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Development and validation of a
smartphone-based deep-learning-
enabled system to detect middle-ear
conditions in otoscopic images
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Martin Chalumeau1,4, Laurent Schmoll5 & Jérémie F. Cohen 1,4

Middle-ear conditions are common causes of primary care visits, hearing impairment, and
inappropriate antibiotic use. Deep learning (DL)may assist clinicians in interpreting otoscopic images.
This study included patients over 5 years old from an ambulatory ENT practice in Strasbourg, France,
between 2013 and 2020. Digital otoscopic images were obtained using a smartphone-attached
otoscope (Smart Scope, Karl Storz, Germany) and labeled by a senior ENT specialist across 11
diagnostic classes (reference standard). An Inception-v2 DL model was trained using 41,664
otoscopic images, and its diagnostic accuracy was evaluated by calculating class-specific estimates
of sensitivity and specificity. The model was then incorporated into a smartphone app called i-Nside.
TheDLmodelwas evaluatedona validation set of 3,962 images andaheld-out test set comprising326
images. On the validation set, all class-specific estimates of sensitivity and specificity exceeded 98%.
On the test set, the DLmodel achieved a sensitivity of 99.0% (95%confidence interval: 94.5–100) and
a specificity of 95.2% (91.5–97.6) for the binary classification of normal vs. abnormal images; wax
plugs were detected with a sensitivity of 100% (94.6–100) and specificity of 97.7% (95.0–99.1); other
class-specific estimates of sensitivity and specificity ranged from 33.3% to 92.3% and 96.0% to
100%, respectively. We present an end-to-end DL-enabled system able to achieve expert-level
diagnostic accuracy for identifying normal tympanic aspects and wax plugs within digital otoscopic
images. However, the system’s performance varied for other middle-ear conditions. Further
prospective validation is necessary before wider clinical deployment.

An accurate diagnosis of middle-ear conditions has the potential to reduce
both hearing impairment and antimicrobial resistance1,2. In low- and
middle-incomecountries, at least 50%of otitismedia (OM) caseswill lead to
hearing impairment2. If left untreated, middle-ear conditions can also lead
to a wide range of complications, such as balance problems, meningitis, or
brain abscess. In high-income countries, middle-ear diseases such as acute
otitis media (AOM) are a common cause of children presenting to
healthcare providers3,4, often leading to inappropriate antibiotic use and
driving the emergence of antimicrobial resistance.

Diagnosis of middle-ear conditions relies on otoscopy and functional
testing of the eardrum. Initial diagnosis and triage of patients are usually
made by primary care providers. However, otoscopy remains challenging
for many physicians5, and may be inaccessible in remote and resource-
limited settings such as nursing homes for the elderly, rural or poor areas,
and developing countries6. New diagnostic tools for middle-ear conditions
are needed to increase accuracy and reproducibility, reduce barriers to
accessing healthcare, and improve patient outcomes through early diag-
nosis, appropriate referral, and treatment.
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Deep learning (DL) has shown promise in accurately interpreting
images in several areas of clinical medicine7,8. DL allows for automatically
extracting the most predictive features needed for classification through
multiple layers of representation directly from raw images7,9,10. Non-experts
healthcare providers could use DL-assisted otoscopy to achieve an accurate
diagnosis, thereby improving the detection of patients with middle-ear
abnormalities that require primary-care level interventions (e.g., antibiotics)
or referral to ear-nose-throat (ENT) specialists. Several teams have devel-
opedDL-assisted systems for diagnosingmiddle-ear conditions, with global
accuracy usually above 90% (Supplementary Table 1)11–22. However, to our
knowledge, there is no end-to-end, user-friendly, and highly accurate DL-
enabled smartphone-based diagnostic system that is sufficiently validated
for clinical practice.

In this study, we describe the development and validation of an end-to-
end diagnostic system that combines a smartphone-attached digital oto-
scope, a DL-enabledmodel, and a smartphone app for detectingmiddle-ear
conditions.

