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Integrative bioinformatics analysis and
experimental validation identify CHEK1 as
an unfavorable prognostic biomarker
related to immunosuppressive
phenotypes in soft tissue sarcomas

Check for updates

Chao Rong1,10 , Yun Liu2,3,10, Fang Xiang4,10, Xin Zhao1, Jinjin Zhang1, Zuorun Xiao1, Jinsha Wang1,
Lin Chen1, Zhiqi Guo1, Ziyu Zhang1, Jingnan An5, Jing Shen6, Jochen Hess7, Xiaodong Yuan8,
Qiong Zhang4 & Shouli Wang1,9

Soft tissue sarcomas (STS), including rhabdomyosarcoma (RMS), exhibit significant heterogeneity and
limited responsiveness to immune checkpoint blockade (ICB). Unsupervised tumor immune phenotype
based on multi-omics expression profiling of STS has been less studied. To reveal the tumor immune
phenotype of STS and identify promising therapeutic targets, multi-omics expression profiling across
various subtypes of STS was investigated. Here, we established a novel molecular classifier based on
immunecell subsets related toTGFβ1and IFNγ to identifydistinct immunephenotypeswithhigheror lower
cytotoxic contents. Immune-high clusters demonstrated enriched immune cell infiltration, elevated IFNγ-
related signatures, and favorable clinical outcomes. In contrast, immune-low clusters were enriched for
immunosuppressive cell types and exhibited poor survival. CHEK1 emerged as a key node associated
with immunosuppressive phenotypes andwas significantly overexpressed in immune-low tumors. In situ
analysisof independent validationcohorts revealed thesignificantcorrelationbetweenCHEK1and tumor-
infiltrating immune cells. Collectively, our findings establish a novel risk assessment strategy for RMS and
STS patients, and highlight the potential of CHEK1 as a promising therapeutic target in combination with
immune checkpoint inhibitor therapy.

Soft tissue sarcoma (STS) is a heterogeneous group of mesenchymal tumors
encompassing more than 60 histological subtypes. Rhabdomyosarcoma
(RMS) is one of the most common STS in children and adolescents, repre-
senting 5% of all childhood cancers1,2. RMS is differentiated from primitive
mesenchymal stemcells,which cannot fullydifferentiate into skeletalmuscle.

It can occur anywhere in the human body, with the head and neck being the
most commonprimary site3–5. RMS is divided into four subtypes based on its
clinical and pathological characteristics: embryonic rhabdomyosarcoma
(ERMS), alveolar rhabdomyosarcoma (ARMS), pleomorphic rhabdomyo-
sarcoma (PRMS), and sclerosing rhabdomyosarcoma (SSRMS)6–9.
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ERMS and ARMS are two major histological subtypes of RMS. ERMS
occurs more commonly in younger children and has a more favorable
prognosis. Histologically, ERMS showed primitive oval to spindle cells with
minimal cytoplasm, resembling immature skeletal myoblasts. ERMS has a
wide range of genetic alterations, termed PAX-fusion-negative or fusion-
negative RMS7,10,11. ARMS occurs mainly in adolescents with poorer prog-
noses and characteristically exhibits analveolar patternwith cells distributed
around an open central space. The importance of the PAX-FOXO1 fusion
has been highlighted in the ARMS pathomechanism12,13. Despite advances
in multi-disciplinary treatment for RMS and STS, consisting of surgery,
irradiation, chemotherapy, and targeted therapy, the clinical prognosis of
patients has only improved slightly, and promising curative treatment
remains a significant challenge14–16.

Transforming growth factor beta 1 (TGFβ1) is the most potent inhi-
bitor of myogenic differentiation in RMS and is central to immune sup-
pression within the tumor microenvironment4,17–20. Although immune
checkpoint inhibition has demonstrated promise in improving clinical
outcomes for certain cancers, soft tissue sarcomas remain limited in effec-
tiveness in immune checkpoint blockade (ICB) based on current clinical
trials21,22. The current revolution in understanding the molecular landscape
clarifies that STS is ‘non-immunogenic’with a low tumor mutation burden
(TMB) and PD-L1 expression23. Interferonγ (IFNγ) is a cytokine pivotal in
regulatingPD-L1expressionandantitumor immunity24.Owing to the rarity
and heterogeneity of STS, few studies have investigated the tumor micro-
environment (TME) and tumor-infiltrating immune cells (TIIC) in differ-
ent STS histologies, including RMS. A recent study used global gene
expression data to define molecular immune signatures to stratify STS into
distinct immunephenotypes and identifieda subpopulation of patientswith
improved survival and a high response rate to PD1 inhibitor therapy25. In
the interim, immune checkpoint blockade has few therapeutic benefits in
STS patients. Therefore, it is urgent to explore combinations for a more
efficient immunomodulator.

Here, we developed a novel molecular classification of RMS and STS
based on immune cell subsets related to TGFβ1 and IFNγ expression,
revealing distinct immune phenotypes. Moreover, we compared multi-
omics expression profiles across subgroups of RMS and STS to identify
CHEK1 as an unfavorable prognostic biomarker related to immunosup-
pressive phenotypes. Multiple immunohistochemistry (mIHC) staining
assays were applied to assess the correlation between CHEK1 and tumor-
infiltrating immune cells (Fig. 1).

Results
Distinct immune cell types related to TGFβ1 and IFNγ
expression in RMS
We previously identified a role for activated TGFβ signaling in blocking the
differentiation of human rhabdomyosarcoma26–28. The canonical TGFβ/
SMAD signaling exerts significant functions in cancer progression by
remodeling the architecture of the carcinomas and by suppressing anti-
tumor immunity29,30. This study analyzed publicly available RNA sequen-
cing (RNA-seq) data (GSE108022) from primary RMS samples. A total of
133 genes from the GSEAsig database (WP_TGFBETA_SIGNA-
LING_PATHWAY) were collected, and the relative gene expression levels
were presented in RMS subtypes. We identified 90 differentially expressed
genes that were significantly upregulated in RMS as compared with muscle
tissues (Supplementary Fig. 1A). The canonical TGFβ/SMAD signaling
members were highly expressed in RMS regardless of the subtype (Sup-
plementary Fig. 1B). IHC staining of RMS samples revealed that TGF-beta1
was highly expressed in the majority of primary tumors (n = 9/11 ERMS,
n = 7/10 ARMS, and n = 8/9 PRMS) (Supplementary Fig. 1C), which was
consistent with the findings of the previous studies26–28 and confirmed in an
independent fraction of sarcomas within fibrosarcoma, gastrointestinal
stromal tumors, and synovial sarcoma (Supplementary Fig. 1D–F). TGFβ,
as an immunoregulatory master of the tumor microenvironment, has been
less studied in soft tissue sarcomas, including RMS. IFNγ, an important
cytokine, is critical for coordinating the antitumor immune response31.

Activated IFNγ signaling upregulates PD-L1 expression and immune cell
infiltration, which may improve the response to anti-PD-1
immunotherapy32.

