% of these patients did not require VACB.
Even though this approach would result in 21.4% of pCR patients being
incorrectly predicted as non-pCR, overtreatment could not be avoided.
14.0% patients were wrongly predicted to be pCR. If the treatment of
these patients is reduced, it may result in a poor prognosis, which is
unacceptable. Therefore, for patients predicted to be pCR, VACB might
be used as a supplementary examination to accurately identify non-pCR
patients and prevent undertreatment. In order to enhance the clinical
utility, we defined a high sensitivity threshold for the BCRP model.
Patients with BCRP scores below the threshold, 73/75 (97.3%), could
potentially benefit from more stringent surgical procedures and
enhanced follow-up to prevent undertreatment. In comparison, VACB
accurately identified 19/21 (90.5%) patients with residual breast lesion"’,
showing inferior performance compared to the BCRP model. On the
other hand, for patients with BCRP scores exceeding the threshold,
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Table 3 | Performance of models in predicting pathological complete response

DL model Rad model Clinic model BR model Image model BCRP model

TC

AUC 0.88(0.83, 0.93) 0.84 (0.78, 0.90) 0.66 (0.58, 0.74) 0.63 (0.54, 0.71) 0.90 (0.86, 0.95) 0.94 (0.91, 0.98)
Accuracy 0.83(0.77, 0.89) 0.78 (0.71, 0.85) 0.64 (0.56, 0.72) 0.61(0.52, 0.69) 0.83(0.77, 0.89) 0.86 (0.81, 0.92)
Sensitivity 0.81(0.75, 0.88) 0.76 (0.69, 0.83) 0.82 (0.76, 0.89) 0.69 (0.61, 0.77) 0.76 (0.69, 0.83) 0.80 (0.74, 0.87)
Specificity 0.84 (0.78, 0.90) 0.80 (0.74, 0.87) 0.44 (0.35, 0.52) 0.51(0.42, 0.60) 0.90 (0.86, 0.95) 0.93 (0.89, 0.97)
PPV 0.85(0.79, 0.91) 0.81(0.75, 0.88) 0.62 (0.54, 0.70) 0.61(0.52, 0.70) 0.90 (0.85, 0.94) 0.92 (0.88, 0.97)
NPV 0.80(0.74, 0.87) 0.75 (0.68, 0.82) 0.69 (0.61, 0.77) 0.60 (0.52, 0.68) 0.77 (0.70, 0.84) 0.81(0.74, 0.88)
ETC

AUC 0.77 (0.66, 0.87) 0.72 (0.62, 0.83) 0.55 (0.43, 0.66) 0.58 (0.46, 0.69) 0.80(0.71, 0.90) 0.84 (0.75, 0.92)
Accuracy 0.71 (0.60, 0.82) 0.73 (0.62, 0.83) 0.51(0.39, 0.63) 0.55 (0.43, 0.66) 0.75 (0.64, 0.85) 0.77 (0.67, 0.87)
Sensitivity 0.71(0.61, 0.82) 0.74 (0.64, 0.85) 0.49 (0.37, 0.60) 0.60 (0.49, 0.72) 0.63 (0.51, 0.74) 0.74 (0.64, 0.85)
Specificity 0.71 (0.60, 0.82) 0.72 (0.61, 0.83) 0.52 (0.40, 0.64) 0.52 (0.40, 0.64) 0.80 (0.70, 0.90) 0.79 (0.69, 0.89)
PPV 0.53 (0.42, 0.65) 0.55 (0.44, 0.67) 0.32 (0.22, 0.42) 0.37 (0.26, 0.48) 0.59 (0.48, 0.71) 0.62 (0.50, 0.73)
NPV 0.84 (0.75, 0.93) 0.86 (0.77, 0.94) 0.68 (0.57, 0.80) 0.74 (0.63, 0.84) 0.82 (0.73, 0.91) 0.87 (0.79, 0.95)

Data are presented as mean with 95% confidence interval. AUC area under the receiver operating characteristic curve, PPV positive predictive value, NPV negative predictive value.

further VACB evaluation could be a valuable tool to precisely ascertain
the response to NACT, despite the invasiveness of VACB.

After an extensive screening of numerous features, we determined that
the post-treatment and delta features within the radiomics domain, as well
as the delta features within the deep learning domain, were most efficacious
in predicting response to treatment. This indicated that post-treatment and
delta features may offer more valuable insights into treatment effectiveness
compared to pre-treatment features, which is consistent with previous
studies”’. Furthermore, the features derived from a combination of multi-
view B-mode and color Doppler images offer valuable insights for predicting
PCR in BCRP model. This finding underscored the notion that multimodal
multiview US images yield more significant information about lesions than
a single B-mode US image™”.

