Table 1 Comparison of statistical power above and below auto-encoder loss inflection points for various image datasets.
From: Autoencoders for sample size estimation for fully connected neural network classifiers
Pre-MCSE | Post-MCSE | |||||
---|---|---|---|---|---|---|
Dataset | R2 | Kendall’s τ | Spearman’s ρ | R2 | Kendall’s τ | Spearman’s ρ |
MNIST | 0.449 | 0.438 | 0.611 | 0.751 | 0.851 | 0.972 |
FMNIST | 0.203 | 0.286 | 0.411 | 0.922 | 0.855 | 0.969 |
KMNIST | 0.129 | 0.284 | 0.414 | 0.919 | 0.839 | 0.971 |
EMNIST | 0.119 | 0.224 | 0.336 | 0.784 | 0.843 | 0.971 |
QMNIST | 0.207 | 0.323 | 0.476 | 0.779 | 0.836 | 0.962 |
CIFAR10 | 0.028 | 0.051 | 0.073 | 0.499 | 0.777 | 0.936 |
STL10 | 0.002 | 0.013 | 0.016 | 0.002 | 0.144 | 0.209 |
FAKE | 0.002 | 0.085 | 0.128 | 0.154 | 0.032 | 0.046 |