Next, we analyzed the correlation between TGFβ1 and IFNγ across 33
tumor types fromTheCancerGenomeAtlas (TCGA) (Pan-cancer cohort)
(Fig. 2A). A statistically significant positive correlation was observed in 24
TCGA cohorts, including TCGA-SARC. Only the TCGA-HNSC cohort
revealed a negative association. Publicly available gene expression data
(GSE108022) from primary RMS samples were analyzed using the
CIBERSORTx deconvolution algorithm to assess the relative immune
fraction scores of distinct immune cell subtypes. Statistically significant
positive or negative associations between TGFβ1 (TGFB1) or IFNγ (IFNG)
transcript levels and individual immune cell scores were assessed by
Spearman correlation analysis. Our results revealed that two immune cell
subtypes (naïve B cells and M1 Macrophages) had a significant positive
correlation with TGFB1, and four immune cell subtypes (activated NK
cells, monocytes, resting mast cells, and eosinophils) were negatively cor-
related with TGFB1. Meanwhile, we found that IFNγ (IFNG) expression
level was positively correlated with three subtypes (naïve B cells, M1
Macrophages, and CD8+ T cells) and negatively correlated with three
immune cell subtypes (monocytes, resting mast cells, and M0 Macro-
phages) (Fig. 2B).

All significantly relevant immune cell subtypes (CD8+T cells, naïve B
cells, M1 & M0 Macrophages, activated NK cells, resting Mast cells,
Monocytes, and Eosinophils) were selected for further analyses. Unsu-
pervised hierarchical cluster analysis of GSE108022 from primary RMS
samples based on the eight selected immune cell subtypes revealed twoRMS
immune clusters, A and B (Fig. 2C). Cases in cluster A were enriched for
CD8+ Tcells, naïveB cells, andM1Macrophages andhadhigher transcript
levels of TGFB1 and IFNG (Fig. 2D, E). Cluster B was divided into four
subclusters (B1, B2, B3, and B4) due to the significant differences in M0
Macrophages and activatedNK cells. To evaluate whether stratification into
molecular immune clusters A and B is also applicable to all sarcomas,
transcriptome datasets of the TCGA-SARC cohort were analyzed using
CIBERSORTx. Unsupervised hierarchical clustering revealed a similar
pattern (Supplementary Fig. 2A). ClusterAwas significantly correlatedwith
higher TGFB1 and IFNG (Supplementary Fig. 2B, C).We compared cluster
A cases with cluster B2 in the RMS cohort or cluster B3 in the TCGA-SARC
cohort. This was particularly common evidence that CD8+ T cells andM1
macrophages were enriched in cluster A from both the RMS and TCGA-
SARCcohorts (Fig. 2F, Supplementary Fig. 2D). The other selected immune
cell subsets revealed more heterogeneous characterizations in the various
subclusters. Interestingly, an inverse finding was observed in activated NK
cells and monocytes among clusters A and B2 or B3, indicating a hetero-
geneous immune niche in the tumor microenvironment of the RMS and
SARC cohorts.

Differences in immune gene signature and survival patterns
related to immune phenotypes
Immune-related gene expression signatures are associatedwith immune cell
infiltration and clinical response to immune checkpoint blockade (ICB)
agents33.Hence,we evaluated the transcript levels of the immunecheckpoint
and IFNγ-related genes in the subclusters of the RMS and TCGA-SARC
cohorts. Cases in cluster A from the RMS and SARC cohorts were enriched
for themajority of the selected immune checkpoint and IFNγ-related genes.
A 25-gene signature (CD274, PDCD1, PDCD1LG2, CTLA4, HAVCR2,
LAG3, IDO1, CXCL10, CXCL9, HLA_DRA, STAT1, IFNG, CD3D, IL2RG,
NKG7, CIITA, HLA_E, CD3E, CXCR6, CCL5, GZMK, TAGAP, CD2,
CXCL13, and GZMB) was shown in the hierarchical clustering heatmap
(Fig. 3A, B). The expression of each selected immune checkpoint gene and
IFNγ immune signature scoreswere comparedbetweenclustersAandB2or
B3 in RMS and SARC cohorts (Fig. 3C, D). In the RMS dataset, the higher
gene expression of CD274, PDCD1, PDCD1LG2, and CTLA4 was observed
in cluster A tumors as compared to cluster B2. Similarly, PDCD1,
PDCD1LG2, CTLA4, HAVCR2, and LAG3 were expressed at high levels in
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cluster A of the SARC cohort as compared to other clusters. Interestingly,
CD274 (which encodes PDL1) was heterogeneously expressed in various
clusters, which was also found in a previous study using another immune
classification tool25. As expected, cluster A tumors have higher IFNγ
immune signature scores in RMS and SARC cohorts. Recently, a “tumor
inflammation signature” (TIS) was reported to predict the clinical benefit of
anti-PD-1 therapy in several clinical trials34,35. TIS scores were also

compared among the subclusters from the RMS and TCGA-SARC cohorts.
A high TIS score was observed in cluster A as compared to B2 or B3 in RMS
and SARC cohorts (Supplementary Fig. 3A, B). In terms of clinical rele-
vance, patients in cluster A with available survival data (TCGA-SARC)
exhibited a favorable overall survival as compared to cluster B3 and B4
(p = 0.048 and p < 0.0001, respectively) (Fig. 3E). In addition, patients in
cluster A had better disease-free survival than patients in cluster B4
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Fig. 1 | Diagram of analytic workflow. Schematic overview of the integrative
analysis pipeline used in this study. Transcriptomic, proteomic, and clinical data
were collected from public databases (GEO and TCGA) and an RMS cohort. Dif-
ferential expression analyses and immune deconvolution (CIBERSORTx) were
performed to estimate tumor-infiltrating immune cell populations. Unsupervised

clustering based on immune cell subsets defined distinct immune phenotypes.
CHEK1was identified as a candidate biomarker associatedwith immunosuppressive
phenotypes and poor prognosis. Validation was conducted via immunohis-
tochemistry (IHC), multiplex immunohistochemistry (mIHC), and survival ana-
lyses in independent cohorts.
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Fig. 2 | Establishment of distinct immune cell types related to TGFβ1 and IFNγ
expression in RMS. A Spearman correlation analysis between TGFβ1 and IFNγ
across 33 TCGA tumour types (Pan-cancer cohort, TCGA-SARC was marked in
red). B Heatmap showed the significantly positive and negative Spearman corre-
lation coefficients between either TGFβ1 (TGFB1) or IFNγ (IFNG) transcript levels
and relative abundance of eight immune cell types assessed by the CIBERSORTx
deconvolution algorithm.CUnsupervised hierarchical cluster analysis revealed two

main RMS immune clusters and five subclusters. D, E Violin plots describe the
transcript levels of TGFB1 and IFNG among the five subclusters. F Relative fraction
scores of the selected eight immune cell types were compared between Cluster A and
B2 in box-whisker plots. In all graphs, box-whisker plots show individual samples,
group median, and min-max values. Two-sided t test (*p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001).
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Fig. 3 | Stratification for distinct molecular immune phenotypes correlated with
immune gene signature and patient survival. Heatmaps show expression of a 25-
gene signature related to immune checkpoints among distinct subclusters from the
RMS cohort (A) and TCGA-SARC (B). C Relative expression scores of selected
immune genes and signatures were compared between cluster A and B2 from the
RMS cohort in box-whisker plots. D Relative expression scores of selected immune

genes and signatures were compared among cluster A, B2, B3, and B4 from the
TCGA-SARC cohort in box-whisker plots. Overall survival (E) and disease-free
survival (F) of cluster A, B2, B3, and B4 from the TCGA-SARC cohort were esti-
mated by Kaplan-Meier plots and two-sided log-rank test. (*p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001).
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(p = 0.032) (Fig. 3F). These data suggested that our newly established stra-
tification for distinct molecular immune phenotypes can predict clinical
outcomes in a STS cohort.