In our study, the DL predictions were the most important factor
of BCRP model. The pre-training process compels model to acquire a
robust representation of image features®™. Previous research pre-
dominantly utilized natural images from the ImageNet dataset for pre-
training purposes””. In contrast, the self-pretraining approach
demonstrates notable advantages, particularly in situations where
acquiring pre-training data is challenging”’. Based on the Masked
Autoencoders (MAE) framework, which incorporates an efficient
global self-attention mechanism®, our DL model was pre-trained
utilizing US imaging data. Unlike conventional radiomics approaches,
which focus exclusively on the subtle features within the tumor, deep
learning models have the capability to incorporate peritumoral tis-
sues. Our study illustrated that deep learning and radiomics features
could synergistically enhance each other in terms of informational
content.

After NACT, the residual lesions shown on imaging may contain
tumor parenchymal cells and fibrous stroma retained in various forms™.
Radiologists cannot accurately determine pCR status based on US
images™. The excellent performance of the BCRP model mainly benefits
from the DL features; however, the DL features are inherently poorly
interpretable, and these gradient weighted class activation mapping
(Grad-CAM) cannot be easily deciphered by humans'. We try to
visualize the DL features from the perspective of individual cases. It is
known that the features included in the DL model are post-NACT fea-
tures and delta features. We believe that the information used by the DL
model to predict pCR comes from within the tumor and is closely related
to the changes in intratumoral echoes. The information that the model
predicts as pCR (Fig.3a, ¢) mainly comes from the lower echo area inside
the tumor. The existence of lower echo area after treatment and the

resulting grayscale and texture changes before and after treatment may
be the reasons why the model predicts pCR. In contrast, the model
predicted non-pCR (Fig.3b, d) because the overall echogenicity of the
tumor after treatment was high and the echo components were mixed.
The model did not capture these parts of the tumor images as infor-
mation about whether the patient had achieved pCR. In addition, we
found that the tumor shape of patients who achieved pCR (Fig.3a, d)
changed significantly after treatment and was more irregular than that of
non-pCR patients (Fig.3b, ¢). Interestingly, previous studies have shown
that increased internal echogenicity of the tumor after NACT" and
regularized morphology™ can be used as indicators of good NACT
efficacy. This may be because other studies did not analyze TNBC but all
subtypes of breast cancer. The biological significance behind these
findings deserves further exploration.

In addition, clinical and BI-RADS features further improved the
effectiveness of the BCRP model. The features of BI-RADS, which are
acknowledged and standardized terminologies, are employed by radi-
ologists for the evaluation of breast lesion characteristics, yet their assess-
ment is inherently subjective. Our research demonstrated that the inter-
reader agreement for the assessment of BI-RADS features was satisfactory,
following pre-assessment communication.

Ogier du Terrail J et al”. included 656 TNBC patients, the largest
sample size to date, and built a multimodal federated learning model
based on whole-slide imaging slices, with AUCs of less than 0.8 for
predicting pCR. Y. Zhang et al**. included 112 TNBC patients based on
longitudinal MRI images (pre-NACT and after two cycles), as well as
genetic information, their model achieved an AUC of 0.87 in the
absence of external test datasets. Outperforming these models, the
BCRP achieved the best results of 0.94 and 0.84 in the TC and ETC.
Longitudinal US images have the capability to capture the dynamic
characteristics of the entire tumor region, showcasing its evolving
features throughout the treatment process”’”; therefore, it is speculated
that longitudinal multimodal US images may provide more compre-
hensive information compared to whole-slide imaging obtained
through puncture for the purpose of predicting treatment response. In
addition, the advantage of our model is that the input is US images,
which are non-invasive, cheap and easy to obtain, so our model has
higher clinical practicality. It is worth noting that Yu Liu and
colleagues'” used deep learning features from longitudinal US images to
predict pCR in HER2-positive breast cancer, achieving AUCs over 0.90.
This disparity in performance might indicate distinctive unique chal-
lenges in TNBC.
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There are also several limitations to the present study. First, retro-
spective designs are prone to selection bias. However, conducting a ran-
domized, controlled trial with TNBC patients who received NACT was
extremely difficult, given the limited patients of this tumor subtype.
Second, it should be noted that the sample size of this study, while it may
meet the minimum requirement for sample size assessment, is relatively
small. The small sample size will undoubtedly lead to a lack of case
diversity, and therefore, the model may fail to capture deeper image
information to obtain better predictive performance. The results need
to be confirmed by expanding the sample size, even if our model
achieved excellent performance in the TC and ETC. Third, magnetic
resonance imaging and genetic data have shown considerable potential
in forecasting treatment outcomes™**"*’. Nonetheless, these modalities
were not incorporated in our research due to constraints in available

data. The possibility of integrating such information warrants further
exploration in future studies.

