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Collagen disorder architecture features
are associated with clinical, molecular,
genetic factors and survival outcomes in
colon cancer
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We developed a computational pathology pipeline to extract and analyze collagen disorder architecture
(CoDA,) features from whole slide images (WSIs) of 2,212 colon cancer (CC) patients across multiple
institutions. CoDA features —capturing collagen fragmentation, bundling, anisotropy, density, and rigidity,
were evaluated for associations with clinical variables (overall stage, T/N/M stage), molecular
classifications (Consensus Molecular Subtypes [CMS1-4]), and genetic mutations (KRAS, BRAF, NRAS)
using the Mann-Whitney U test with Bonferroni correction. These analyses revealed significant differences
in CoDA feature distributions across multiple subgroups, suggesting that collagen architecture varies
meaningfully with tumor stage, molecular subtype, and mutation status.To assess how well CoDA features
could distinguish between these subgroups, we implemented a Random Forest classification framework.
High mean AUC values (>0.7) across several variables indicated strong discriminatory performance of
CoDA features in separating clinically and biologically distinct groups.

For survival analysis, LASSO-Cox models were trained on the PLCO dataset to generate CoDA-based
risk scores for overall survival (OS) and disease-free survival (DFS), which were used to stratify patients
into high- and low-risk groups in a combined validation dataset (TCGA, UH, and Emory). Kaplan-Meier
curves demonstrated significant survival differences across clinical stages, CMS subtypes, and KRAS
mutation status. Multivariable Cox proportional hazards models further confirmed the independent
prognostic value of CoDA features after adjusting for clinical, molecular, and genetic covariates. These
findings highlight that CoDA features are significantly associated with key clinical and molecular
characteristics, can distinguish relevant patient subgroups, and offer independent prognostic
information, underscoring their potential utility in characterizing the tumor microenvironment and
informing risk stratification in CC.

Colon cancer (CC) is the third most diagnosed cancer and the second  drops to just 13% for stage IV, which accounts for approximately 20% of all
leading cause of cancer-related deaths in the United States'. The American ~ CC cases’. Among 37,769 AJCC stage I-11I CC patients, Black patients had
Joint Committee on Cancer (AJCC) TNM classification (Tumor, Node,  significantly lower survival than White patients (Hazard Ratio (HR) = 1.24;
Metastasis) is the primary prognostic tool for guiding treatment decisions’. ~ 95% Confidence Interval (CI): 1.14-1.35)". Furthermore, a study of 52,882
The five-year survival rate for stages I-III CC can reach up to 80%, whileit  metastatic CC patients found that younger women (18-44 years old) had
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CODA FEATURE CALCULATION METHODOLOGY
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better Overall Survival (OS) than their male counterparts, whereas older
women (55 years and older) had significantly worse OS compared to
older men’.

In metastatic CC, where the five-year OS is only 14%, Rat sarcoma virus
(RAS) oncogene mutations, including alterations in Kirsten rat sarcoma
virus (KRAS), neuroblastoma RAS viral oncogene homolog (NRAS), and
B-Raf proto-oncogene (BRAF), are identified in about half of the patients

and contribute to poorer disease prognosis’. A study on CC patients indi-
cated resistance to therapies targeting the RAS/Rapidly Accelerated Fibro-
sarcoma (RAF)/ Mitogen-activated protein kinase kinase (MEK)/
Extracellular Signal-Regulated Kinase (ERK) pathway, especially in cancer
stem cells driven by SRC activation’. Analysis of 2250 CC tumors revealed a
strong correlation between resistance to MEK inhibitors and SRC activa-
tion, which is linked to poor prognosis, epithelial-mesenchymal transition

npj Precision Oncology | (2025)9:304


www.nature.com/npjprecisiononcology

https://doi.org/10.1038/s41698-025-01098-y

Article

Fig. 1 | Workflow of CoDA feature extraction and prognostic analysis in colon
cancer. (1) CoDA FEATURE CALCULATION METHDOLOGY: (A) Whole Slide
Image (WSI) from colon cancer patient (B) Tumor mask-+HistoQC mask overlaid
on WSI (C) Tiling of the WSI from the subtracted masked region (D) Example tiles
(E) Collagen fibers within the stroma region of exmaple tile detected by a derivative-
of-Gaussian (DtG) based model (F) Collagen fiber fragmentation (G) Collagen fiber
bundling (H) Collagen fiber rigidity (I) Collagen fiber anisotropy. As the anisotropy
values increase, the colormap transitions to green color at the highest end of the scale
(corresponding to well aligned or anisotropic orientation). J Collagen fiber density.
Hotter colors such as red and yellow represent higher density values while cooler
colors such as blue and green represent lower density values in the density scale.

K Cropped portion of Collagen fiber fragmentation (L) Cropped portion of Collagen
fiber bundling (M) Cropped portion of Collagen fiber rigidity (N) Representation of
tumor region tiles with example CoDA feature: Density, restitched back into their
corresponding positions within the WSI. (2) STATISTICAL ANALYSIS: (A) Violin

plots showing distribution across KRAS,BRAF and NRAS mutational variables for
the individual CoDA features i.e., CF Fragmentation, CF Bundling, CF Anisotropy,
CF Density and CF Rigidity. Significant differences between the groups (example:
KRAS wild type vs KRAS mutated) were calculated by Mann-Whitney U test with
Bonferroni corrected p values (*p) reported. Similar tests were done for clinical
(Overall Stage, T Stage, N Stage and M Stage) and molecular variables (CMS1-4).
Example Kaplan Meier plots showing risk stratified high and low risk groups, as
derived using CoDA features using LASSO Cox proportional Hazards Model, for
KRAS wild type for (B) Overall Survival (OS) and (C) Disease Free Survival (DES).
Risk stratification was done for other mutational variables (KRAS mutated, BRAF
wild type and mutated and NRAS wild type and mutated) alongwith clinical and
molecular variables. D To show CoDA as independent prognostic features, Multi-
variable Cox Proportional Hazards Analysis was done for OS and DFS for clinical,
molecular and genetic variables alongwith variables like age, gender and race.
Hazard ratios (HR) with corresponding 95% confidence intervals (CI) are presented.

