Table 1 Results (Mean ± 95% confidence interval) for Task Night

From: Benchmark on a large cohort for sleep-wake classification with machine learning techniques

Method

Algorithm evaluation metrics

Sleep quality metrics

Accuracy

Specificity

Precision

Sensitivity

F1

WASO (min)

MAE WASO

Sleep Eff. (%)

MAE sleep Eff.

Ground truth

100.0 ± 0.0

100.0 ± 0.0

100.0 ± 0.0

100.0 ± 0.0

100.0 ± 0.0

102.1 ± 7.3

0.0

58.4 ± 1.4

0.0

Baselines

 Manual annotations

79.8 ± 1.2

56.5 ± 2.3

75.8 ± 1.5

94.8 ± 1.5

83.3 ± 1.4

45.8 ± 8.6

74.7

73.0 ± 1.7

17.2

 Device algorithm

76.2 ± 1.0

50.1 ± 1.8

72.6 ± 1.3

94.3 ± 0.6

81.3 ± 1.0

54.0 ± 4.2

53.1

75.7 ± 1.0

17.7

 Always sleep

58.4 ± 1.4

0.0 ± 0.0

58.4 ± 1.4

100.0 ± 0.0

72.8 ± 1.1

0.0 ± 0.0

102.1

100.0 ± 0.0

41.6

 Always wake

41.6 ± 1.4

100.0 ± 0.0

0.0 ± 0.0

0.0 ± 0.0

0.0 ± 0.0

459.2 ± 9.0

357.0

0.0 ± 0.0

58.4

Traditional algorithms

 Oakley

 θ= 1032

77.5 ± 0.9

63.0 ± 1.7

76.8 ± 1.3

87.2 ± 0.9

81.0 ± 1.0

95.0± 5.9

37.3

66.0 ± 1.1

10.1

 Scripps Clinic21

76.6 ± 1.1

48.8 ± 1.9

72.5 ± 1.4

95.9 ± 0.5

81.8 ± 1.0

46.3 ± 4.2

58.5

77.1 ± 1.0

18.9

 Oakley

 θ= 4032

75.9 ± 1.0

49.3 ± 1.8

72.2 ± 1.3

94.4 ± 0.5

81.2 ± 1.0

53.1 ± 4.1

52.9

76.0 ± 1.0

17.9

 Cole-Kripke6

75.4 ± 1.1

45.0 ± 1.8

71.1 ± 1.4

96.7 ± 0.4

81.2 ± 1.0

40.2 ± 3.7

63.5

79.2 ± 1.0

21.0

 Sazonov9

75.2 ± 1.0

73.3 ± 1.6

79.9 ± 1.3

75.5 ± 1.4

76.7 ± 1.2

149.2 ± 7.7

58.7

54.9 ± 1.3

9.1

 Oakley

 θ = 8032

73.9 ± 1.1

41.2 ± 1.7

69.7 ± 1.4

96.9 ± 0.4

80.3 ± 1.0

35.9 ± 3.2

67.4

80.9 ± 0.9

22.7

 Sadeh5

73.4 ± 1.2

38.3 ± 1.8

69.1 ± 1.4

98.3 ± 0.3

80.3 ± 1.1

26.3 ± 3.1

76.5

83.0 ± 0.9

24.7

 Webster28

73.3 ± 1.2

38.2 ± 1.8

69.0 ± 1.4

98.2 ± 0.3

80.3 ± 1.1

27.5 ± 3.0

75.3

83.0 ± 0.9

24.7

 Group average

75.1 ± 1.3

49.6 ± 10.4

72.5 ± 3.3

92.9 ± 6.6

80.4 ± 1.3

59.2 ± 35.4

61.3 ± 10.6

75.0 ± 8.2

18.6 ± 5.1

Rescoring rules applied to traditional algorithms

 Resc. Oakley

 θ = 40

80.3 ± 0.9

68.3 ± 1.9

79.9 ± 1.3