Results
Datasets
A total of 98,137 digital otoscopic images were available for model devel-
opment. Class balancing was applied to the training and validation sets by
capping the number of images used for each class at a maximum of 6000
(uniformly sampled); this helped reduce class imbalance, but rare condi-
tions remained less represented (range: 4% to 13%, Table 1). After class
balancing, the final database used for developing the algorithm consisted of
45,606 images that were randomly partitioned into training (41,664 images)
and validation (3962 images) sets. Theheld-out test set included 326 images.
Supplementary Figure 1 presents a flowchart of the different datasets.
Distributions of the diagnoses in the training, validation, and test sets are
shown in Table 1. Examples of images for the 11 categories are presented in
Fig. 1. Among the 45,606 images included in DL training and validation, an
analysis identified 20,320 images with a high level of similarity (i.e., dupli-
cates), and we estimated that 25,286 otoscopic images used for model
development were unique (Supplementary Table 2).

Diagnostic accuracy of the deep-learning algorithm on the
validation set
The contingency table reflecting the assessment of the DL algorithm on the
validation set is presented in Table 2; Table 3A summarizes corresponding
class-specific estimatesof sensitivity, specificity, andAUROC;Fig. 2displays
class-specific estimates of AUROC with their 95% confidence intervals;
Supplementary Figure 2Apresents class-specificROCcurves. For the binary
classification of normal vs. abnormal images, the model achieved a sensi-
tivity of 99.1% (97.8–99.7), a specificity of 100% (99.8–100) and anAUROC
of 1.00 (1.00–1.00). Class-specific estimates of sensitivity ranged from98.1%
(for eardrumperforation) to 100% (for wax plug); class-specific estimates of
specificity ranged from 99.8% (for otitis externa) to 100% (for eardrum
perforation, AOM, osteoma, foreign body, and tympanic graft). All class-
specific AUROCs were of 1.00 (1.00–1.00) in the validation set. The DL
model misdiagnosed nine eardrum perforation images as otitis externa and
one aswaxplug; in all instances, botheardrumperforation andotitis externa
were present (see example in Fig. 3).

Diagnostic accuracy of the deep-learning algorithm on the test
set and robustness analysis
The contingency table reflecting the assessment of the DL algorithm on the
held-out test set is presented in Table 4; Table 3B summarizes corre-
sponding class-specific estimates of sensitivity, specificity, andAUROC; Fig.
2 displays class-specific estimates of AUROC with their 95% confidence
intervals; Supplementary Figure 2B presents class-specific ROC curves. For
the binary classification of normal vs. abnormal images, sensitivity was
99.0% (94.5–100), specificity 95.2% (91.5–97.6), and AUROC 1.00
(0.99–1.00). Class-specific sensitivity estimates on the test set ranged from
33.3% (for tympanic graft and foreign body) to 100% (for wax plug). Class-

specific specificity estimates ranged from 95.2% (for normal) to 100% (for
AOM and osteoma). Class-specific AUROC ranged from to 0.94 (for for-
eign body) to 1.00 (for normal and wax plug).

Robustness analysis conducted on corrupted test set images revealed a
relative accuracy of ≥80% for most “blur,” “brightness” and “digital” cor-
ruptions up to level 3 of severity. However, lower relative accuracy was
observed in “noise” experiments and levels 4–5 of severity (Supplementary
Table 3).

Model interpretation
The t-SNE plot (Fig. 4) showed how the features extracted by the DLmodel
separated the eleven diagnostic classes into clusters. Overall, most test set
points were aggregated in the same cluster as the validation points for their
class. Some classes, such as “wax plug,” “normal,” and “acute otitis media”
appeared highly aggregated. However, other classes such as “tympano-
sclerosis,” “foreign body,” and “tympanic graft” were more scattered in the
t-SNE space; these three classes also yielded the lowest accuracy estimates.

Analysis of deep-learning model misclassifications
Among the 326 images in the test set, 48weremisclassified by theDLmodel
(Supplementary Table 4). For 63% (30/48) of misclassified images, the
correct diagnosis did not receive the highest prediction but appeared among
the three most probable categories according to the DL model. The most
frequent errors were: four foreign bodies misclassified as normal, three
tympanoscleroses misclassified as normal, three tympanoscleroses mis-
classified as OMEs, three AOMs misclassified as perforations, and three
tympanic grafts misclassified as cavities after cholesteatoma removal. Six
otoscopic images were complex to classify because they actually corre-
sponded to multiple diagnoses, including the one suggested by the DL
model. In 77% of cases (37/48), blinded reading by a second ENT agreed
with the ground truth label; in two cases, blinded reading pointed to
potential mistakes in the ground truth labels.