(EMT), and metastasis®. Moreover, CC has been classified into four Con-
sensus Molecular Subtypes (CMS1-4), with CMS4, characterized by
mesenchymal features such as high collagen content, stromal invasion, and
angiogenesis, associated with worse outcomes’. These findings suggest that
combining MEK and SRC inhibitors may be an effective strategy for tar-
geting RAS-mutant CCs, especially in specific CMS subtypes.

Increasing attention is being paid to the tumor microenvironment
(TME) in CC treatment, as interactions between cellular and structural
components of the TME play a crucial role in cancer progression and
metastasis”'’. The extracellular matrix (ECM) within the TME serves as a
structural scaffold that coordinates signaling pathways essential for cancer
cell behavior and survival'">. The composition and remodeling of ECM
components, particularly collagen, significantly influence the dynamics of
the TME and impact cancer survival outcomes'. Collagen deposition, or
desmoplasia, in CC is a recognized but difficult-to-quantify prognostic
feature'. A TME collagen signature (CSryz) has been shown to be an
independent prognostic risk factor in stage Il and ITI CC patients'’. Because
TME quantification is not routinely performed by pathologists, a compu-
tational pathology framework could enhance risk stratification, prognosis
prediction, and treatment planning'’.

Collagen fiber (CF) architecture within the TME is emerging as a
promising feature for correlating with survival outcomes in CC patients'. A
study identified 294 genes upregulated in KRAS-mutated CC samples, with
COLI1A1 (Collagen type I alpha 1) being a key gene'®. Inhibition of COL1A1
significantly reduced cell proliferation and invasion in KRAS-mutant cell
lines, and higher COL1AL1 expression was linked to serosal invasion and
metastasis'®. Collagen also plays a critical role in tumor progression,
malignancy, and drug resistance””. A deeper exploration of CF features in
the TME could improve predictions of drug response and identify patients
likely to benefit from combined MEK and SRC inhibitor therapies”.

For CC patients, particularly those with metastasis, genomic profiling
has proven valuable in identifying RAS mutations that are prognostic of
survival and treatment response™. Genomic testing is commonly used to
identify RAS mutations and inform treatment decisions, such as the use of
anti-epidermal growth factor receptor monoclonal antibodies like cetux-
imab and panitumumab®. However, genomic testing can be time-
consuming and costly, particularly in lower- and middle-income
countries®. Computational tools, on the other hand, offer the advantage
of detecting RAS mutations directly from histopathology slides, offering a
more accessible and cost-effective approach”. Biomarkers, including
tumor-infiltrating lymphocytes and components of the TME, are visually
apparent in whole slide images (WSIs), and the use of computational
pathology has become increasingly important for prognostic applications in
CC™. Deep learning is a subfield of Artificial Intelligence (AI) that has been
employed to not only diagnose CC directly from WSIs but also has been
shown to predict the presence of KRAS, tumor protein p53 (TP53), and
BRAF mutations on routine hematoxylin and eosin (H&E) images with an
area under the receiver operating curve (AUC) ranging from 0.73 to 0.86>".

However, a challenge with deep learning approaches is the lack of trans-
parency regarding the representations derived from the networks, making it
difficult to explain the predictions. While the lack of explainability might not
be an issue for diagnostic decision making, these black box models might not
be as appealing for prognostic or treatment response prediction
applications™.

Recent studies across various cancer types have demonstrated that CF
organization and orientation differ between benign and malignant tissues
and are linked to disease stage, prognosis, and treatment response'®”.
However, most prior studies have focused on collagen deposition or fibrosis,
without quantitatively assessing CF architectural features within the TME"".
Given the pivotal role of collagen in modulating tumor stiffness, cell
motility, and drug resistance, a more detailed characterization of CF orga-
nization could offer valuable insights ™. In this study, we introduce a
computational pathology-based framework to extract novel collagen dis-
order architectural (CoDA) features from H&E-stained WSIs in CC
patients. Unlike conventional methods based on molecular profiling or bulk
collagen quantification, our approach analyzes CF fragmentation, bundling,
anisotropy, density, and rigidity as potential biomarkers of cancer pro-
gression and treatment response. In this study, we investigated CoDA fea-
tures in a multi-institutional cohort of 2212 CC patients, focusing on their
associations with key clinical variables (overall stage, T/N/M stage classifi-
cations), molecular subtypes (Consensus Molecular Subtypes CMS1-4),
and genetic mutations (KRAS, BRAF, NRAS). In addition to assessing
statistical associations, we evaluated how well CoDA features could distin-
guish between these clinically and biologically relevant subgroups. Fur-
thermore, we explored the prognostic relevance of CoDA features by
analyzing their ability to stratify patients into high- and low-risk groups for
overall survival (OS) and disease-free survival (DFS). Together, these ana-
lyses aim to improve our understanding of tumor-stroma interactions and
demonstrate the potential of interpretable, image-derived biomarkers for
enhancing risk stratification and guiding treatment decisions in CC. The
workflow of this study, including CoDA feature extraction and statistical
analysis, is illustrated in Fig. 1.

Results

Quantative evaluation of CF and coda features

The accuracy of CF detection was visually assessed independently by an
attending pathologist and resident pathologist on 200 random tiles from
randomly selected WSIs. The pathologists assigned the tiles to one of four
categories (excellent, good, fair, or poor) to describe the accuracy of the
captured CF orientations. Inter-rater agreement was quantified using the
Intraclass Correlation Coefficient (ICC), which measured the consistency
between the pathologists’ ratings and yielded an ICC of 0.64, indicating
moderate agreement and supporting the reproducibility of CF detection
accuracy’ . Examples of the four categories of CF detection accuracy by the
two independent pathologists in example tiles are provided in Supple-
mentary Fig. 1. A visual representation of how CoDA features differ across

npj Precision Oncology | (2025)9:304


www.nature.com/npjprecisiononcology

https://doi.org/10.1038/s41698-025-01098-y

Article

Table 1] Association of CoDA features with clinical, molecular,
and genetic subgroups are presented

Table 1 (continued) | Association of CoDA features with
clinical, molecular, and genetic subgroups are presented