88.1 ± 0.9

83.1 ± 1.0

93.2 ± 6.6

37.7

64.4 ± 1.2

9.0

 Resc. Cole-Kripke

80.2 ± 1.0

65.7 ± 2.0

78.9 ± 1.3

89.9 ±0.8

83.3 ± 1.0

83.5 ± 6.3

40.0

66.6 ± 1.2

10.2

Resc. Scripps Clinic

80.1 ± 1.0

70.4 ± 1.9

80.7 ± 1.3

86.3 ± 1.1

82.6 ± 1.0

102.8 ± 7.5

41.8

62.5 ± 1.3

9.1

 Resc. Oakley

 θ = 80

79.3 ± 1.0

59.8 ± 2.0

76.6 ± 1.4

92.8 ± 0.6

83.2 ± 1.0

65.0 ± 5.4

46.4

70.7 ± 1.1

13.1

 Resc. Sadeh

79.1 ± 1.0

59.4 ± 2.0

76.5 ± 1.4

92.8 ± 0.7

83.1 ± 1.0

64.1 ± 5.7

49.2

70.9 ± 1.2

13.5

 Resc. Webster

79.0 ± 1.0

58.9 ± 2.0

76.2 ± 1.4

93.1 ± 0.7

83.0 ± 1.0

63.2 ± 5.5

48.9

71.3 ± 1.2

13.8

 Resc. Oakley

 θ = 10

77.8 ± 1.0

81.6 ± 1.6

85.5 ± 1.3

73.8 ± 1.6

78.0 ± 1.3

163.9 ± 9.1

68.7

50.7 ± 1.5

10.8

 Resc. Sazonov

68.1 ± 1.3

90.1 ± 1.3

87.8 ± 1.6

51.2 ± 2.1

62.3 ±2.0

258.4 ± 11.0

156.7

34.0 ± 1.6

24.7

 Group average

78.0 ± 3.4

69.3 ± 9.5

80.3 ± 3.6

83.5 ± 12.1

79.8 ± 6.1

111.8 ± 56.8

61.2 ± 33.3

61.4 ± 10.9

13.0 ± 4.3

Machine learning algorithms

 Extra trees

81.8 ± 1.0

68.1 ± 1.9

80.3 ± 1.3

90.4 ± 1.2

84.3 ± 1.1

85.4 ± 7.4

42.8

65.8 ± 1.4

10.3

 Logistic regression

81.5 ± 1.0

67.2 ± 2.0

79.9 ± 1.3

90.7 ± 1.2

84.1 ± 1.1

83.2 ± 7.5

45.6

66.3 ± 1.4

11.1

 Linear SVM

81.4 ± 1.1

68.0 ± 2.0

80.2 ± 1.3

89.9 ± 1.3

83.8 ± 1.1

87.2 ± 7.8

45.8

65.5 ± 1.5

10.8

 Perceptron

78.4 ± 1.0

69.0 ± 1.8

79.4 ± 1.3

83.9 ± 1.4

80.7 ± 1.2

110.3 ± 8.0

44.0

61.7 ± 1.4

9.3

 Group average

80.8 ± 2.5

68.1 ± 1.2

80.0 ± 0.6

88.8 ± 5.1

83.2 ± 2.7

91.5 ± 20.1

44.6 ± 2.3

64.8 ± 3.4

10.4 ± 1.2

Rescoring rules applied to machine learning algorithms

 Resc. Log. Regression

78.9 ± 1.2

80.7 ± 1.8

85.6 ± 1.2

75.9 ± 1.9

78.8 ± 1.5

152.8 ± 10.4

64.5

52.2 ± 1.7

10.6

 Resc. extra trees

78.5 ± 1.2

82.0 ± 1.7

86.1 ± 1.2

74.2 ± 1.9

78.2 ± 1.5

160.4 ± 10.3

68.6

50.8 ± 1.7

11.0

 Resc. linear SVM

78.3 ± 1.2

81.4 ± 1.7

85.8 ± 1.2

74.4 ± 2.0

77.9 ± 1.6

159.4 ± 10.6

69.6

51.1 ± 1.7

11.2

 Resc. perceptron

73.4 ± 1.3

84.4 ± 1.5