Discussion
In this large-scale diagnostic accuracy study, we trained and evaluated aDL-
enabled algorithm on a labeled dataset of digital otoscopic images. The
diagnostic tool achieved high accuracy on the validation set, with all class-
specific estimates of sensitivity and specificity exceeding98%.On the test set,
theDL system achieved high accuracy for the binary diagnosis of normal vs.
abnormal images and for the identification ofwaxplugs, but yielded variable
performance across other diagnostic categories.

Prior researchhas explored thepotential of usingCNNs to improve the
diagnosis of middle-ear conditions from otoscopic images11–22, with global
accuracies ranging from 83.8% to 97.2% (Supplementary Table 1). The
present study expands upon this body of evidence using a large and diverse
dataset containing 11 diagnostic classes, and further demonstrates that it
may be possible to achieve high accuracy with a smartphone-centered
system. All DL models fit their training data closer than unseen data, and
here the model had lower performances in the test set compared with the
validation set. However, we believe the degree of overfitting can be con-
sideredmodest since all AUROCson the test set were≥ 0.94.Our analysis of
classification errors allowed us to identify potential areas for model
improvement. Tympanic grafts and cavities after cholesteatoma removal
appeared as frequent sources of misclassification. These categories may be
excluded from the model because they pertain to specific post-operative
contexts where clinicians can rely on history-taking to guide their diagnosis.
The issue of multiple diagnoses within an image should also be better
addressed, for example, by allowing multiple labels in training. Also, more
images of AOM and OME should be added to the training set, as these
images were often misclassified. We remain confident that wider data col-
lection – multiple investigators acquiring otoscopic frames in multiple
locations – should bring back accuracy closer to the 99% estimates found on
validation data. Finally, we detected two frames where blinded reading
suggested potential errors in ground truth labels, highlighting the limitation
of relying on a single expert as the reference standard.
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The i-Nside diagnostic system could have several roles in managing
patients with suspected middle-ear conditions23. In remote areas and
resource-limited settings, the DL-enabled system could be used as a triage
test for mass screening and targeted referral24–27. In primary care, where
cliniciansmay lackexpertise inotoscopy, i-Nside couldbeused as an add-on
test to help improve the accurate detection of middle-ear conditions, in line
with the principles of “augmented medicine”28. For example, Buyn et al.
evaluated the benefit of a DL-enabled digital otoscopy model designed to
help residents diagnosemiddle-eardiseases and showed an increase of 7% in
accuracy15. DL-enabled otoscopy also has potential applications in
telemedicine24,25: patients could acquire otoscopic images themselves and
then send them for DL-assisted interpretation. At the moment, because the
test set evaluation only points to high accuracy for distinguishing between
normal vs. abnormal images and detecting wax plugs, i-Nside’s primary
utility appears to lie in the triage of patients for targeted referrals. An
approach to maximize clinical utility could be to reduce the number of
output classes by grouping themaccording to their consequences in termsof
patient management, such as “Normal” vs. “Apply home treatment and
reevaluate” vs. “Refer to specialist.”

OurDLdiagnostic system relies on a single still image of the patient ear
as input, while video-otoscopy may enable better assessment. For example,
Binol et al. developed a DL automated frame-segmentation, selection, and
stitching tool to create enhanced composite images from otoscopy video
clips29–31. Diagnostic performancewas slightly higherwhenusing composite
images than a manually selected keyframe (sensitivity of 80% vs. 77%,
specificity of 94% vs. 93%, respectively). Other smartphone-enabled inno-
vative avenues to diagnosemiddle ear conditions exist. For example, several
studies have shown that acoustic reflectometry may replace tympanometry
formiddle earfluid detection32,33. Two studies recorded and analyzed echoes
from a device linked to a smartphone and showed promising performance
compared with traditional diagnostic tools. However, both systems were
evaluated in small proof-of-concept studies with less than 100 patients and
deserve independent evaluation. Further improvements might be achieved
by combining the signal of suchacoustic testswithoutputs fromDL-enabled
otoscopic systems on a smartphone.