Variable type Variables CoDA features p Bonferroni- Variable type Variables CoDA features p Bonferroni-
values corrected p- values corrected p-
values (*p) values (*p)
CLINICAL OVERALL CF 0.001 0.004 CF density 0.002 0.01
Sl Eenentaton CF rigidity 0003 0.1
CF bundling 0.02 0.10 BRAF CF 0.03 015
CF anisotropy 0.004 0.01 fragmentation
CF density 0.02 0.12 CF bundling 0.005 0.02
CF rigidity 0.01 0.04 CF anisotropy 0.001 0.04
T STAGE CF 0.01 0.07 CF density 0.007 0.03
fragmentation CF rigidity 0.00 0.002
CF bundling 0.01 0.05 NRAS CF 1.00 1.00
CF anisotropy 0.007 0.03 fragmentation
CF density 0.005 0.02 CF bundling 0.01 0.07
CF rigidity 0.009 0.04 CF anisotropy 1.00 1.00
NSTAGE  CF 0008  0.04 CF density 0.03 0.15
fragmentation CF rigidity 0008  0.04
CF bundiing 0.001 0.007 The Mann-Whitney U test was used to assess differences in CoDA features: CF fragmentation, CF
CF anisotropy 0.001 0.003 bundling, CF anisotropy, CF density, and CF rigidity, across various clinical stages, CMS subtypes,
, and mutation-defined groups. Bonferroni correction was applied to adjust for multiple comparisons,
CF density 0.006 0.03 with a significance threshold of 0.05 for both raw and corrected p-values (denoted as p and *p,
CF rigidity 0.007 0.03 respectively). Statistically significant associations for Bonferroni corrected p values are shown in
bold. Significant associations were observed across several variables, particularly for N stage, M
M STAGE CF . 0.006 0.03 stage, and CMS3, where all five CoDA features remained significant after correction (*p < 0.05).
fragmentation Similarly, CoDA features were strongly associated with KRAS mutation status, while NRAS mutation
CF bundling 0.004 0.02 showed minimal association except for CF rigidity. These findings highlight that distinct collagen
- architectural patterns, as captured by CoDA features, are significantly associated with key clinical
CF anisotropy 0.01 0.05 stages, molecular subtypes, and genetic mutations in CC, reflecting their potential to capture tumor
CF density 0.02 0.13 heterogeneity across multiple biological axes.
CF rigidity 0.01 0.09
MOLECULAR  CMS1 fCF ati c00) 0:006 the KRAS mutational variable (i.e., KRAS wild type vs. KRAS mutant) is
ragmentation . . . .
9 shown in the example tiles of Supplementary Fig. 2. Increased fragmentation
Chlbindiing 0.01 0.05 (Supplementary Fig. 2C, H) and stiffness (Supplementary Fig. 2E, ]) of the
CF anisotropy 0.001 0.007 CF is seen in KRAS mutant as compared to KRAS wild type. In addition,
p
CF density 0.01 0.09 thicker bundles (Supplementary Fig. 2D, I) along with denser aggregation
CF rigidity 0.02 013 (Supplementary Fig. 2G) and straight alignment (Supplemente}ry Fig. 2F) of
the CF were seen for the KRAS mutant than for the KRAS wild type.
CMS2 CF 0.02 0.13
fragmentation . .
: Associations between Coda features and clinical, molecular, and
CF bundling 0.007 0.03 genetic subgroups
CFanisotropy  0.01 0.05 The distribution of CoDA features was visualized using violin plots across
CF density 0.01 0.07 roups defined by clinical variables, including detailed subgroup compar-
group Y g group p
CF rigidity 0.02 0.11 isons such as Stage I-II vs. Stage ITI-IV, T1 vs. T2, NO vs. N +, and MO vs.
CMS3 CF 0.02 0.10 M +, molecular subtypes through all pairwise comparisons among CMS1,
fragmentation ’ ' CMS2, CMS3, and CM$4 (i.e., CMS1 vs. CMS2, CMS3, CMS4; CMS2 vs.
- CMS1, CMS3, CMS4; CMS3 vs. CMS1, CMS2, CMS4; and CMS4 vs. CMS1,
CF bundling 0.006 0.02 . . . .
: CMS2, CMS3), and genetic mutations based on the following comparisons-
CF anisotropy 02 0.12 (KRAS-positive vs. KRAS-negative, BRAF-positive vs. BRAF-negative, and
CF density 0.009 0.04 NRAS-positive vs. NRAS-negative). Statistical differences between groups
CF rigidity 0.009 0.04 were assessed using the Mann-Whitney U test”>**. The resulting p-values,
CcMSA CF 0.01 0.05 along with Bonferroni-corrected p-values (*p)**™’, are presented in Table 1,
fragmentation demonstrating associations between CoDA features and each variable.
CF bundiing 0.02 0.12 Figures 2-4 display these associations across the different categories:
— Yooe oa clinical variables in Fig. 2, molecular subtypes in Fig. 3, and genetic muta-
£ ; . tions in Fig. 4. Notable differences were observed, with all five CoDA fea-
ey ol B> tures (CF fragmentation, CF bundling, CF anisotropy, CF density, and CF
CF rigidity 0.02 0.12 rigidity) showing significant variation across several clinical subgroup
GENETIC KRAS CF 0.006 0.02 comparisons. Specific molecular subtypes were significantly associated with
fragmentation CF bundling and CF anisotropy, while CF rigidity showed notable differ-
CF bundling 0.001 0.007 ences related to genetic mutation status.
CF anisotropy 0,01 0.07 To further evaluate the ability of CoDA features to distinguish between

these refined groups, we employed a Random Forest classification

npj Precision Oncology | (2025)9:304


www.nature.com/npjprecisiononcology

https://doi.org/10.1038/s41698-025-01098-y

Article

A [EISTAGE I
p*= p*= p*= p*=
0.004 0.10 0.01 0.12 .
s . .
§ 2 H WL HWE H
w S z i ]
g |3 g & §
@ g k4 &
= 05 2 4
: i : q
w
: 2 ¥ i
3 @ d
: § i G 100
ol @) = ®
osl ¢ : < « «‘
© %
< 0\\09‘\ o & o>
?&e\“?’ «® ™ <
<
o«
B 15
p*= p*= pr= *=
0.07 0.05 0.03 0.02 .
L
§ ! 3 ;
) i
Q
E 05
s H €
{ i
ozl g i 5 ; g s|/ 1§
05 N . . . \
© NS o & W)
< SO~ N\ o AO
@0\@‘ <« < \»V\‘%O «© &
<
o«
14
(o]
120 | pes p*= p*= p*= p*=
s 0.04 0.007| 0.00: 0.03 0.03
0.8
& 06
2
2 04
0.2
ol
-0.2 -
-0.4 - : i {'( :
@ N 4 N N
N o @© 3 o©
@O\k o & o e \;\‘50/\ o &
< o)
o
1.5
D
p*= p*= p*= p*= p*=
B o.uzi 0.05 0.13 0.09
w é
o H
g 05 ; ; g
= Fy I §
i ; : Z
ol ¢ # § H é
o5 . . . <~I< .
o N 3
\&@“‘Ps\ w\)@»\ \4\50“@ o = o
© s P
o e
o«