Differences ingeneandproteinexpression related to the immune
phenotype
To unravel relevant genetic alterations, we investigated the fraction of
genome altered (FGA) and tumor mutational count (TMC) using the
cBioportal web tool. The lowest FGAwas found in cluster A as compared to
the other clusters (p = 0.0012, Kruskal-Wallis Test, Supplementary Fig. 3C).
The top 20 genes with the highest mutation frequency and most significant
difference among the four clusters are listed (Supplementary Fig. 3D, F).
Next, we identified 7485 and 5474 differentially expressed genes (DEGs)
among clusters A and B2 or B3 in the TCGA-SARC and RMS cohorts,
respectively. Gene set enrichment analysis (GSEA) was performed to eval-
uate the enrichment of predefinedDEGs between immune subclusters. The
top 10 positively enriched pathways are immune‑related. The up‑enrich-
ment of cytokine/chemokine signaling, antigen presentation, complement,
TLR/NOD pathways points to a heightened inflammatory or immune
surveillance state, consistent with increased immune cell infiltration or
activation (Supplementary Fig. 3E). In addition, 21 differentially expressed
proteins were also screened in the TCPA-SARC database. In total, nine
genes were observed differentially expressed at both the transcript and
protein levels (Fig. 4A). Analysis of protein-protein interaction according to
the STRINGdatabase indicated that theseDEGswere closely related to each
other (Fig. 4B). Significantly higher CHEK1 expression was found in sub-
clusters B2 and B3 than in cluster A. The transcript level of CHEK1 was
significantly elevated in both fusion-negative and fusion-positive RMS
tumors compared to that in normal muscle tissue (Fig. 4C). CHEK1
(Checkpoint kinase 1) is a serine/threonine-specific protein kinase encoded
in humans by the CHEK1 gene. The transcript level of CHEK1 was posi-
tively correlated with the protein levels in the TCGA-SARC cohort (Fig.
4D). Significantly higher CHEK1 transcript and protein expression were
found in clusters B3 and B4 in the TCGA-SARC cohorts, which exhibited
unfavorable overall survival (Fig. 4E, F). To further investigate the clinical
relevance of CHEK1 in sarcoma, patients were divided into CHEK1
expression low and high groups. We performed Kaplan-Meier analysis for
patients’ disease-free survival (PFS) and overall survival (OS). Our results
revealed that high expression of CHEK1 served as an unfavorable prog-
nostic biomarker at both the transcript and protein levels (Fig. 4G–J).

Association between CHEK1 and tumor immune microenviron-
ment in soft tissue sarcomas
Next, we explored the associations between CHEK1 expression levels and
tumor-infiltrating immune cells and immune-related genes in the TCGA-
SARC and RMS cohorts. The Spearman’s ρ (rho) values of 22 immune cells
withCHEK1gene andprotein expressionwere visualized by aheatmap (Fig.
5A, B). For CHEK1 transcript and protein levels, Spearman correlation
analysis revealed nine immune cell subtypes with significant negative
associations (M2macrophages, Monocytes, resting CD4+memory T cells,
naïve B cells, CD8+ T cells, activated NK cells, gamma delta T cells, reg-
ulatory T cells, and M1 Macrophages). Three subtypes (M0 macrophages,
Plasma cells, and activated dendritic cells) were found to have a significant
positive correlationwithCHEK1 transcript level. RegardingCHEK1protein
level, three subtypes (M0 macrophages, Plasma cells, and activated CD4+
memoryT cells)were positively correlated. The transcript andprotein levels
of CHEK1 were also found to have statistically significant negative asso-
ciations with the majority of selected IFNγ-related and expanded immune
gene signatures (Fig. 5C,D).Wedivided thepatients from theTCGA-SARC
and RMS cohorts into low and high groups depending on the CHEK1
transcript orprotein levels. In theRMScohort, significantlyhigher scores for
naïve B cells and follicular T helper cells were detected in the CHEK1 high
group (Fig. 5E, F). Statistically significant low scores for resting CD4+
memory T cells and resting Mast cells were observed in the CHEK1 high
group (Fig. 5G,H). In theTCGA-SARCcohort, the scores for six subtypesof

immune cells (resting CD4+ memory T cells, regulatory T cells, gamma
delta T cells, Monocytes, M1 Macrophages, and M2 macrophages) were
significantly different between the CHEK1 transcript low and high levels
(Fig. 5I). In terms of CHEK1 protein levels, nine immune cell subtypes
(naïve B cells, memory B cells, resting CD4+ memory cells, regulatory
T cells, activatedNK cells,Monocytes,M1Macrophages,M2macrophages,
and restingMast cells) were significantly different between the CHEK1 low
andhigh group (Fig. 5J). All relevant immune cell subtypeswere enriched in
the CHEK1 low group. We also compared the relative expression of IFNγ-
related and expanded immunegene signatures between theCHEK1 lowand
high groups (Fig. 5K, L). The results revealed that patients with CHEK1 low
expression had significantly higher IFNγ-related and expanded immune
gene signature scores, which predict the clinical response to ICB therapy in
various cancers.

CHEK1 predicted clinical prognosis and molecular subtypes
for RMS
To validate the expression and clinical relevance of CHEK1 for RMS in situ,
we analyzed CHEK1 expression in an independent cohort of 33 cases by
immunohistochemical staining. A heterogeneous staining pattern ranging
fromabsence tomoderate to prominent staining in tumor cellswas observed
in theRMS tissues (Fig. 6A).HighCHEK1protein levelswere detected in the
14 patients. We did not observe any significant difference between CHEK1
low and high subgroups concerning histological types and clin-
icopathological characteristics, except for disease recurrent status (Fig. 6B,
C).WeperformedKaplan-Meier survival analysis of patients to confirm that
the CHEK1 high expression subgroup was significantly associated with
shorter relapse free survival (Fig. 6D). To complement the transcriptional
analysis of the TIMEbetween subgroupswith different CHEK1 expressions,
we analyzed the densities of CD4+, CD8+, T-regulatory cells (Foxp3+),
tumor-associatedmacrophages (CD163+TAM), and PD-L1 expression in
RMS specimens. (Fig. 6E, Supplementary Fig. 4A, B) Using digital image
analysis, we found higher densities of main tumor-infiltrating immune cells
(CD4+, CD8+, T-reg cells) in the CHEK1 low tumor compared to the
CHEK1 high expression. Similar to the immune-checkpoint gene CD274
detected through our analysis of publicly available data, mIHC analysis
revealed that the mean PD-L1 expression was not significantly different
between the subgroups with low and high CHEK1 expression (Fig. 6F). In
line with a previous study36, TAMs predominated the sarcoma immune
microenvironment with the highest intratumor density in the RMS speci-
mens. However, we did not observe any significant differences between the
CD163+ positive cells of the twoRMS subgroups.We also discovered a very
small population of CD4+ Foxp3+ Tregs in both subgroups of the RMS
specimens. Together, these data suggest that CHEK1 expression serves as a
potential prognostic biomarker and is correlated with tumor-infiltrating
immune cells in RMS in our independent cohort.