85.7 ± 1.4

63.8 ± 2.2

70.8 ± 1.9

202.2 ± 11.3

104.4

43.7 ± 1.8

16.2

 Group average

77.3 ± 4.1

82.1 ± 2.6

86.0 ± 0.3

72.1 ± 8.9

76.4 ± 6.0

168.7 ± 35.9

76.8 ± 29.5

49.5 ± 6.2

12.2 ± 4.2

Deep-learning algorithms

 LSTM 100

83.1 ± 1.0

69.9 ± 2.0

81.6 ± 1.3

91.4 ± 1.1

85.5 ± 1.0

79.2 ± 7.6

43.9

65.6 ± 1.4

10.0

 CNN 100

82.9 ± 1.0

68.8 ± 2.1

81.3 ± 1.3

91.7 ± 1.2

85.3 ± 1.1

78.3 ± 7.9

46.7

66.2 ± 1.5

10.8

 LSTM 50

82.7 ± 1.0

70.1 ± 1.9

81.5 ± 1.3

90.5 ± 1.1

85.0 ± 1.0

85.6 ± 7.6

41.3

64.9 ± 1.4

9.6

 CNN 50

82.5 ± 1.0

67.6 ± 2.0

80.5 ± 1.3

92.0 ± 1.1

85.1 ± 1.1

75.9 ± 7.4

46.6

66.9 ± 1.4

11.0

 CNN 20

81.4 ± 1.0

66.5 ± 1.9

79.6 ± 1.3

90.9 ± 1.1

84.1 ± 1.1

81.9 ± 7.1

43.2

66.7 ± 1.4

10.8

 LSTM 20

81.3 ± 1.0

65.0 ± 1.9

79.0 ± 1.3

92.0 ± 1.0

84.3 ± 1.0

75.3 ± 6.7

44.5

68.0 ± 1.3

11.4

 Group average

82.3 ± 0.8

68.0 ± 2.1

80.6 ± 1.2

91.4 ± 0.7

84.9 ± 0.6

79.4 ± 4.1

44.4 ± 2.2

66.4 ± 1.1

10.6 ± 0.7

Rescoring rules applied to deep-learning algorithms

 Resc. LSTM 100

81.2 ± 1.0

77.8 ± 1.8

84.8 ± 1.2

82.1 ± 1.5

82.3 ± 1.2

123.4 ± 9.4

47.2

57.1 ± 1.6

8.7

 Resc. CNN 100

80.9 ± 1.0

78.3 ± 1.9

85.1 ± 1.2

81.1 ± 1.7

81.7 ± 1.3

128.1 ± 9.9

50.8

56.4 ± 1.7

9.3

 Resc. CNN 50

80.6 ± 1.1

78.2 ± 1.8

84.8 ± 1.3

80.6 ± 1.7

81.4 ±1.3

130.0 ± 9.7

51.4

56.1 ± 1.6

9.3

 Resc. LSTM 50

79.9 ± 1.0

80.1 ± 1.7

85.6 ± 1.2

78.0 ± 1.6

80.4 ± 1.3

142.9 ± 9.8

55.6

53.8 ± 1.6

9.5

 Resc. LSTM 20

79.5 ± 1.1

79.9 ± 1.7

85.2 ± 1.2

77.5 ± 1.7

79.9 ± 1.4

145.2 ± 9.8

56.9

53.6 ± 1.6

9.6

 Resc. CNN 20

78.4 ± 1.1

81.3 ± 1.7

85.7 ± 1.3

74.5 ± 1.8

78.2 ± 1.5

158.5 ± 10.2

66.8

51.3 ± 1.7

10.8

 Group average

80.1 ± 1.1

79.3 ± 1.5

85.2 ± 0.4

79.0 ± 3.0

80.7 ± 1.6

138.0 ± 13.8

54.8 ± 7.2

54.7 ± 2.3

9.6 ± 0.7

  1. Methods within each group are sorted by their mean accuracy score. The best results for each category are marked in bold. Note that for WASO and Sleep Efficiency, the best results are the closest to the ground truth