Table 3 Main results excluding missing dataa.

From: Smartphone accelerometer data as a proxy for clinical data in modeling of bipolar disorder symptom trajectory

Features (# of features)

Classifier

Acc

Acc std

AUC

AUC std

Sensitivity

All (50)

Random Forest

0.9211

0.06

0.9752

0.04

0.9228

Gradient Boost

0.8898

0.09

0.9697

0.05

0.8824

Neural Network

0.8555

0.03

0.9321

0.04

0.9653

Typing+Accel (34)

Random Forest

0.8952

0.04

0.9768

0.02

0.9559

Gradient Boost

0.8713

0.05

0.9642

0.03

0.9338

Neural Network

0.8670

0.05

0.9224

0.06

0.9563

Typing (22)

Random Forest

0.9155

0.03

0.9774

0.01

0.9375

Gradient Boost

0.8861

0.04

0.9584

0.02

0.9485

Neural Network

0.8691

0.04

0.9383

0.04

0.9512

Accel (12)

Random Forest

0.8694

0.03

0.9512

0.01

0.9228

Gradient Boost

0.8272

0.02

0.9083

0.01

0.9044

Neural Network

0.8545

0.04

0.9183

0.04

0.9168

  1. aAcc accuracy, AUC area under curve, std standard deviation.