CHEK1 expression evaluation in soft tissue sarcomas and cor-
related with immune cell densities
To clarify more precisely the associations between CHEK1 expression
and tumor-infiltrating immune cells in soft tissue sarcomas, we exam-
ined tumor samples of formalin-fixed paraffin-embedded (FFPE) tissue
microarray (TMA) from 91 patients with STS. We observed a range of
undetectable to prominent staining intensity in tumor cells by IHC
staining (Fig. 7A). The CHEK1 staining intensityH-score was quantified
using QuPath software for patients. Patients were divided into two
subgroups according to the staining intensity with CHEK1high (n = 50)
andCHEKlow (n = 41) for further analysis.We compared the distribution
of CHEK1 expression across histological subtypes and found that the
majority of synoviosarcoma tumors revealed higher CHEK1 expression
(Fig. 7B). All available clinico-pathological features were compared
between CHEKhigh and CHEKlow groups. In line with our results from the
RMS cohort data, Chi-square analysis showed that high CHEK1
expression was significantly associated with advanced clinical stage
(p = 0.006) (Fig. 7C). Regretfully, follow-up survival records of the TMA
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Fig. 4 | Expression profiling analysis revealed that CHEK1 was highly expressed
in the subcluster with unfavourable survival. A Venn diagrams show the number
of DEGs and DEPs between cluster A and subcluster B2 (RMS cohort) or B3 (SARC
cohort).B Schematic presentation of protein-protein interaction network according
to the STRING database. C Normalized expression for CHEK1 of normal muscle,
Fusion N, and Fusion P RMS samples are compared in a box-whisker plot.D A dot
plot illustrates the significantly positive correlation between CHEK1 protein and

transcript levels in tumours of the TCGA-SARC cohort.E,FBox-whisker plots show
the transcript and protein levels among cluster A, B2, B3, and B4 from the TCGA-
SARC cohort. Kaplan-Meier plots show an unfavourable overall survival (G, I) and
disease-free survival (H, J) for patients with higher transcript and protein levels of
CHEK1 from the TCGA-SARC cohort. Survival analyses were performed with
Kaplan-Meier estimates and two-sided log-rank tests. (*p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001).
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Fig. 5 | Associations between CHEK1 expression levels and tumour-infiltrating
immune cells and immune-related genes in TCGA-SARC and RMS cohorts.
Heatmap showing the Spearman correlation coefficients between CHEK1 transcript
(A) and protein (B) expression levels and relative abundance of 22 immune cell
types. Spearman’s ρ (rho) values were presented. Heatmap showing the Spearman
correlation coefficients between CHEK1 transcript (C) and protein (D) expression
levels with IFNγ-related genes as well as expanded immune gene signatures.
Spearman’s ρ (rho) values were presented. E–H Violin plot showing the significant

differences of four immune cell types between CHEK1 transcript low and high
groups in the RMS cohort. Significant differences in immune cell types are compared
between the CHEK1 low and CHEK1 high groups in transcript (I) and protein (J)
levels. Violin plots showing the significant expression differences of IFNγ-related
genes as well as expanded immune gene signatures between the CHEK1 low and
CHEK1 high groups in transcript (K) and protein (L) levels. Two-sided t test
(*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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cohort were unavailable for further survival analysis. To complement the
transcriptional analysis of associations between CHEK1 expression
levels and tumor-infiltrating immune cells, we performed an Opal
multiplex IHC tissue staining assay to characterize the soft tissue sar-
coma TME (Fig. 7D). The densities of T cells (CD3+), CD4+ T cells
(CD4+), CD8+T cells (CD8+), CD19+ B cells (CD19+), T-regulatory
cells (Foxp3+), pan-macrophages (CD68+), M2-like macrophage
(CD163+), and PD-L1 in each competition for tumor sections were
calculated (Fig. 7E). A significant increase in the overall density of
Foxp3, CD19+, CD68+, CD163+ and CD68+ CD163+ cells was
observed in the CHEKlow group tumors. However, infiltration of T cells
(CD3+, CD4+, and CD8+) and PD-L1 densities were not significantly
different between the CHEKhigh and CHEKlow groups. Altogether, our
digital image analysis strongly supports the immune deconvolution
results that CHEK1 serves as an unfavorable prognostic biomarker
related to diminished cytotoxic immune cell infiltration in STS.

Discussion
We previously reported that the TGFβ1 signaling pathway contributes to
the growth and differentiation of RMS26. The immune cell subsets based on
TGFβ1 and IFNγ expression in RMS have not been investigated. Here,
utilizing a public oncogenic database, we revealed that TGFβ/SMAD sig-
naling is highly expressed in human rhabdomyosarcoma. In addition, we
established a new stratification model based on RNA expression profiling
for RMS with distinct molecular immune phenotypes, which was validated
in the TCGA-SARC cohort. Predefined immune gene signatures related to
ICB responses were evaluated as statistically significant among distinct
subgroups. Higher IFNγ-related and expanded immune gene signatures
contribute to an improved prognosis. Importantly, the assessment of the
variation in transcript and protein expression of DEGswith higher or lower
cytotoxic immune phenotypes highlighted that CHEK1 served as an
unfavorable biomarker and is related to reduced cytotoxic immune cell
infiltration in soft tissue sarcomas. Finally, the density and distribution of

Fig. 6 | High CHEK1 expression was correlated with shorter relapse-free survival
and a low infiltration immune subtype in theHefei-RMS cohort. ARepresentative
image of immunohistochemical (IHC) staining for CHEK1 in RMS tumour tissues
with the low and high Immunoreactivity. The distribution of histology types (B) and
recurrence status (C) is compared between the CHEK1 expression low and high
groups. D Kaplan-Meier plot shows an unfavourable relapse-free survival for

patients with high CHEK1 expression from the Hefei-RMS cohort. EMultiplex IHC
staining for RMS tumours with CHEK1 low and high expression, CD4 (green), CD8
(cyan), Foxp3 (orange), CD163 (red), PDL1 (yellow), DAPI staining is shown in
blue. F Densities of immune cells and PD-L1 are compared between the CHEK1
expression low and high groups. Data are presented as mean values ± SEM. Two-
sided t test (*p < 0.05, ns nonsignificant).
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tumor-infiltrating immune cells in CHEK1 low- and high-expression soft
tissue sarcomas were evaluated using multiplex immunofluorescence
staining. Elevated expression of CHEK1 in sarcomas was correlated with
lower infiltrating immune cells, indicating that CHEK1 is a potential pre-
dictor of clinical prognosis and a potential novel adjuvant ICI therapeutic
target for sarcoma.