Compared with other medical fields where DL-enabled diagnostic
systems have been developed – and sometimes FDA-approved7,34 – our
results seem promising. Most approved artificial intelligence-enabled sys-
tems are in radiology and ophthalmology34, where large datasets are readily
available. For example, a recent external validation study of the Rayvolve®
system included 5865 radiographic images from 2549 children and showed

high accuracy in detecting fractures, with a sensitivity of 96% and a speci-
ficity of 91%35. Also, an FDA-cleared and CE-marked DL device to detect
diabetic retinopathy in retinal fundusphotographswas recently assessed in a
prospectivemulticenterdiagnostic studywhich reporteda sensitivity of 95%
and a specificity of 85-89%36.

Our study has several strengths. First, to our knowledge, we used the
largest digital otoscopy dataset to train the model, allowing for a sufficient
diversity of images in each class and limiting overfitting. Second, we con-
ducted a validation on a held-out test set to scrutinize whether model per-
formance remainedhighwhen applied tonew images independent from the
training and validation sets; this allowedus to be cautious about ourfindings
and identify the need for further external validation studies. Third, to our
knowledge, no other end-to-end diagnostic system using state-of-the-art
CNN methods with external validation is available. Cavalcanti et al. devel-
oped a smartphone-based otoscope with an accompanying app. However,
their study included only 69 patients, and the algorithm relied on an out-of-
datemultilayer perceptronmodel thatmay contribute to the lowaccuracy of
the tool (79.6%)19. Myburgh et al. also presented a smartphone- and cloud-
based automated OM diagnostic system, but their models used a decision
tree and a feedforward one-hidden-layer neural network and had only 389
otoscopic images available for training and testing20. These techniques are
notoriously less performant than CNNs for image recognition. Chen et al.
developed a smartphone-based diagnostic system for ten diagnostic classes,
trained on 2161 images22. However, they did not evaluate their model on a
held-out test set for external validation; they only relied on random-split
internal validation, which may lead to over-optimistic performance mea-
sures.We foundonly one study evaluating aCNNtool for detectingmiddle-
ear conditions that included a user-friendly web-based interface11. Khan
et al. reported a global accuracy of 95.0% for theirDLmodel trained on 2484
images. The main concern is that their algorithm had only three diagnostic
classes, whereas our system offers the possibility to diagnose 10 different
middle-ear conditions. Our system combines an end-to-end ready-to-use
diagnostic solution comprising a smartphone-attached otoscope, a CNN
model trained on a large dataset, and a readily available smartphone
application.

Our study also has limitations. First, we retrospectively analyzed digital
otoscopic images captured during routine care, and thus we lacked
important patient characteristics such as age, sex, ethnicity, and presenting
signs and symptoms. Furthermore, becauseof the retrospectivenature of the
analysis, determining the exact number of unique participants was not
practicable. Second, for each image, the final diagnosis was established by a
single ENT specialist as per routine care, and tympanometrywas performed
at the discretion of the clinician in charge. Because of inter-rater variability
in otoscopic image interpretation, consensus among several independent
ENT experts with systematic tympanometry would have been preferable.
Other authors have used more robust reference standards for diagnosing
middle-ear conditions. For example, Crowson et al. have relied on findings
from the operating room with systematic myringotomy to establish the
presence or absence of AOM16. However, our analysis of model mis-
classifications revealed the relatively high reliability of our reference stan-
dard,withonly 2/48 (4%)of framespointing to potentialmistakes in ground
truth labels. Third, all our digital otoscopic images were taken with a single
high-performance otoscope, and we anticipate the DL algorithm may
achieve lower accuracy with other digital otoscopes, notably those of lower
quality. Further research is needed to evaluatewhether ourDL-basedmodel
can be usedwith other devices. Fourth, because a single operator took all the
digital otoscopic images, they may be too homogenous in terms of framing
and anatomic perspective. It remains possible that, even with the same
otoscope, the DL model would achieve lower performance in the hands of
other clinicians. Fifth, the study was conducted in a single center in France,
and the case mix may differ in other settings. Of note, the study included
children, but only after 5 years of age, while obtaining and interpreting
otoscopic images is particularly challenging in young children37. Better
generalizability might be achieved by increasing the diversity of training
data. We call for initiatives to share otoscopic images through open-access

Table 1 |Distributionof the 11diagnostic classes in theoriginal
dataset, training set, and test set

Diagnosis Number of
images in
the original
dataset (%)

Number of
images in
the training
set (%)

Number of
images in the
validation
set (%)

Number of
images in
the test
set (%)

Normal 31,706 (32) 5470 (13) 530 (13) 99 (30)