Fig. 2 | Violin plots of CoDA features across clinical subgroups. Violin plots
depict differences in collagen architectural features—CF Fragmentation, CF
Bundling, CF Anisotropy, CF Density, and CF Rigidity—across clinical subgroups:
(A) Overall Stage (I-1I vs. ITI-IV), (B) T Stage (T1-2 vs. T3-4), (C) N Stage (NO vs.
N+ ), and (D) M Stage (MO vs. M1). Statistical significance was assessed with
Bonferroni-adjusted p-values (*p). Significant differences were observed in CF

Fragmentation, CF Anisotropy, and CF Rigidity for Overall Stage; CF Anisotropy,
CF Density, and CF Rigidity for T Stage; all CoDA features for N Stage; and CF
Fragmentation and CF Bundling for M Stage. These findings demonstrate a con-
sistent association between collagen architectural features and clinical staging,
highlighting the potential of CoDA features as non-invasive biomarkers of tumor
progression and metastatic potential.
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Fig. 3 | Violin plots of CoDA features across molecular subgroups. CoDA feature
variations represented by violin plots are compared across molecular subgroups: (A)
CMSI vs. non-CMS1 (CMS2, CMS3, CMS4), (B) CMS2 vs. non-CMS2 (CMSI1,

CMS3, CMS4), (C) CMS3 vs. non-CMS3 (CMS1, CMS2, CMS4), and (D) CMS4 vs.

non-CM$4 (CMS1, CMS2, CMS3). p-values were corrected for multiple testing
using the Bonferroni method (*p). Significant differences were found in CF

Fragmentation and CF Anisotropy for CMS1; CF Bundling for CMS2; CF Bundling,
CF Density, and CF Rigidity for CMS3; and CF Anisotropy for CMS4. These results

highlight distinct collagen architectural patterns associated with each CMS subtype,

suggesting that CoDA features may reflect underlying biological differences
between molecular subtypes of colon cancer.
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Fig. 4 | Violin plots of CoDA features across
mutational subgroups. Violin plots demonstrate
differences in CoDA features among mutational
subgroups defined by KRAS, BRAF, and NRAS
mutation status: (A) KRAS wild type vs. mutated,
(B) BRAF wild type vs. mutated, and (C) NRAS wild
type vs. mutated. Multiple comparison corrections
were applied via Bonferroni adjustment (*p). Sig-
nificant differences were observed across all CoDA
features between BRAF wild type and mutated
groups. In KRAS, all features except CF Fragmen-
tation differed significantly between wild type and
mutant tumors. For NRAS, only CF Rigidity showed
a significant difference. These findings suggest that
specific collagen structural patterns captured by
CoDA features are associated with mutation status,
underscoring their potential relevance in char-
acterizing tumor microenvironment differences
linked to oncogenic mutations.
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approach®” across 100 iterations and reported classification metrics
including mean AUC values with standard deviations®, F1 scores*, and
accuracy’. These results are summarized in Table 2, providing a com-
parative overview of how effectively CoDA feature patterns discriminate
among patient subgroups. The observation of mean AUC values> 0.7

across multiple variables indicates strong discriminative performance of
CoDA features in differentiating clinical, molecular, and genetic subgroups.

These findings highlight the relevance of CoDA features in capturing
distinct aspects of the tumor microenvironment that correspond to key
clinical, molecular, and genetic characteristics.
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Table 2 | Performance of the Random Forest classification
model evaluated over 100 iterations, reporting average
classification metrics including mean area under the curve
(AUC) with standard deviation, F1 score, and accuracy

Variable type Variables AUC F1 Accuracy
CLINICAL OVERALL 0.78 +0.10 0.77 0.79
STAGE
T STAGE 0.80 + 0.09 0.78 0.81
N STAGE 0.74 4 0.05 0.72 0.73
M STAGE 0.80 + 0.08 0.78 0.82
MOLECULAR CMS1 0.80+0.10 0.79 0.81
CMS2 0.80 + 0.03 0.78 0.83
CMS3 0.70+0.10 0.69 0.71
CMS4 0.68 + 0.04 0.66 0.69
GENETIC KRAS 0.75+0.08 0.73 0.76
BRAF 0.85+0.10 0.84 0.86
NRAS 0.83+0.17 0.82 0.84

Consistently high mean AUC values (=0.7) across all variables demonstrate the strong
discriminative capability of CoDA features in distinguishing among clinical, molecular, and genetic
subgroups

Risk stratification using coda features across clinical, molecular
and genetic subgroups

Risk stratification based on CoDA features was evaluated for both overall
survival (OS) and disease-free survival (DFS) in the combined validation
cohort (TCGA, UH, and Emory datasets). Risk scores were computed using
LASSO-Cox proportional hazards models trained separately for OS and
DES in the PLCO dataset, with the median risk score used as the cutoff for
defining high- and low-risk groups'*.

Kaplan-Meier (KM) survival curves were generated to assess differ-
ences in OS and DFS between high- and low-risk groups across clinical
variables (overall stage, T stage, N stage, M stage), molecular subtypes
(CMS1-4), and genetic mutations (KRAS, BRAF, NRAS)*. The corre-
sponding concordance indices (C-indices)* were included in each KM plot
to quantify the discriminative ability of the CoDA-derived risk scores.

Significant survival differences between risk groups were observed for
clinical variables, particularly for overall stage and TNM staging, in both OS
(Fig. 5) and DFS (Fig. 6). Notably, N+ stage showed no significant asso-
ciation with DFS. For molecular variables, CoDA-based risk stratification
showed significant differences in OS across all CMS subtypes (Fig. 7);
however, CMS3 was not significantly associated with DFS (Fig. 8). Among
genetic alterations, KRAS mutations were significantly associated with both
OS (Fig. 9) and DFS (Fig. 10), while BRAF mutations showed no significant
association with either outcome. NRAS mutations also showed no sig-
nificant association with DFS.