In conclusion, BCRP model incorporated data from US images,
clinical factors, and BI-RADS features, leading to superior performance
in both TC and ETC. Our research underscores the imperative of
incorporating multimodal US-based data to enhance the precision of
predicting responses to NACT, particularly for TNBC subtype, where
prediction poses greater challenges. Further research, refinement, and
validation of the BCRP model is necessary to enhance its utility in clinical
decision-making.

Methods

This multicenter study was conducted in accordance with the Declaration of
Helsinki and approved by the institutional review boards of Guangdong
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Provincial People’s Hospital (GPPH), Sun Yat-sen University Cancer
Center (SYSUCC) and Yunnan Cancer Hospital (YNCH). Informed con-
sent was waived due to the retrospective and non-invasive nature of the
study. The report was prepared in accordance with the TRIPOD + Al
statement'.

Study design and participants

This study consecutively enrolled 283 TNBC patients without distant
metastasis from three hospitals. The TC consisting of 1038 images from
173 patients recruited from GPPH. The ETC comprising 660 images
from 110 patients treated at SYSUCC and YNCH, considering sample
size requirement. Following Anthracycline and Taxane-based NACT
treatment, all patients underwent breast and axillary surgery. Baseline
clinical data were retrieved from the patients’ medical records. The
study design followed Fig. 5.

Image collection and BI-RADS assessment

All patients underwent a systematic US examination at two time points: one
week before NACT initiation and two weeks preoperative following com-
pletion of NACT. Examinations were mainly performed using General
Electric (LOGIQ E9), Hitachi (Ascendus), Toshiba (Aplio 500) or Mindray
(DC-80) with a 4-15 MHz linear transducer. The collected US images were
converted into JPEG format in GPPH and SYSUCC, while those were
converted into DICOM format in YNCH. All US scans were obtained from
the breast imaging database.

For each patient, a total of six images were chosen, including two
B-mode US images and one color Doppler image, both pre- and post-
treatment. Delineations of the region of interest (ROI) were performed
using ITK-SNAP 4.0 after converting all images to NIFTT format. Specifi-
cally, if conventional tumor lesions were not observed following NACT, the
ROI was defined using the fibrotic tissue in the area where the tumor had
previously been located"".

According to BI-RADS features published by the American
College of Radiology®, breast lesion characteristics observed in US

images are categorized into 11 distinct groups. The BI-RADS assess-
ment relies solely on the US images and corresponding report findings,
while other information was blind. The US images were screened,
delineated, and evaluated using the BI-RADS feature by radiologist 1
with 6 years of experience in breast US examination. After three
months, a random sample of 60 patients was selected from TC to
perform a re-delineation of ROIs. This process was conducted by
radiologist 1 and radiologist 2 (with 6 years of experience). Before
conducting the BI-RADS evaluation, radiologist 1 accrued substantial
experience through the evaluation of an additional 800 breast cancer
patients, independent of this study. Radiologist 2 conducted BI-RADS
evaluations on a sample of 60 patients selected at random. Prior to this
evaluation, the two radiologists discussed and evaluated the US images
of another ten typical lesion based on the BI-RADS criteria and
reached a consensus.

Definition of TNBC and outcomes

TNBC is defined by the absence of expression of estrogen receptor (ER),
progesterone receptor (PR), and human epidermal growth factor receptor 2
(HER?2), where we defined absence of ER/PR expression as less than 10%
expression’*"!, HER2-negative was characterized by immunohistochem-
istry (IHC) 0 or IHC 1 + , or IHC 2+ with negative results in fluorescence in
situ hybridization. The status of pCR was operationally defined as the lack of
invasive residual tumor cells in both breast and axillary lymph nodes’. EFS
was determined as the duration from the initiation of NACT to the
occurrence of the first event, which encompassed invasive local, regional,
and distant recurrences; contralateral breast cancer; second non-breast
primary cancer; and all-cause mortality, with the exception of carcinoma
in situ of the breast™.