TGFβ has three isoforms, TGFβ1, TGFβ2, and TGFβ3, which
belong to a 33-member cytokine superfamily. TGFβ signaling has
widespread and diverse effects on cell proliferation, differentiation,
adhesion, migration, metabolism, and immune homeostasis. TGFβ1, as

a modulator of RMS cell differentiation, plays a significant role in tumor
growth and progression29,37,38. In the present study, RNA-seq data and
IHC staining of tumor tissues from RMS revealed that canonical TGFβ/
SMAD signaling was highly expressed in human RMS. The interaction
between TGFβ1 and IFNγ plays a pivotal role in regulating antitumor
host immunity. Activated IFNγ signaling upregulates PD-L1 expression
and immune cell infiltration, which may improve the response to anti-
PD-1 immunotherapy. RMS is a type of sarcoma with a heterogeneous
group of soft-tissue tumors. Immunotherapy in RMS has limited
effectiveness so far. Several previous studies have investigated the tumor

Fig. 7 | CHEK1 expression evaluation by Immunohistochemical staining and
correlated with immune cell densities in soft tissue sarcomas tissue microarrays.
A Representative images of Immunohistochemical (IHC) staining for CHEK1 in
RMS tumour tissues with low and high Immunoreactivity. The distribution of dis-
tinct histology types (B) and clinical stages (C) is compared between CHEK1
expression low and high groups. D A representative multiplex IHC staining image

for tissue microarrays. The densities (immune cells/mm2) of T cells (CD3+), CD4+
T cells (CD4+), CD8+ T cells (CD8+), CD19+ B cells (CD19+), T-regulatory cells
(Foxp3+), pan-macrophage (CD68+),M2-likemacrophage (CD163+), and PD-L1
in each compete for tumour sections were calculated. E Densities of immune cells
and PD-L1 are compared between the CHEK1 expression low and high groups. Data
are presented as mean values ± SEM. Two-sided t test (*p < 0.05, ns no significant).
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microenvironment (TME) composition in different soft tissue sarcomas
to understand the immune niche that maintains the tumor and how to
mediate cancer immune escape. In 2020, Chen and colleagues36 deli-
neated the immune characteristics of specific TMEs in RMS and
undifferentiated pleomorphic sarcomas (UPS) and revealed an immu-
nosuppressive TME dominated by tumor-associated macrophages.
They speculated that in situ T-cell distribution in the STS TME could
overcome the immunosuppressive niche and play a predominant role in
ICB responsiveness. Interestingly, another study established an
immune-based classification of TME composition using the micro-
environment cell populations-counter method in sarcoma. They
reported three main immune phenotypes in soft tissue sarcomas:
immune-low, immune-high, and highly vascularized subgroups, with
different clinical outcomes and response rates to ICB. Their study
defined a subgroup of sarcoma patients who benefited from ICB,marked
by a high density of B cells and the presence of tertiary lymphoid
structures (TLS)25.

The present study differs from previous reports in that we conducted
an integrative deconvolution analysis of multi-omics data from RMS to
cluster thepatients into subgroupsdependingon the immune cells related to
TGFβ1 and IFNγ. In addition, we used the public dataset TCGA-SARC to
validate our new stratificationmodel and evaluate the prognostic outcomes
of subgroups with lower or higher cytotoxic immune phenotypes. Con-
sistently, the immune gene signature and tumor inflammation signature
were enriched in cluster A, which is an accurate and independent predictive
biomarker for ICB clinical outcome. We identified CHEK1 as a critical
predictive biomarker in distinct TIME and as a potential therapeutic target
to increase TILs and improve the clinical efficacy of ICB therapy in RMS
and STS.

CHEK1 is a crucial mediator of cell cycle progression in response to
DNA damage. The critical function of CHEK1 in normal and germinal
center B-cell development, lymphomagenesis, and survival has been
reported39,40. TherapeuticCHEK1 inhibition combinedwithBCR-signalling
blockade in patients might improve the efficacy in eradicating B-cell lym-
phoma and leukemia cells40. Recently, several efforts have tested
CHEK1 signaling drugs in combination with ICB in other human
malignancies41–43. One study by Sato et al.44 highlights the critical role of
CHK1 in regulatingPD-L1 expression and immune response, indicating the
translational application of CHEK1 agents in combination with ICB ther-
apy. Most studies have demonstrated that the cell-cycle-related kinase
function of CHEK1 is a promising therapeutic strategy for STS45–48. How-
ever, few studies reported the association between CHEK1 expression and
immune cell infiltration in STS. Notably, the immune landscape of STS
exhibits considerable heterogeneity across different histological subtypes,
with implications for the treatment response and prognosis. By applying an
integrative analysis of multi-omic expression profiling, our findings unra-
veled the heterogeneity and complexity of the immune microenvironment
across distinct subclusters and significantly correlated with CHEK1
expression. In addition, we provide strong experimental evidence that
highly infiltrating immune cells in STS were observed in the subgroup of
patients with CHEK1 low expression, which revealed a favorable clinical
outcome.

However, this study has some limitations. We analyzed only the
quantitative relationship between CHEK1 expression and immune cell
infiltration using tissue microarrays, without evaluating the spatial organi-
zation of immune cells within the tumor microenvironment. In future
studies, we plan to expand the sample size and incorporate spatial proximity
analysis of immune cell populations. By employing multiplex marker co-
expression and high-resolution imaging, we aim to achieve in situ pheno-
typic characterization and visualization at the single-cell level. This
approach will enable more refined classification of immune and tumor cell
subtypes and allow for quantitative and spatial analyses of intercellular
interactions within the tumor microenvironment. Moreover, multivariate
prognostic Modeling of a large cohort should be applied to validate the
prognostic association of CHEK1 and patients with RMS. Nevertheless, the

prognostic significance of the immune cell density and spatial location in
STS after ICB therapy is not completely understood. Therefore, a larger
cohort with a more extended follow-up period, ideally from prospective
clinical trials, is required to confirm our findings.

In conclusion, we established a novel molecular classifier based on
immune cell subsets related to TGFβ1 and IFNγ expression to identify
distinct immune phenotypes with high or low cytotoxic content. Addi-
tionally, we compared multi-omics expression profiles across subgroups of
RMS and STS to identify CHEK1 as an unfavorable prognostic biomarker
associated with immunosuppressive phenotypes. These findings provide
new insights into the immune landscape of sarcomas and highlight the
potential of CHEK1 as a promising therapeutic target in combination with
immune checkpoint inhibitor therapy.

Methods
Patient cohorts and samples
A total of patients with RMS were enrolled, including 33 samples from our
institute (titled theHefei-RMScohort). The tissue samples used in this study
were obtained from patients with rhabdomyosarcoma diagnosed between
2016 and 2019, who were diagnosed with RMS according to the World
Health Organization (WHO) guidelines. Paraffin-embedded RMS tissues
were collected from the First AffiliatedHospital of the University of Science
and Technology of China (USTC) for immunohistochemistry and immu-
nofluorescence staining. Written informed consent was obtained from all
participants or family members in the study. The research protocol was
approved by the Ethics Committee of the First Affiliated Hospital of USTC
(Ethic No 2024/RE256) in accordance with the Declaration of Helsinki.