These results highlight the prognostic relevance of CoDA features in
stratifying patient risk across diverse clinical, molecular, and genetic
contexts.

Multivariable cox proportional hazards analysis of coda features
with clinical, molecular and genetic variables
To evaluate whether CoDA features provide prognostic information inde-
pendent of established clinical, molecular, and genetic subgroups, we per-
formed multivariable Cox proportional hazards regression analyses*** both
OS and DFS. These models included the CoDA-derived risk score along
with covariates such as age, gender, race, overall stage, TNM staging, con-
sensus molecular subtypes (CMS1-4), and common genetic mutations
(KRAS, BRAF, NRAS)**,

The results are presented in Table 3, which reports hazard ratios (HRs),
95% confidence intervals (CIs), and p-values for each variable. The CoDA
risk score remained significantly associated with both OS and DFS after

adjusting for all other covariates, indicating an independent association with
survival outcomes.

Several clinical variables, including overall stage and N Stage, were also
significantly associated with survival in the multivariable context. Among
molecular subtypes, CMS4 was associated with better outcomes, while
significant associations were observed for KRAS and BRAF mutation status.
Race was significantly associated with both OS and DFS as well.

These findings suggest that CoDA features may capture aspects of the
tumor microenvironment that are not fully explained by traditional clinical,
molecular, or genetic variables.

Discussion

In addition to imaging collagen topology through traditional histological
staining or advanced imaging methods, quantifying collagen fibers is
essential for patient prognosis®. In a previous study, collagen bundles
formed in the tumor-stroma region correlated with tumor progression and
invasiveness”. Anisotropy of CF in Mueller matrix images has been pre-
viously associated with cervical pre-cancer detection™. A high density of
collagen structure has been correlated with the metastatic behavior of breast
cancer in microscopic fluorescent images of picrosirius red-stained
sections’. Spatial collagen stiffening have been shown to be associated
with collective breast cancer cell invasion™. Collagen density and stiffening
were performed for the collective collagen structure and not for the indi-
vidual fibers, as in the aforementioned studies. Our methodology examined
and calculated novel collagen disorder architecture features in the TME of
H&E-stained images using a computational pathology-based pipeline. We
demonstrate that CoDA features can effectively distinguish between various
clinical, molecular, and genetic mutational variables, all of which have
implications for DES and OS.

Although AT technologies have been useful in assessing TME com-
ponents in previous studies, the deep learning models used in AI
methodologies” do not specifically consider domain-specific expert
knowledge in their predictions. This limitation can sometimes lead to
models learning incorrect features, such as unintended patterns, halluci-
nations, or visual artifacts present in the database, which can diminish the
reliability of Al outcomes™. While a number of approaches have been
proposed that directly use deep learning to predict outcomes, a lack of
interpretability can engender distrust and skepticism among physicians™.
Feature-based approaches can alleviate this anxiety by imbuing more
interpretability into the prediction models, and several feature-driven
approaches using biomarkers such as CD8 + T cells, tumoral spatial
heterogeneity™, and tumor-infiltrating lymphocytes™ have been used for
prognosis in CC. However, none of these has been associated with KRAS
mutational status. Unlike other TME factors, CF content and architecture
offer a clear and measurable parameter that can aid in risk stratification and
treatment decision-making™. Research has shown that CF density, orga-
nization, and alignment can significantly affect tumor cell invasion,
metastasis, and response to therapy”. Apart from colon cancer, collagen
characteristics have been previously linked to prognosis in various cancer
types, such as breast cancer and head and neck cancer'**®. Thus, the study of
collagen architecture provides a promising avenue for improving prognostic
models across different cancer types. TME assessments, in general, require
high-resolution imaging and molecular profiling, which can be resource-
intensive, both in terms of time and cost™. Considering the disadvantages of
second-harmonic generation microscopy, such as high cost and difficult
equipment assembly, the most common technique of CF imaging, liquid
crystal-based polarization microscopy (LC-PolScope), has been used as an
alternative™. However, a significant challenge in using LC-PolScope for
collagen imaging is the proper interpretation of signals, as they may
represent other biological structures”. These imaging technologies,
although promising, are still largely in the research phase and therefore not
scalable for clinical translation.

Our study differs from the previously mentioned studies in that it
employed standard H&E images to identify and extract collagen-related
features. Critically, our study’s findings directly address the clinical need for
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Fig. 5 | CoDA-Based Risk Stratification of Overall Survival Across Clinical
Subtypes. Kaplan-Meier (KM) curves showing overall survival (OS) stratified by

CoDA-derived risk groups (high vs. low risk) within clinical subtypes: (A) Stage I-II,
(B) Stage III-1V, (C) T1-T2, (D) T3-T4, (E) NO, (F) N +, (G) M0, and (H) M +.
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Significant survival differences were observed between risk groups across all clinical
stages, underscoring the prognostic utility of CoDA features irrespective of tumor
burden.
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Fig. 6 | CoDA-Based Risk Stratification of Disease Free Survival Across Clinical
Subtypes. Kaplan-Meier (KM) plots presenting disease-free survival (DFS) strati-
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Fig. 7 | CoDA-Based Risk Stratification of Overall Survival Across Molecular
Subtypes. Kaplan-Meier (KM) survival curves for overall survival (OS) stratified by
CoDA-derived risk groups (high vs. low risk) within molecular subtypes: (A) CMS1,
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(B) CMS2, (C) CMS3, and (D) CMS$S4. Statistically significant OS differences
between risk groups were identified across all molecular classifications, demon-
strating the broad prognostic relevance of CoDA features.