Image preprocessing

Initially, the raw images were cropped to remove surrounding black borders,
icons and textual information. Subsequently, the OpenCV toolkit was uti-
lized to resize the images uniformly to 224 x 224 pixels via bilinear
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interpolation. For the ground truth annotations, a nearest neighbor method
was employed for size scaling. All longitudinal US images were resampled to
a uniform spatial resolution and subsequently subjected to z-score nor-
malization. During the pre-training process, all images were augmented to
expand the dataset and help alleviate the overfitting. The employed aug-
mentation techniques encompassed random horizontal and vertical flips,
random cropping (with the cropped area varying between 20 and 100% of
the original image size), and subsequent resizing using bicubic interpolation.

Construction of DL, Rad, clinic, BR, and BCRP models

A pre-training approach based on the MAE architecture was adopted™.
During the pre-training process, the MAE randomly occluded 75%
of the image pixels, compelling the network to learn high-level
semantic features from the remaining visible pixels to reconstruct the
full images. This approach can proficiently capture and comprehend
the global characteristics inherent in the images. The MAE was pre-
trained using US images without annotations to ensure that the
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model captures rich visual information. The AdamW optimizer was
employed for the pre-training phase of the DL model. After pre-
training, the encoder part of the MAE was used as a feature extractor to
extract deep learning features from the bounding box regions of the
images.

Radiomics features were extracted from tumor regions using the
PyRadiomics package (version 3.0.1). The features included two major
categories: Original, which encompassed features from the original image,
and Wavelet, which involved features derived from wavelet transforms.
These features covered histogram-based intensity, shape, and various gray-
level matrices.

Following the above steps, the relative change values of deep
learning and radiomics features before and after treatment were
computed and designated as delta features. A total of 6912 deep
learning features and 2637 radiomics features were obtained. To
guarantee the robustness of the radiomics features, we retained features
with intra- and inter-class correlation coefficients greater than 0.75.
The Pearson correlation coefficient, analysis of variance, and the
Mann-Whitney U-test were utilized to determine the most repre-
sentative features through a systematic screening process. Finally, 24
deep learning and 14 radiomics features were selected. And then, we
employed the XGBoost algorithm to construct the DL model and the
Rad model independently. Furthermore, utilizing the DL scores and
Rad scores, the Image model was also developed using the XGBoost
algorithm.

In the TC, univariate logistic regression was utilized to evaluate the
association of clinical and BI-RADS parameters with pCR. Multivariate
logistic regression was adopted to develop Clinic and BR models based on
factors that demonstrated statistical significance in univariate analysis
(P <0.1). The prediction scores of Rad, DL, Clinic, and BR were utilized as
variables in the development of BCRP model using the XGBoost algorithm.
The optimal hyperparameters were determined through grid search during
the model development process.

Model evaluation

Multiple statistics were employed to measure model performance, including
AUG, accuracy, sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV). To evaluate the calibration performance
and clinical utility, a calibration curve and a decision curve were generated.
Model calibration was measured using the Brier score. The DeLong test,
integrated discrimination improvement (IDI), and net reclassification
improvement (NRI) were employed to assess the efficacy of various models
in identifying pCR.

To improve the transparency of BCRP model decisions, Shapley
values were employed to quantify the individual contributions of the
factors incorporated into the model. Grad-CAM was employed to
identify attentional regions in order to improve the interpretability of
the DL model. Furthermore, the relationship between BCRP scores and
EFS was evaluated through the utilization of Kaplan-Meier curves and
the log-rank test.

Statistical analysis

The Mann-Whitney U test was employed for continuous and ordered
categorical variables, while the chi-square test or Fisher’s exact test was
utilized for unordered categorical variables to assess group comparisons.
Kappa statistics were employed to evaluate interobserver agreement of BI-
RADS characteristics, with 0.6-0.8 indicating substantial agreement and
>0.8 representing almost perfect agreement . Kaplan-Meier survival curves
and the log-rank test were employed to analyze and compare the EFS. With
multiple imputations, the missing values of clinical baseline parameters
were imputed*”*". To achieve a statistical power of 90%, a minimum sample
size of 64 patients is needed for the external test set, based on an AUC 0f0.50
for the null hypothesis and 0.75 for the alternative hypothesis, with a 30%
proportion of pCR to non-pCR patients”. The statistical analysis was
conducted using Python (version 3.10.13), SPSS (version 26.0), R (version
4.4.0), and MedCalc (version 20.027) software. Statistical significance was
determined by two-sided P < 0.05, unless otherwise indicated.
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