Expression profiling and clinical datasets
RNA-seq data for 106 samples, including five normal muscles and 101
Rhabdomyosarcomas, were downloaded from the Gene Expression
Omnibus (GSE108022). The TCGA-SARC cohort RNA, protein
expression, and clinical data were downloaded from https://www.
cbioportal.org/ in December 2022. The curated gene sets for TGFBE-
TA_SIGNALING_PATHWAY were obtained from https://www.gsea-
msigdb.org/gsea/msigdb. Immune checkpoint, IFNγ-related gene sets,
and the tumor inflammation signature (TIS) were obtained from the
published literature25,35,49. Fractional genomic alterations and mutation
frequencies were analyzed using the cBioportal tool.

Histology and immunohistochemical staining
Tissue microarrays were purchased from Bioaitech Company (Xi’an,
China), comprised 91 soft tissue sarcomas. RMS and soft tissue sarcoma
tumors were fixed in 4% PFA, processed, and embedded in paraffin. His-
tological sections were stained with Hematoxylin and Eosin or immuno-
histochemical staining. The tissue sections were deparaffinized and
rehydrated using the following steps: melting the wax at 65 °C for 2 h, 3 ×
5min xylene, 2 × 3min 100% ethanol, 3 min 95% ethanol, 3 min 75%
ethanol, and finally rinsed with water. Tissue sections were incubated with
10mM sodium citrate buffer (pH 6.0) (Boster, Wuhan, China) in a
microwave twice for 15min each. After antigen retrieval, use 3%peroxidase
solution to block endogenous enzymes (Chemical Technology, Jiangsu
Yonghua, China) for 10min, block with 5% BSA (Boster) for 20min, and
incubate the primary antibody overnight at 4 °C. The sections were incu-
bated with biotinylated anti-rabbit secondary antibody (Boster) for 2 h. A
solution of streptavidin-HRP (Boster) and peroxidase substrate (DAB)
(MXB Biotechnologies, Fuzhou, China) was used to generate signals in
tissue sections.CHEK1staining scoreswere automatically determinedusing
QuPath50 (version 0.3.2), reflecting positive cells and staining intensity.
Automated cell detection was performed using QuPath’s built-in cell
detection algorithm with hematoxylin channel thresholding, followed by
positive cell classification based on DAB optical density. A supervised
classifier was trained on representative areas to accurately distinguish
CHEK1-positive and -negative tumor cells. Staining intensity was cate-
gorized into low, medium, and high based on preset DAB thresholds, and
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H-scores were calculated accordingly. Cases were stratified into CHEK1
high and CHEK1 low groups based onmedianH-score cutoffs. Cell density
(cells/mm²) and percentage of positive cells were exported for statistical
comparisons. Batch analysis was performed across all TMA cores to ensure
consistent parameter application. Specific antibodies are indicated and
outlined in Supplementary Table 1.

Immune cell scores deconvolution
Absolute immune cell infiltration levels from gene expression were pre-
dicted by CIBERSORTx using the website server (https://cibersortx.
stanford.edu). The TPM-normalized expression matrix datasets from
GSE108022 and TCGA-SARCwere used as the input mixture files, and the
relative levels for the 22 immune cells were computed by the LM22 gene
signature.

Unsupervised hierarchical clustering
Transcriptome count data of genes were ln(x+ 1)-transformed and clus-
tered using correlation distance and average linkage.ClustVis, a web tool for
visualizing multivariate data, was utilized for unsupervised hierarchical
clustering and to visualize data in a heatmap51.

Spearman rank correlation analysis
All pairwise associations between continuous variables (e.g., CHEK1
expression vs. immune cell infiltration scores, or between gene expression
levels) were assessed using Spearman’s rank-order correlation. Briefly,
normalized expression data (log₂-transformed TPM or CPM values) and
immune infiltration estimates (e.g., CIBERSORTx fractions) were imported
into R (v4.2.1). For each variable pair, the cor.test() function (stats package)
was run with method = “spearman” to compute the Spearman correlation
coefficient (ρ) and two-sided p‑value. Multiple testing correction across all
tested pairs was performed using the Benjamini–Hochberg procedure to
control the false discovery rate (FDR), with adjusted p < 0.05 considered
statistically significant.

Gene set enrichment analysis (GSEA)
Gene set enrichment analysis (GSEA) was performed to evaluate the
enrichment of predefined gene sets between immune subclusters.
Transcriptome-wide gene expression data were first ranked based on the
signal-to-noise ratio between clusters of interest (e.g., Cluster A vs. Cluster
B2 inRMSorClusterAvs.ClusterB3 inSARC).The analysiswas conducted
using the GSEA software (v4.3.2, Broad Institute, Cambridge, MA) with
1000 phenotype permutations to assess statistical significance. Gene sets
were retrieved from the Molecular Signatures Database (MSigDB v7.5),
including Hallmark gene sets (H: hallmark gene sets), curated canonical
pathways (C2:KEGG,Reactome), and immunologic signatures (C7).A false
discovery rate (FDR) < 0.25 and a nominal p-value < 0.05 were considered
statistically significant, in accordancewithGSEAbest practices. Enrichment
plots and leading-edge subsets were used to identify core genes contributing
to the enrichment signal.

Multiple Immunohistochemistry staining and image analysis
We designed a 5-plex immunofluorescence panel for RMS tissue and an
8-plex panel for sarcoma TMA to characterize the tumor immune
microenvironment. Candidate commercial antibodies intended for mIF
staining were first validated by IHC using RMS FFPE tissue to confirm
optimal staining intensity, specificity, and signal-to-noise ratio. mIF was
performed according to the Opal Multiplex IHC assay protocol (Akoya
Biosciences) as previously described52. The antibody panel was then
stained in the following order. Each primary antibody was incubated for
60 min, followed by 10-min incubation with a secondary antibody (Opal
Polymer Anti-Rabbit HRP Kit, Akoya Biosciences), application of the
Opal fluorophore (OPAL Fluor, Akoya Biosciences), and incubation for
10 min at room temperature. Detailed information is provided in the
supplementary Table 1. mIF images were scanned using a Vectra Polaris
automated quantitative pathology imaging system (Akoya Biosciences).

Thefluorescent imageswere unmixed and analyzed to quantify themean
fluorescent intensity for each marker using inForm Advanced Image
software (inForm: 2.5.1, Akoya Biosciences).