efficient risk-stratified therapies that assess TME characteristics in CC
patients. Our analysis demonstrated that CoDA-based risk stratification is
significantly associated with survival outcomes (OS and DEFS) across mul-
tiple clinical, molecular, and genetic factors. Notably, significant differences
in survival between high-risk and low-risk groups were observed for clinical
variables, particularly overall stage, in both OS and DFS analyses (Figs.
5 and 6, respectively). Among molecular subtypes, significant associations
were found with OS across all CMS groups (Fig. 7), except CMS3, which did
not show a significant association with DFS (Fig. 8). For genetic mutations,
KRAS was significantly associated with both OS (Fig. 9) and DFS (Fig. 10),
whereas BRAF and NRAS mutations showed no significant association with
DFS (Fig. 10).These results highlight the potential of CoDA-based risk
stratification in identifying patient subgroups with differing survival out-
comes. The ability of CoDA features to distinguish between clinical,
molecular and genetic factors emphasizes the need for personalized treat-
ment strategies that consider patient backgrounds and clinical presenta-
tions. Additionally, our findings demonstrate that the integration of clinical,
molecular, and genetic variables significantly influences survival outcomes,
reinforcing the necessity for comprehensive prognostic models that account
for these diverse factors. The observed differences in survival outcomes
among various CMS subtypes indicate that molecular profiling can be a
crucial element in risk stratification for treatment planning, while the sig-
nificant correlation between KRAS mutations and patient survival out-
comes underscores the importance of incorporating genetic testing in
treatment decision-making processes.

While CoDA feature associations with key histological characteristics
ie., tumor budding®' (quantitative count), mucinous component® (present

vs. absent), differentiation” (moderately vs. poorly differentiated), and
invasive front type* (infiltrative vs. broad), were evaluated using a randomly
selected subset of 100 cases from the UH dataset, the limited sample size
restricts the statistical power and generalizability of these findings. Appro-
priate statistical methods were applied: Pearson’s correlation® was used to
assess associations between CoDA features and tumor budding (treated as a
continuous variable), while Spearman’s rank correlation® was used for the
categorical or ordinal features, including mucinous component, differ-
entiation, and invasive front type. The results of these analyses are included
in Supplementary Section 3. Notably, such detailed histopathological
annotations were either not available or could not be assessed in the PLCO,
TCGA, and Emory datasets, limiting our ability to perform a comprehensive
evaluation across all cohorts. Although tumor grade data” were available in
the PLCO and TCGA datasets, most colorectal cancer (CC) cases were
classified as grade 3, further limiting statistical comparisons. Future studies
involving larger, multi-institutional cohorts with comprehensive histo-
pathological annotation will be essential to validate and expand upon these
exploratory observations. Another notable limitation of our study is the
heterogeneity in KRAS mutation status determination across datasets.
TCGA and PLCO datasets incorporate sequencing data generated over
many years using different platforms, including targeted gene panels and
whole-genome sequencing, with varying coverage, quality control measures,
and bioinformatics pipelines. This variability likely contributes to under-
estimation or misclassification of KRAS mutations, which could affect the
observed associations. While TCGA provides access to raw sequencing data
enabling harmonization, such data were not available or consistent across all
datasets in this study. We therefore caution that these technical differences
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Fig. 8 | CoDA-Based Risk Stratification of Disease Free Survival Across Mole-
cular Subtypes. Kaplan-Meier (KM) plots depicting disease-free survival (DFS)
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(A) CMS1, (B) CMS2, (C) CMS3, and (D) CMS4. Significant DFS stratification was
observed for all subtypes except CMS3 (p = 0.09), suggesting effective risk dis-
crimination in most molecular contexts with some limitations for CMS3.

may influence the accuracy of mutation calls, and the generalizability of our
findings related to KRAS mutation status. Future work incorporating
standardized sequencing protocols or comprehensive raw data analysis will
be needed to validate and refine these associations.

Despite the aforementioned limitations, the methodology presented in
this study could have a substantial impact in low- to middle-income countries
(LMICs), where the majority of CC deaths occur®. Although population-
based CC screening can be effective in LMICs, there are no published pro-
spective studies testing screening methods, screening programs, or evidence-
based screening guidelines using prospectively collected data”. Additionally,
in Southeast Asia and Africa, cancer centers and departments are only
available in 55% and 30% of the countries, respectively. Given these chal-
lenges and the increased number of patients presenting with late-stage disease,
there is an urgent need for effective interventions. Because of all these lim-
itations and more patients presenting with late stage disease, efforts are being
made to implement the recently published European Society for Medical
Oncology consensus guidelines, of which molecular pathology and bio-
markers comprise the first section”. One option is the use of broad-panel
sequencing as an initial strategy for devising treatments; however, there are
disadvantages of its availability and affordability in LMICs™'. Next-generation
sequencing is the current diagnostic gold standard for RAS mutational ana-
lysis; however, the standard procedures require extra cost, and the results can
take up to 1-2 weeks on average’. Considering all these limitations, Al-based
systems are increasingly being used in LMICs as a viable option, especially
when there are limited resources”. The opaque nature of these models can
raise concerns regarding their reliability for prognostic and treatment
response predictions. In contrast, the digital pathology-based pipeline

employed in our study offers an affordable and accessible assistive tool, spe-
cifically addressing the need for effective solutions in areas where genomic
profiling facilities are lacking. By leveraging our computationally efficient,
accurate, and inexpensive approach using novel CoDA features, we could
significantly enhance rapid non-invasive risk stratification of high- and low-
risk CC patients concerning clinical, molecular, and genetic variables.

Methods
Patient populations for the study
The study utilized multiple patient datasets to enhance the robustness and
generalizability of findings related to CF characteristics in CC. H&E WSIs of
patients with CC were collected from The Prostate, Lung, Colorectal, and
Ovarian Cancer Screening Trial (PLCO, n =15488), The Cancer Genome
Atlas (TCGA, n=583), Emory University (EU, n="759) and University
Hospitals (UH, #n=619). The magnification of the WSIs were 20X and
40X HistoQC, a quality control tool for digital pathology slides, was
employed to identify and remove fat tissues and regions with artifacts (e.g,
tissue folding, pen marking, and blurriness)’". Detailed information on the
datasets, including inclusion and exclusion criteria, are presented in Fig. 11.
In this study, the dataset PLCO was used for model training while the
remaining datasets (TCGA, Emory, and UH) were used for independent
testing.