Wax plug 23,583 (24) 5471 (13) 529 (13) 67 (21)

Eardrum perforation 13,652 (14) 5474 (13) 526 (13) 51 (16)

Otitis media with
effusion

6958 (7) 5510 (13) 489 (12) 12 (4)

Cavity after choles-
teatoma removal

6610 (7) 5469 (13) 531 (13) 26 (8)

Otitis externa 3112 (3) 2831 (7) 280 (7) 10 (3)

Tympanosclerosis 3093 (3) 2826 (7) 267 (7) 14 (4)

Acute otitis media 2949 (3) 2691 (6) 258 (7) 12 (4)

Osteoma 2658 (3) 2456 (6) 202 (5) 14 (4)

Foreign body 2080 (2) 1904 (5) 176 (4) 12 (4)

Tympanic graft 1736 (2) 1562 (4) 174 (4) 9 (3)

Total 98,137 (100) 41,664 (100) 3962 (100) 326 (100)
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platforms to gather large, high-quality, prospectively collected, annotated
datasets, as done in other fields exploring medical applications of DL38.
Sixth, we acknowledge that, although Inception-v2 was an important
milestone in the development ofCNNclassifiers, itmay be outperformedby
more recent models, including other CNN architectures or Vision
Transformers39,40. In a post-hoc analysis, we trained other computer vision
models (i.e., Inception-v3, ResNet-50, ResNet-101, and ViT_Large) and
found limited incremental performance compared with our model (Sup-
plementary Table 5). Seventh, we conducted a validation step on held-out
frames, but the test set included only 326 images, and several diagnostic
classes, such asAOMandotitis externa, were underrepresented. Finally, our
DL model uses solely otoscopic images as input, while combining images
with clinical data and patient history in an ensemble model may improve
predictive accuracy.

In conclusion, we report the development and validation of a
smartphone-based DL-enabled system to detect middle-ear conditions in
otoscopic images. Our results on the validation set showed expert-level

performance, but the test set revealed sufficient diagnostic accuracy only for
distinguishing between normal and abnormal otoscopic images, and for
detecting wax plugs. Prospective external validation is required before
considering widespread clinical deployment, notably for several diagnostic
categories for which test data were scarce.

Methods
This study is reported according to the CLAIM checklist41 (Supplementary
Table 6), a specific reporting guideline for AI-centered diagnostic accuracy
studies.

Development of the deep-learning algorithm
For algorithm development, we recruited all consecutive patients over 5
years old who presented to one private ENT practice in Strasbourg, France,
from May 2013 to December 2017. For further performance assessment, a
“held-out” test set was built with unique images collected in the same
conditions over 2018-2020, without any overlap with the training and

Fig. 1 | Examples of digital otoscopic images
from the dataset. a Normal, b wax plug,
c eardrum perforation, d otitis media with
effusion, e cavity after cholesteatoma removal,
f otitis externa, g tympanosclerosis, h acute
otitis media, i external auditory canal osteoma,
j foreign body, k tympanic graft.
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validation sets, ensuring that images from the same ear or different ear from
the samepersonwerenot includedacross the validationand test datasets.All
participants were evaluated by a single ENT specialist (L.S.) withmore than
20 years of clinical experience. For each patient, both ears underwent oto-
scopic examination.

Digital otoscopic images (and videos) were taken using the Smart
Scope (Karl Storz, Tuttlingen, Germany; Fig. 5). The Smart Scope is a

universal adapter that enables coupling a handheld endoscope to a smart-
phone. The adapter is connected to the endoscope via quick-release cou-
pling, and the other end of the adapter is attached to the smartphone camera
through a specific smartphone case. The Smart Scope was specifically
designed for mobile use, and attachment to the smartphone allows image
capture and storage without any externalmonitor. For this study, the Smart
Scope was used with a rigid 4-mm diameter 0-degree surgical endoscope

Table 2 | Contingency table for assessment of the deep-learning algorithm across 11 diagnostic classes on the validation
set (N = 3,962)

