Table 2 Correlation between test area-under-the-curve and sample size above and below auto-encoder loss inflection points for with varying dataset characteristics and neural network hyper-parameters.
From: Autoencoders for sample size estimation for fully connected neural network classifiers
Pre-MCSE | Post-MCSE | ||||||
---|---|---|---|---|---|---|---|
Parameter | Value | R2 | Kendall’s τ | Spearman’s ρ | R2 | Kendall’s τ | Spearman’s ρ |
N-informative | 8 | 0.074 | 0.292 | 0.341 | 0.577 | 0.837 | 0.944 |
16 | 0.019 | −0.172 | −0.210 | 0.578 | 0.836 | 0.944 | |
32 | 0.013 | −0.180 | −0.224 | 0.534 | 0.850 | 0.954 | |
64 | 0.078 | 0.172 | 0.212 | 0.529 | 0.835 | 0.944 | |
128 | 0.056 | 0.138 | 0.170 | 0.632 | 0.804 | 0.925 | |
256 | 0.010 | 0.081 | 0.105 | 0.729 | 0.707 | 0.852 | |
N-classes | 2 | 0.000 | 0.000 | 0.000 | 0.161 | 0.399 | 0.530 |
4 | 0.011 | 0.072 | 0.093 | 0.332 | 0.514 | 0.679 | |
6 | 0.039 | 0.146 | 0.189 | 0.522 | 0.610 | 0.783 | |
8 | 0.029 | 0.125 | 0.162 | 0.615 | 0.659 | 0.824 | |
10 | 0.023 | 0.118 | 0.152 | 0.606 | 0.617 | 0.781 | |
N-features | 256 | 0.004 | 0.059 | 0.053 | 0.681 | 0.585 | 0.736 |
512 | 0.149 | 0.410 | 0.538 | 0.666 | 0.663 | 0.814 | |
784 | 0.020 | −0.108 | −0.141 | 0.713 | 0.697 | 0.849 | |
1024 | 0.225 | 0.402 | 0.475 | 0.566 | 0.624 | 0.789 | |
2048 | 0.100 | 0.193 | 0.253 | 0.629 | 0.608 | 0.769 | |
4096 | 0.069 | 0.181 | 0.225 | 0.582 | 0.513 | 0.671 | |
Hidden Layer Size | 64 | 0.012 | 0.085 | 0.110 | 0.459 | 0.499 | 0.653 |
128 | 0.023 | 0.118 | 0.153 | 0.552 | 0.591 | 0.755 | |
256 | 0.014 | 0.085 | 0.111 | 0.590 | 0.619 | 0.783 | |
512 | 0.023 | 0.109 | 0.142 | 0.621 | 0.638 | 0.800 | |
784 | 0.026 | 0.123 | 0.160 | 0.603 | 0.656 | 0.818 | |
1024 | 0.039 | 0.151 | 0.194 | 0.595 | 0.640 | 0.805 |