Automated detection of collagen fiber in tumor-stroma region on
H&E slides

Tumor regions in 81 WSIs from the TCGA dataset and 50 WSIs from
the UH dataset were manually annotated by a pathologist, and tumor
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Fig. 9 | CoDA-Based Risk Stratification of Overall Survival Across Mutational
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Significant OS differences were observed in all mutational subgroups except BRAF-
mutated cases (p = 0.60), indicating a potential reduced prognostic impact of CoDA
features in this mutation subset.

masks were generated from the tumor-annotated regions using the
digital pathology software QuPath”. Examples of TCGA WSIs and
the corresponding tumor masks, generated using QuPath from the
manually annotated tumor regions, are shown in Supplementary Fig.
1.Using these tumor masks as training set, Resnetl8, a residual
learning convolutional neural network, was used to generate the
tumor masks for the rest of WSIs of TCGA and UH datasets and all
the WSIs from EU and PLCO datasets”. The tumor masks and
HistoQC masks were combined to form the final masks. For the CF
detection process, image tiles (600x600 pixels) were first extracted
from the tumor+HistoQC masked regions of individual WSIs.
Morphological operations, such as image dilation, erosion, and hole-
filling, have been used for epithelial-stroma segmentation'®. Although
CF is best highlighted by Masson’s trichome staining as opposed to
H&E staining, they were not available for our study because these
types of stained images are not standard”’. CF in H&E slide images
typically exhibit a linear phenotype due to the linear arrangement of
type 1 collagen molecules'. A derivative-of-Gaussian (DtG) based
model was applied to detect these linear structures in tumor-
associated stroma tiles'®. The DtG model classified each pixel into
one of seven image structures: Flat, Slope, Blob (dark or light), Line
(dark or light), and Saddle'®. By isolating the pixels identified as the
dark Line structure, the model successfully detected CF in the tiles.
Following the calculation of CoDA features for each individual
tumor-stroma tile, the average value of the features derived from all
the tiles was calculated as the patient-level feature.

Collagen disorder architectural (Coda) features

The following CoDA features were calculated on the detected CFs: [1]
Collagen fiber fragmentation measure, [2] collagen fiber bundling percen-
tage, [3] collagen fiber rigidity measure, [4] collagen fiber anisotropy, and [5]
collagen fiber density indices. The features are calculated as follows:

1. Collagen fiber fragmentation measure: Collagen fiber fragmentation
refers to the breakdown or degradation of CFs in the tumor-stroma
region. The collagen fiber fragmentation for one tile was calculated
using the following equation:

CF

Collagen fiber fragmentation measure = F (€8]
where CF'is the collagen fiber fragments and CF'is the collagen fiber length.
2. Collagen fiber bundling percentage: Collagen fiber bundling refers to
the process of CFs aligning and organizing into tight bundles within the
tumor-stroma region. The percentage of collagen fiber bundling for

one tile was calculated using the following equation:

Fhu
Collagen fiber bundling percentage = % x 100 2

where CF* is the collagen fiber bundling area, and CF" is the collagen fiber
bundle area.

3. Collagen fiber rigidity measure: Collagen fiber rigidity refers to the

straightness, ie., “non-curliness” of CFs within the tumor-stroma
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Fig. 10 | CoDA-Based Risk Stratification of Disease Free Survival Across
Mutational Subtypes. Kaplan-Meier (KM) plots showing disease-free survival
(DFS) stratified by CoDA-derived risk groups (high vs. low risk) across mutational
subtypes: (A) KRAS wild type, (B) KRAS mutated, (C) BRAF wild type, (D) BRAF
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mutated, (E) NRAS wild type, and (F) NRAS mutated. Significant DFS differences
between risk groups were identified in all mutational categories except BRAF-
mutated (p =0.10) and NRAS-mutated (p = 0.26) cases, indicating diminished
predictive performance of CoDA features for these mutations.

region. The collagen fiber rigidity for one tile was calculated using the
following equation:

Collagen fiber rigidity measure = CF' x CF° 3)

where CF'is the thickness of the collagen fibers, and Cf* is the orientation of
the collagen fibers.

4. Collagen fiber anisotropy index: Collagen fiber anisotropy refers to the

directional preference or arrangement of CFs along a certain direction

within the tumor-stroma region. The collagen fiber anisotropy index
for each tile was calculated using the following equation:

Collagen fiber anisotropy index = (CFdx CFY ) (4)

where CF* and Cf" are the collagen fiber changes in the x- and y-directions,
respectively.

5. Collagen fiber density index: Collagen fiber density refers to the

abundance of CFs within a specific volume or area of the tumor-stroma
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Table 3 | Multivariable Cox regression analysis for overall survival (OS) and disease-free survival (DFS)

VARIABLE 0s DFS

HR (95%Cl) p value HR (95%Cl) p value
AGE (> =65 YEARS VS. < 65 YEARS) 0.88 (0.70-1.12) 0.31 0.94 (0.72-1.22) 0.63
GENDER (MALE VS. FEMALE) 1.00 (0.83-1.20) 0.98 0.89 (0.68-1.18) 0.42
RAGE (BLACK VS. WHITE) 0.71 (0.51-0.99) 0.047 1.33(1.01-1.76) 0.045
OVERALL STAGE (I, IV vs. I, 1) 0.43 (0.20-0.93) 0.032 1.39 (1.02-1.90) 0.037
T STAGE (T3,T4 VS. T1,T2) 0.62 (0.37-1.05) 0.07 1.60 (0.99-2.58) 0.053
N STAGE (N + VS. NO) 0.64 (0.48-0.84) 0.001 1.49 (1.06-2.10) 0.023
M STAGE (N + VS. NO) 1.20 (0.92-1.57) 0.17 1.12 (0.97-1.30) 0.12
KRAS (MUTANT VS WILD TYPE) 2.05 (1.30-3.23) 0.002 2.10 (1.15-3.85) 0.015
BRAF (MUTANT VS WILD TYPE) 1.80 (1.05-3.08) 0.033 1.91 (1.21-3.02) 0.005
NRAS (MUTANT VS WILD TYPE) NA NA 1.72 (0.78-3.01) 0.06
CMS1 (NON CMS1 VS. CMS1) 1.25 (0.85-1.83) 0.26 0.77 (0.51-1.18) 0.23
CMS2 (NON CMS2 VS. CMS2) 0.95 (0.59-1.53) 0.83 1.05 (0.84-1.32) 0.67
CMS3 (NON CMS3 VS. CMS3) 0.92 (0.79-1.07) 0.29 1.31(0.95-1.81) 0.09
CMS4 (NON CMS4 VS. CMS4) 0.56 (0.35-0.89) 0.014 0.58 (0.38-0.89) 0.013
CoDA (HIGH RISK VS. LOW RISK) 1.45 (1.10-1.91) 0.008 1.65 (1.25-2.19) 0.0006