“Ground truth” label

Deep-learning
prediction

Normal Wax
plug

Eardrum
perforation

OME CCR Otitis
externa

Tympano-
sclerosis

AOM Osteoma Foreign
body

Tympanic
graft

TOTAL

Normal 525 0 0 1 0 0 0 0 0 0 0 526

Wax plug 1 529 1 0 1 0 0 0 0 0 0 532

Eardrum perforation 0 0 516 0 0 0 0 0 0 0 0 516

OME 2 0 0 488 0 0 0 0 0 0 0 490

CCR 0 0 0 0 530 0 0 0 0 0 1 531

Otitis externa 0 0 9 0 0 280 0 0 0 0 0 289

Tympanosclerosis 2 0 0 0 0 0 267 0 0 0 0 269

AOM 0 0 0 0 0 0 0 258 0 0 0 258

Osteoma 0 0 0 0 0 0 0 0 202 0 0 202

Foreign body 0 0 0 0 0 0 0 0 0 176 0 176

Tympanic graft 0 0 0 0 0 0 0 0 0 0 173 173

TOTAL 530 529 526 489 531 280 267 258 202 176 174 3962

AOM acute otitis media, CCR cavity after cholesteatoma removal, OME otitis media with effusion.

Table 3 | Class-specific estimates of diagnostic accuracy in the validation and test sets

Diagnosis Sensitivity, % (95%CI) Specificity, % (95%CI) AUROC (95%CI)

3A. Validation set (N =3,962)

Normal 99.1 (97.8–99.7) 100 (99.8–100) 1.00 (1.00–1.00)

Wax plug 100 (99.3–100) 99.9 (99.7–100) 1.00 (1.00–1.00)

Eardrum perforation 98.1 (96.5–99.1) 100 (99.9–100) 1.00 (1.00–1.00)

Otitis media with effusion 99.8 (98.9–100) 99.9 (99.8–100) 1.00 (1.00–1.00)

Cavity after cholesteatoma removal 99.8 (99.0–100) 100 (99.8–100) 1.00 (1.00–1.00)

Otitis externa 100 (98.7–100) 99.8 (99.5–99.9) 1.00 (1.00–1.00)

Tympanosclerosis 100 (98.6–100) 99.9 (99.8–100) 1.00 (1.00–1.00)

Acute otitis media 100 (98.6–100) 100 (99.9–100) 1.00 (1.00–1.00)

Osteoma 100 (98.2–100) 100 (99.9–100) 1.00 (1.00–1.00)

Foreign body 100 (97.9–100) 100 (99.9–100) 1.00 (1.00–1.00)

Tympanic graft 99.4 (96.8–100) 100 (99.9–100) 1.00 (1.00–1.00)

3B. Test set (N = 326)

Normal 99.0 (94.5–100) 95.2 (91.5–97.6) 1.00 (0.99–1.00)

Wax plug 100 (94.6–100) 97.7 (95.0–99.1) 1.00 (1.00–1.00)

Eardrum perforation 90.2 (78.6–96.7) 96.0 (93.0–98.0) 0.99 (0.97–1.00)

Otitis media with effusion 58.3 (27.7–84.8) 98.1 (95.9–99.3) 0.97 (0.93–1.00)

Cavity after cholesteatoma removal 92.3 (74.9–99.1) 98.3 (96.2–99.5) 0.99 (0.99–1.00)

Otitis externa 70.0 (34.8–93.3) 99.4 (97.7–99.9) 0.99 (0.98–1.00)

Tympanosclerosis 50.0 (23.0–77.0) 99.0 (97.2–99.8) 0.96 (0.93–1.00)

Acute otitis media 58.3 (27.7–84.8) 100 (98.8–100) 0.95 (0.87 –1.00)

Osteoma 57.1 (28.9–82.3) 100 (98.8–100) 0.99 (0.98 –1.00)

Foreign body 33.3 (9.9–65.1) 99.7 (98.2–100) 0.94 (0.86 –1.00)

Tympanic graft 33.3 (7.5–70.1) 99.1 (97.3–99.8) 0.96 (0.92 –1.00)

AUROC area under receiver operating characteristic curve.
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(Hopkins system,Karl Storz, Tuttlingen,Germany), togetherwith awireless
LED light source (11301DF, Karl Storz, Tuttlingen, Germany), and an
iPhone 6 or 7 (Apple Inc., USA). As part of routine care, all digital otoscopic
images were saved in JPEG format on L.S.’s computer, with an initial 1920
by 1080 pixels resolution.

