Fig. 3 | npj Digital Medicine

Fig. 3

From: Wearable sensors for monitoring the internal and external workload of the athlete

Fig. 3

Wearable sensors monitor the biomechanical performance of the athlete. a Distribution of tackles (n = 352) made and against peak instantaneous Player Load™. b Peak velocity for tackles made and against associated with tackle intensity categorized as low (n = 115), medium (n = 216), and high (n = 21). c Peak Player Load™ for tackles made and against associated with tackle intensity categorized as low (n = 115), medium (n = 216), and high (n = 21). d Relative displacements of the mouthguard sensor from the skull studied using high speed video. Among 16 trials, the mouthguard always had the smallest (sub-millimeter) displacement from the skull, within video error, compared to the skull cap and skin patch. e Relative displacements of the Reebok skull cap from the skull studied using high speed video. f Relative displacements of the xPatch Gen2 skin patch sensor from the skull studied using high speed video. g motusBASEBALL sensor exhibited higher peak elbow valgus torque for baseball pitching compared to football throwing. Data demonstrates the utility of the sensor to measure biomechanical forces during non-stationary periods on an athlete. h motusBASEBALL sensor used to quantify the average valgus torque on the elbow for baseball pitching and football throwing between foot contact and maximum internal rotation. “aSignificantly different (p < 0.01) from Low; bsignificantly different (p < 0.01) from Medium. No significant differences between tackles made and against.” Figures were reproduced with permission from Gastin et al.29 ac, Wu et al.79 df, and Laughlin et al.89 gh

Back to article page