Statistical analysis
All statistical analyses were performed using R software 4.2 and
GraphPad Prism 10.2 (ID: GPS-1928733-EJSL-94BFE, San Diego, CA,
USA). The two-tailed Wilcoxon-Mann-Whitney non-parametric test
or Two-sided t test was performed to compare quantitative variables
across two groups or subclusters. Kaplan-Meier estimation and log-
rank tests were used for survival analysis. Differences between groups
were compared using the chi-squared or Fisher’s exact tests for cate-
gorical variables. Correlations were evaluated using non-parametric
Spearman analysis. Spearman’s ρ (rho) values were presented in the
corresponding figure. Significance was calculated by a two‑tailed test.
as* p values < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Data availability
The transcriptome data and survival information used in this study are
publicly available from the GDC Portal TCGA-SARC (https://portal.gdc.
cancer.gov/) and the GEO database (GSE108022). The proteomics data are
publicly available from The Cancer Proteome Atlas (TCPA, http://
tcpaportal.org/). All the other raw data are available from the correspond-
ing authors upon reasonable request. The code used for statistical analysis
and figure generation in this study can be accessed by the corresponding
author upon reasonable request.

Code availability
The code used for statistical analysis and figure generation in this study can
be accessed by the corresponding author upon reasonable request.

Abbreviations
DEGs Differentially expressed genes
DFS Disease-free survival
ECL Electronic Chemistry Laboratory
FGA Fraction of genome altered
GSEA Gene set enrichment analysis
ICB Immune checkpoint blockade
IHC Immunohistochemistry
IFNγ Interferon-γ
GSEA Gene Set Enrichment Analysis
mIHC multiple immunohistochemistry
OS Overall survival
RMS Rhabdomyosarcoma
RNA-seq RNA sequencing
STR Short Tandem Repeat
STS Soft tissue sarcoma
TGFβ1 Transforming growth factor beta 1
TIS Tumor inflammation signature
TME Tumor microenvironment
TMB Tumor mutation burden
TMC Tumor mutational count
TIIC Tumor-infiltrating immune cells
UPS Undifferentiated pleomorphic sarcomas
WHO World Health Organization

Received: 29 January 2025; Accepted: 20 July 2025;

References
1. Skapek, S. X. et al. Rhabdomyosarcoma. Nat. Rev. Dis. Prim. 5, 1

(2019).
2. Dagher, R. & Helman, L. Rhabdomyosarcoma: an overview.

Oncologist 4, 34–44 (1999).

https://doi.org/10.1038/s41698-025-01064-8 Article

npj Precision Oncology |           (2025) 9:268 12

https://cibersortx.stanford.edu
https://cibersortx.stanford.edu
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://tcpaportal.org
http://tcpaportal.org
www.nature.com/npjprecisiononcology


3. Reilly, B. K. et al. Rhabdomyosarcoma of the head and neck in
children: review and update. Int J. Pediatr. Otorhinolaryngol. 79,
1477–1483 (2015).

4. Bhushan, B. et al. Transforming growth factor Beta and Alveolar
Rhabdomyosarcoma: A challenge of tumor differentiation and
Chemotherapy Response. Int. J. Mol. Sci. 25, 2791 (2024).

5. Hettmer, S. & Wagers, A. J. Muscling in: Uncovering the origins of
rhabdomyosarcoma. Nat. Med. 16, 171–173 (2010).

6. Leiner, J. & Le Loarer, F. The current landscape of
rhabdomyosarcomas: an update. Virchows Arch.: Int. J. Pathol. 476,
97–108 (2020).

7. Kashi, V. P., Hatley, M. E. & Galindo, R. L. Probing for a deeper
understanding of rhabdomyosarcoma: insights from complementary
model systems. Nat. Rev. Cancer 15, 426–439 (2015).

8. Parham, D. M. & Barr, F. G. Classification of rhabdomyosarcoma and
its molecular basis. Adv. Anat. Pathol. 20, 387–397 (2013).

9. Agaram, N. P. Evolving classification of rhabdomyosarcoma.
Histopathology 80, 98–108 (2022).

10. Zhu, B. & Davie, J. K. New insights into signalling-pathway alterations
in rhabdomyosarcoma. Br. J. Cancer 112, 227–231 (2015).

11. El Demellawy,D.,McGowan-Jordan, J., deNanassy, J., Chernetsova,
E. & Nasr, A. Update on molecular findings in rhabdomyosarcoma.
Pathology 49, 238–246 (2017).

12. Raze, T. et al. PAX-FOXO1 fusion status in children and adolescents
with alveolar rhabdomyosarcoma: Impact on clinical, pathological,
and survival features. Pediatr. Blood Cancer 70, e30228 (2023).

13. Anderson, J. R. et al. Fusion-negative alveolar rhabdomyosarcoma:
modification of risk stratification is premature. J. Clin. Oncol. 28,
e587–e588 (2010).

14. Zarrabi, A. et al. Rhabdomyosarcoma: Current therapy, challenges,
and future approaches to treatment strategies. Cancers 15, 5269
(2023).

15. Martin-Broto, J., Moura, D. S. & Van Tine, B. A. Facts and Hopes in
Immunotherapy of Soft-Tissue Sarcomas. Clin. cancer Res. 26,
5801–5808 (2020).

16. Chen,C., Dorado,Garcia,H., Scheer,M.&Henssen,A.G.Current and
FutureTreatmentStrategies forRhabdomyosarcoma.Front.Oncol.9,
1458 (2019).

17. Batlle, E. &Massague, J. Transforminggrowth factor-beta signaling in
immunity and cancer. Immunity 50, 924–940 (2019).

18. Ali, S. et al. TGF-beta signaling pathway: Therapeutic targeting and
potential for anti-cancer immunity. Eur. J. Pharm. 947, 175678 (2023).

19. Cerwenka, A. & Swain, S. L. TGF-beta1: immunosuppressant and
viability factor for T lymphocytes. Microbes Infect. 1, 1291–1296
(1999).

20. Yoshimura, A. & Muto, G. TGF-beta function in immune suppression.
Curr. Top. Microbiol. Immunol. 350, 127–147 (2011).

21. Panagi, M., Pilavaki, P., Constantinidou, A. & Stylianopoulos, T.
Immunotherapy in soft tissue and bone sarcoma: unraveling the
barriers to effectiveness. Theranostics 12, 6106–6129 (2022).

22. Birdi, H. K. et al. Immunotherapy for sarcomas: new frontiers and
unveiled opportunities. J. Immunother. Cancer 9, e001580 (2021).

23. Smolle, M. A. et al. T-regulatory cells predict clinical outcome in soft
tissue sarcoma patients: a clinico-pathological study. Br. J. cancer
125, 717–724 (2021).

24. Mandai, M. et al. Dual faces of IFNgamma in Cancer Progression: A
role of PD-L1 induction in the determination of pro- and antitumor
immunity. Clin. Cancer Res. 22, 2329–2334 (2016).

25. Petitprez, F. et al. B cells are associated with survival and
immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

26. Wang, S. et al. TGF-beta1 signal pathway may contribute to
rhabdomyosarcoma development by inhibiting differentiation.
Cancer Sci. 101, 1108–1116 (2010).

27. Sun, M. M. et al. TGF-beta1 suppression of microRNA-450b-5p
expression: a novel mechanism for blocking myogenic differentiation
of rhabdomyosarcoma. Oncogene 33, 2075–2086 (2014).

28. Sun, M. et al. Autoregulatory loop between TGF-beta1/miR-411-5p/
SPRY4 and MAPK pathway in rhabdomyosarcoma modulates
proliferation and differentiation. Cell Death Dis. 6, e1859 (2015).