The ENT’s final diagnosis was used as the reference standard. As
per routine care, final diagnoses were established during consultation
time by combining demographic information, medical history, signs
and symptoms, visual information from otoscopy, and tympanometry
(when deemed necessary). Routine otoscopic criteria for each diag-
nostic class are detailed in Supplementary Table 7. Each anonymized
image was labeled with the diagnosis established at the time of exam-
ination by the ENT in charge across 11 diagnostic classes: normal, wax

plug, eardrum perforation, otitis media with effusion (OME), cavity
after cholesteatoma removal, otitis externa, tympanosclerosis, AOM,
external auditory canal (EAC) osteoma, EAC foreign body, and tym-
panic graft. Image labels were saved by locating the JPEG images in 11
predefined folders.

Otoscopic images were included in the dataset if the entire tympanic
membrane was exposed and quality (including focus and luminosity) was
sufficient to establish a definitive diagnosis. Images were excluded if they
were out-of-focus, too dark, or blurry. Class balancing was used to ensure
each diagnosis had approximately equal representation in the development
set. The obtained dataset was randomly split into training and validation
sets. Several data augmentation methods were used for the training set,
including flips, translations, and random rotation. Input images were
downsized to 455 by 256 pixels. Then, to remove the black circular per-
ipheral region present in otoscopic images, each image was center-cropped
and resized to 256 by 256 pixels.

Our use of DL encompasses the process of training a deep neural
network to perform a classification task using a set of images for which the
final diagnosis is already known (i.e., the training set). For each image, the
classification determined by the neural network is compared to the final
“ground truth” label, and parameters of the network are iteratively tweaked
to decrease classification error rate. As this process is repeated for every
image in the training set, the network “learns” how to accurately classify
images. This allows obtaining model parameters which are then used to
makediagnostic predictions onnew, unseen images. TheDLalgorithmused
in this study is a convolutional neural network (CNN) that applies computer
vision functions to hierarchically extract patterns and features in input
images10,42,43.

The specific CNN used in this work was based on the Inception-v2
architecture44. Transfer learning was used to optimize the training phase,
and initial weights for the CNN model were obtained from a baseline DL
model pre-trained on the ImageNet database42. The DL model comprises
multiple stacked convolution and pooling layers with multiple branches,
followed by an 11-class Softmax activation function. Our final DL model
had approximately 4.9 million parameters. The DL model generates an
output “score” between 0 and 1 for each diagnostic class. Then, the set of
scores are normalized and interpreted as the probability of that condition
being present in the image according to the model. DL modeling was
implemented in Python by using TensorFlow libraries.

Fig. 2 | Class-specific estimates of area under the receiver operating characteristic curve (AUROC) with their 95% confidence intervals. Dark blue bars: validation set
(N = 3,962); Light blue bars: Test set (N = 326). All AUROCs on the validation set estimated at 1.00 (1.00–1.00).

Fig. 3 | Image of eardrum perforation misclassified by the deep-learning algo-
rithm as otitis externa.On this image, both eardrum perforation and otitis externa
are present.
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Evaluation of the deep-learning algorithm
For performance assessment, the algorithm was evaluated on a split-
sampling validation set made of 3,962 images and then a held-out test set
comprising 326 unique images without overlap with the training and

validation sets. For each image, the diagnosis with the highestDL-generated
prediction was compared to the reference standard (i.e., “top-1” validation).
This allowed drawing contingency tables across the 11 diagnostic classes.
Sensitivity, specificity, area under the receiver operating curve (AUROC)
and their 95% “exact” binomial confidence intervals were computed for
each diagnostic class in the validation and test sets. Diagnostic accuracy
analyses were conducted using R version 4.2.1 (R Foundation, Vienna).
There was no formal sample size calculation for this study.

To further explore the generalizability of themodel, we investigated its
robustness following Hendrycks’ method45. We used 12 image corruption
processes atfive levels of severity and estimated themodel’s accuracy relative
to that obtained on uncorrupted images.We excluded corruption processes
mimicking weather-like disturbances (snow, frost, fog) since they are
unlikely to occur during otoscopy.

We used the t-distributed stochastic neighbor embedding (t-SNE)
visualizationmethod to represent high-dimensional features learned by the
DL model. The t-SNE method preserves pairwise distances between data
points in a 2-dimensional space (i.e., images with similar features cluster

Fig. 4 | t-Distributed Stochastic Neighbor
Embedding (t-SNE) visualization of high-
dimensional features extracted by the deep-
learning model. Each point represents an otoscopic
image (dots: validation set; crosses: test set) and is
colored based on its diagnostic class.