Hazard ratios (HR) with corresponding 95% confidence intervals (Cl) are presented. Statistically significant results are shown in bold. "N/A" indicates data not available i.e., NRAS mutation status was
unavailable for patients with OS information. Statistically significant associations were observed for Race (Black vs. White), Overall Stage (IlI-IV vs. I-Il), KRAS and BRAF mutation status (Mutant vs. Wild
Type), and CMS4 subtype (CMS4 vs. non-CMS4) with both OS and DFS. N Stage (N+ vs. NO) showed a significant association with OS only. The CoDA risk score (High Risk vs. Low Risk) was independently
associated with worse OS (p = 0.008) and DFS (p = 0.0006), highlighting its added prognostic value beyond traditional clinical and molecular features.

Fig. 11 | CONSORT DIAGRAM showing datasets
used in our study and the inclusion and exclusion =
criteria. PLCO: (The Prostate, Lung, Colorectal, and E § PLCO (N=15488) TCGA (N=583) UH (N=619) EU (N=759)
Ovarian Cancer Screening Trial), TCGA: (The E L
Cancer Genome Atlas), UH :(University Hospitals), < %
. . a
EU (Emory University).
EXCLUSION:
PATIENTS WHO ARE NOT COLON ADENOCARCINOMA
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DUPLICATE IMAGES

. |

ok
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<«|Z

] l l l
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08 (N=735)
DFS(N=735)

TCGA UH EU
OS (N=352) OS (N=0) OS (N=391)
DFS(N=306) DFS(N=577) DFS(N=391)

region. The collagen fiber density index for each tile was calculated
using the following equation:

a

Collagen fiber density index = ¢ (5

TS
where Cf* is the area occupied by collagen fibers in the tumor stroma region
and TS" is the total area of the tumor stroma region.

Statistical analysis
Differences in CoDA features were assessed across clinical, molecular, and
genetic variables using all available datasets. The subgroup comparisons

included: 1] Clinical variables: (A) Overall stage: Stages I-II vs. III-IV, (B) T
stage: T1-2 vs. T3-4, (C) N stage: NO vs. N +, (D) M stage: M0 vs. M + (2]
Consensus Molecular Subtypes (CMS): Pairwise comparisons among
CMS1, CMS2, CMS3, and CMS4; [3] Genetic mutations: Wild-type vs.
mutant status for KRAS, BRAF, and NRAS.

The Mann-Whitney U test™* was applied to evaluate differences in
CoDA features ie., CF fragmentation, CF bundling, CF anisotropy, CF
density, and CF rigidity, between each group. To ensure robustness, the
analysis was repeated across 100 iterations, with 50 samples randomly
selected from each group per iteration. Bonferroni correction®™™ was
applied to the pooled p-values to account for multiple testing, using a
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significance threshold of 0.05 for both raw and corrected p-values(denoted
by *p).

To further assess the association of CoDA features with these variables,
a Random Forest classification framework™" with iterative random sam-
pling (100 iterations) was implemented. In each iteration, class-balanced
resampling was performed, followed by feature selection using
permutation-based importance’”. The classifier was trained using the
selected features, and performance was evaluated via area under the ROC
curve (AUC)". Mean AUC and standard deviation across iterations were
computed for each variable, and corresponding F1 scores*' and accuracy”’
were also calculated to determine overall classification performance.

For survival analysis, separate LASSO-Cox models***’ were trained on
the PLCO dataset for OS and DFS endpoints using the CoDA features. Risk
scores were generated for each patient, and the median risk score in the
PLCO dataset was used as a cutoff to stratify patients into high-risk and low-
risk groups. This cutoff was then applied to the external validation datasets
(TCGA, UH, and Emory) to stratify patients in both OS and DES cohorts.
The concordance index (C-index)* was calculated for each survival model
to assess discriminative ability and is displayed alongside Kaplan-Meier
(KM) curves™.

Risk stratification was further evaluated within subgroups defined by
the same clinical, molecular, and genetic variables listed above. The resulting
KM curves visualized survival differences between high- and low-risk
groups across these variables.

Finally, multivariable Cox proportional hazards regression**"” was
employed to assess the independent prognostic significance of the CoDA as
an independent prognostic while adjusting for covariates including clinical,
molecular, and genetic factors. Hazard ratios, 95% confidence intervals, and
p-values were reported. All tests were two-sided, and p < 0.05 were con-
sidered statistically significant.

Ethical statement

This study was performed under the Emory University Institutional Review
Board (IRB) protocol STUDY00005782, which was approved as a non-
human study and all relevant ethical regulations were followed. De-
identified human samples obtained from the other institution used in our
study i.e., University Hospitals, were collected under the same IRB approved
protocol STUDY00005782. All institutions collected specimens with par-
ticipants informed consent. The other datasets used in our study ie.,
Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) and
The Cancer Genome Atlas (TCGA) are publicly available datasets.

Data availability

The dataset and related clinical information for TCGA and PLCO datasets
are available in https://portal.gdc.cancer.gov/projects/ TCGA-COAD and
https://cdas.cancer.gov/plco/ respectively. The CMS scores for TCGA
dataset used in our analysis is available from https://bmccancer.
biomedcentral.com/articles/10.1186/s12885-022-09344-3.  Since  the
cases from the involved institutions are protected through institutional
compliance, the clinical repository of cases can only be shared per specific
institutional review board (IRB) requirements. This applies to the datasets
from Emory University and University Hospitals. Upon reasonable
request, a data sharing agreement can be initiated between the interested
parties and the clinical institution following institution-specific guide-
lines. For inquiries or requests regarding data sharing, please contact
corresponding author.

Code availability

HistoQC code is available from: https://github.com/choosehappy/HistoQC.
Tumor segmentation code is available from: https://github.com/jnkather/
MSIfromHE.The CoDA feature calculation code is uploaded in GitHub by
author Reetoja Nag and is available in: https://github.com/nagreetoja/
CoDA. CoDA feature calculation code was generated using MATLAB
2023b software.
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