29. Tauriello, D. V. F., Sancho, E. & Batlle, E. Overcoming TGFbeta-
mediated immune evasion in cancer. Nat. Rev. Cancer 22, 25–44
(2022).

30. Chandiran, K. & Cauley, L. S. The diverse effects of transforming
growth factor-beta and SMAD signaling pathways during the CTL
response. Front Immunol. 14, 1199671 (2023).

31. Overacre-Delgoffe, A. E. et al. Interferon-gammaDrivesT(reg) Fragility
to Promote Anti-tumor Immunity. Cell 169, 1130–1141.e1111 (2017).

32. Chen, S. et al. Mechanisms regulating PD-L1 expression on tumor
and immune cells. J. Immunother. Cancer 7, 305 (2019).

33. Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict
cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

34. Danaher, P. et al. Pan-cancer adaptive immune resistance as defined
by the Tumor Inflammation Signature (TIS): results from The Cancer
Genome Atlas (TCGA). J. Immunother. Cancer 6, 63 (2018).

35. Damotte,D. et al. The tumor inflammationsignature (TIS) is associated
with anti-PD-1 treatment benefit in the CERTIM pan-cancer cohort. J.
Transl. Med. 17, 357 (2019).

36. Chen, L. et al. The immunosuppressive niche of soft-tissue sarcomas
is sustained by tumor-associatedmacrophages and characterized by
intratumoral tertiary lymphoid structures. Clin. cancer Res. 26,
4018–4030 (2020).

37. Derynck, R. & Budi, E. H. Specificity, versatility, and control of TGF-
beta family signaling. Sci. Signal 12, eaav5183 (2019).

38. Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent
pathways in TGF-beta family signalling. Nature 425, 577–584 (2003).

39. Schuler, F. et al. Checkpoint kinase 1 is essential for normal B cell
development and lymphomagenesis. Nat. Commun. 8, 1697 (2017).

40. Schoeler, K. et al. CHK1 dosage in germinal center B cells controls
humoral immunity. Cell Death Differ. 26, 2551–2567 (2019).

41. Ngoi, N. Y. L., Peng, G. & Yap, T. A. A Tale of two checkpoints: ATR
inhibition and PD-(L)1 blockade. Annu Rev. Med. 73, 231–250 (2022).

42. Sen, T. et al. Targeting DNA damage response promotes antitumor
immunity through STING-mediated T-cell activation in small cell lung
cancer. Cancer Discov. 9, 646–661 (2019).

43. Tang, Z. et al. ATR inhibition induces CDK1-SPOP signaling and
enhances anti-PD-L1 Cytotoxicity in prostate cancer. Clin. Cancer
Res. 27, 4898–4909 (2021).

44. Sato, H. et al. DNA double-strand break repair pathway regulates PD-
L1 expression in cancer cells. Nat. Commun. 8, 1751 (2017).

45. Laroche-Clary, A. et al. CHK1 inhibition in soft-tissue sarcomas:
biological andclinical implications.Ann.Oncol.29, 1023–1029 (2018).

46. Dorado Garcia, H. et al. Therapeutic targeting of ATR in alveolar
rhabdomyosarcoma. Nat. Commun. 13, 4297 (2022).

47. Yoshida, K. et al. Aberrant activation of cell-cycle-related kinases and
the potential therapeutic impact of PLK1 or CHEK1 inhibition in
Uterine Leiomyosarcoma. Clin. Cancer Res. 28, 2147–2159 (2022).

48. Jess, J. et al. Cell Context is the third axis of synergy for the
combination of ATR inhibition and cisplatin in Ewing sarcoma. Clin.
Cancer Res. 30, 3533–3548 (2024).

49. Ayers, M. et al. IFN-gamma-related mRNA profile predicts clinical
response to PD-1 blockade. J. Clin. Investig. 127, 2930–2940 (2017).

50. Bankhead, P. et al. QuPath: Open source software for digital
pathology image analysis. Sci. Rep. 7, 16878 (2017).

51. Metsalu, T. & Vilo, J. ClustVis: a web tool for visualizing clustering of
multivariate data using Principal Component Analysis and heatmap.
Nucleic Acids Res. 43, W566–W570 (2015).

https://doi.org/10.1038/s41698-025-01064-8 Article

npj Precision Oncology |           (2025) 9:268 13

www.nature.com/npjprecisiononcology


52. Locke,D. &Hoyt,C.C.Companiondiagnostic requirements for spatial
biology using multiplex immunofluorescence and multispectral
imaging. Front Mol Biosci. 10, 1051491 (2023).

Acknowledgements
Thisworkwassupportedby theNationalNatural ScienceFoundationofChina
(82103121), the National Key Research and Development Program of China
(2023YFB3810204), the Natural Science Foundation of Jiangsu Province
(BK20200878), Key Projects of Students Academic Research Foundation of
Soochow University (KY2023093A, KY2024273B), and the Priority Academic
Program Development of Jiangsu Higher Education Institutions (PAPD). We
thank all the patients and their families at The First Affiliated Hospital of
University of Science and Technology of China (USTC) for their contributions.

Author contributions
C.R., Y.L., and F.X. analyzed multi-omics data and performed statistical ana-
lyses. C.R. andS.W. conceived the study and designed the experiments. X.Z.,
J.Z., Z.X., J.W., L.C., Z.G., Z.Z., and J.A. performed the experiments. Y.L. and
X.Y. collected clinical samples and information. C.R., Y.L., and F.X. wrote the
manuscript; J.S. and J.H. contributed to manuscript review and conceptual
advice. C.R., Q.Z., and S.W. directed the project and were responsible for
funding acquisition. All authors reviewed and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41698-025-01064-8.

Correspondence and requests for materials should be addressed to
Chao Rong, Qiong Zhang or Shouli Wang.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’snoteSpringerNature remainsneutralwith regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s41698-025-01064-8 Article

npj Precision Oncology |           (2025) 9:268 14

https://doi.org/10.1038/s41698-025-01064-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjprecisiononcology

	Integrative bioinformatics analysis and experimental validation identify CHEK1 as an unfavorable prognostic biomarker related to immunosuppressive phenotypes in soft tissue sarcomas
	Results
	Distinct immune cell types related to TGFβ1 and IFN&#x003B3; expression in RMS
	Differences in immune gene signature and survival patterns related to immune phenotypes
	Differences in gene and protein expression related to the immune phenotype
	Association between CHEK1 and tumor immune microenvironment in soft tissue sarcomas
	CHEK1 predicted clinical prognosis and molecular subtypes for RMS
	CHEK1 expression evaluation in soft tissue sarcomas and correlated with immune cell densities

	Discussion
	Methods
	Patient cohorts and samples
	Expression profiling and clinical datasets
	Histology and immunohistochemical staining
	Immune cell scores deconvolution
	Unsupervised hierarchical clustering
	Spearman rank correlation analysis
	Gene set enrichment analysis (GSEA)
	Multiple Immunohistochemistry staining and image analysis
	Statistical analysis

	Data availability
	Code availability
	Abbreviations
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