Fig. 5 | The Smart Scope system. The Smart Scope serves as a coupling system
between an endoscope and a smartphone (clinical demonstration video available at
i-nside.com).

Table 4 | Contingency table for assessment of the deep-learning algorithmacross 11 diagnostic classes on the test set (N = 326)

“Ground truth” label

Deep-learning
prediction

Normal Wax
plug

Eardrum
perforation

OME CRC Otitis
externa

Tympano-
sclerosis

AOM Osteoma Foreign
body

Tympanic
graft

TOTAL

Normal 98 0 1 1 0 0 3 1 1 4 0 109

Wax plug 0 67 0 1 1 0 0 0 2 2 0 73

Eardrum perforation 1 0 46 2 0 2 0 3 0 1 2 57

OME 0 0 0 7 1 0 3 0 1 0 1 13

CCR 0 0 2 0 24 0 0 0 0 0 3 29

Otitis externa 0 0 0 0 0 7 0 1 1 0 0 9

Tympanosclerosis 0 0 1 1 0 0 7 0 0 1 0 10

AOM 0 0 0 0 0 0 0 7 0 0 0 7

Osteoma 0 0 0 0 0 0 0 0 8 0 0 8

Foreign body 0 0 0 0 0 0 1 0 0 4 0 5

Tympanic graft 0 0 1 0 0 1 0 0 1 0 3 6

Total 99 67 51 12 26 10 14 12 14 12 9 326

AOM acute otitis media, CCR cavity after cholesteatoma removal, OME otitis media with effusion.
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together)46.We showed a t-SNE visualization for the penultimate activation
layer, computed over validation and test sets.

DLmisclassifications in the test set were systematically analyzed. First,
we assessed the proportion of cases where the correct diagnosis appeared in
the top-3ofmodel predictions. Second, all imageswere reviewedbya second
ENT specialist (F.S.) blinded to ground truth labels, DL predictions, and
clinical data, and we measured the proportion of cases where this blinded
reading was aligned with ground truth labels.

Smartphone app graphical user interface
An easy-to-use smartphone app was developed to allow broad use of the
DL model for users with limited technical and statistical knowledge. The
i-Nside app was developed by Design and Test Lab, a third-party con-
tractor, using the Xcode interface and several libraries such as Metal,
MetalKit, NMSSH, and ClarifaiMobileSDK. Designed to run on iOS, the
app is currently at version 1.2 and has a file size of 125 MB. The app was
designed to directly capture and analyze images when connected to a
Smart Scope digital otoscope. The app also enables the importation of
otoscopic images from external sources through the phone’s photo
library, accommodating JPEG, PNG, and HEIC formats with an upper
size limit of 50 MB (Fig. 6). The app utilizes a local FTP server for
uploading photos, ensuring that images are stored locally without being
exported to any external server or cloud storage. After an image is
selected, the user taps on “Perform assisted diagnosis” to run the DL
model (Supplementary Video 1). The app works entirely offline. The
model runs in real-time and locally on the smartphone using Clarifai’s
Mobile SDK, and the results are displayed in the app within 1 second.

After the image is analyzed, the app displays the most likely diag-
nosis among the 11 diagnostic classes, and its precise probability. If the
“Normal” class receives a model prediction X ≥ 70%, the app displays: “It
seems that your eardrum is normal with a confidence index of X%”. If the
“Normal” class receives a model probability Y < 70%, the app displays: “It
seems that something is wrong with a confidence index of (100-Y)%”; in
such cases, the app also returns the most probable diagnostic class,
together with its probability. In the case of multiple possible diagnoses in
a single image, the app displays all diagnoses assigned a prediction higher
than 10%.

Ethics
Images (andvideos)were takenaspart of routine carewithoral information.
Informed written consent was waived by the Institutional Review Board
(“Comité d'éthique de la recherche AP-HP Centre,” IRB registration No.
00011928) because of the retrospective nature of the analysis, total dei-
dentification of clinical images, and absence of any other patient informa-
tion being collected.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
A sub-sample of the training set, with 100 images per diagnostic class is
available upon reasonable request to the authors.

Code availability
Baseline Inception-v2 architecture can be accessed on the timm repository
(huggingface.co/timm). Further code is available upon reasonable request to
the authors.
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