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The digital revolution in healthcare, amplified by the COVID-19 pandemic and artificial intelligence (Al)
advances, has led to a surge in the development of digital technologies. However, integrating digital
health solutions, especially Al-based ones, in rare diseases like Waldenstrém macroglobulinemia
(WM) remains challenging due to limited data, among other factors. CURATE.AI, a clinical decision
support system, offers an alternative to big data approaches by calibrating individual treatment
profiles based on that individual’s data alone. We present a case study from the PRECISE CURATE.AI
trial with a WM patient, where, over two years, CURATE.AI provided dynamic lbrutinib dose
recommendations to clinicians (users) aimed at achieving optimal IgM levels. An 80-year-old male with
newly diagnosed WM requiring treatment due to anemia was recruited to the trial for CURATE.AI-
based dosing of the Bruton tyrosine kinase inhibitor Ibrutinib. The primary and secondary outcome
measures were focused on scientific and logistical feasibility. Preliminary results underscore the
platform’s potential in enhancing user and patient engagement, in addition to clinical efficacy. Based
on a two-year-long patient enroliment into the CURATE.Al-augmented treatment, this study
showcases how Al-enabled tools can support the management of rare diseases, emphasizing the
integration of Al to enhance personalized therapy.

Digitalization is increasingly influencing healthcare systems as it holds
promise to improve healthcare accessibility, scalability, and data flow'.
Patients are increasingly accepting digital health: the COVID-19
pandemic accelerated the adoption of telemedicine, and the use of
wearables for fitness and health monitoring is becoming more
common’. Despite the challenges involved, physicians are embracing
digital possibilities’. With digitized health data, artificial intelligence
(AI) becomes a fundamental part of the analysis, discovery, and
personalization of medical care’; clinical decision support systems
(CDSS), smart devices, and sensors singularly have the potential to
benefit from the Al application’.

In oncology, Al was also recognized to have great potential, and evo-
lutionary game theory has been proposed to personalize cancer therapy in a
dynamic fashion, by anticipating the future characteristics of the tumor®.
While AJ, especially machine learning, is promising, challenges remain for
its use in rare and orphan diseases. Among those obstacles are a shortage of
extensive, well-annotated datasets and a restricted patient population’. An
alternative to the big data approach can be highly advantageous.

One example of small data CDSS is CURATE.AL, an indication
agnostic, deterministic, Al-derived platform being validated in cancer’,
immunosuppression'’, and even cognitive training''. The quadratic corre-
lations between drug doses and biological responses were first discovered
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through neural network models’. Three-drug combinations across eight
unique doses and the measured biological responses in in vitro models were
used to train, test, and validate the mathematical models. Developed based
on the neural network-derived observations’, further robust optimization
and validation studies were performed in vitro'>", in vivo'*", ex vivo'*",
and in retrospective patient data'*’ over the years. Recently, prospective/
interventional clinical trials for other indications and different workflows
have been conducted for feasibility (NCT03759093, NCT04357691,
NCT05376683, NCT04848935, and NCT05175235)*. Currently based on a
small set of patient data, CURATE.AI operates by dynamically calibrating an
N-of-1 profile that identifies the optimal treatment intensity (e.g., drug dose,
training intensity) for a desired phenotypic output (e.g., tumor reduction,
cognitive improvement). This objective aligns with Project Optimus, an
FDA-led plan to reform dose optimization criteria in oncology. The project
advocates for dose determination using both nonclinical and clinical data to
minimize harm and maximize advantages for patients (https://www.fda.gov/
about-fda/oncology-center-excellence/project-optimus).

Waldenstrom macroglobulinemia (WM) is a rare mature B-cell
malignancy characterized by clonal lymphoplasmacytic (LPL) bone marrow
infiltration and monoclonal immunoglobulin M (IgM)*’. While a “watch
and wait“ approach is recommended for asymptomatic patients, therapy is
indicated when the IgM paraprotein or LPL infiltrate results in clinical
manifestations™. The key classes of drugs commonly used for the treatment
of WM include monoclonal antibodies, alkylating agents, proteasome
inhibitors, and Bruton Tyrosine Kinase inhibitors (BTKi)*. Rituximab-
based immunotherapy and BTKi are currently the favored frontline treat-
ment options for WM™.

Given the advanced age of the typical WM patient, treatment-related
toxicities are an important consideration. There are currently no validated
CDSS platforms for individualized dosing of BTKi in hematologic malig-
nancies. Dose adjustments are made subjectively based on physicians' dis-
cretion, usually after the occurrence of toxicities. The cost-effectiveness of
current dosing strategies for BTKi is also questioned, given that these drugs
are typically used long-term. In the USA, Ibrutinib (Imbruvica) is one of the
ten drugs selected by Medicare for initial price negotiation (https://www.
cms.gov/inflation-reduction-act-and-medicare/medicare-drug-price-nego
tiation), which illustrates its health economic significance.

CDSS for individualized drug dosing in WM would be a valuable
clinical tool. WM has an incidence rate of approximately three out of every
1,000,000 people per year. Similar to the case of other very rare diseases, it
creates a considerable challenge and cost to recruit a large patient population
for a clinical trial’*”’. In addition, the existence of high heterogeneity among
individuals within the small population further increases treatment chal-
lenges. In this case report, CURATE.AI addresses the challenge of high
patient heterogeneity’*’ by only using the patient’s own data to guide their
own treatment. Unlike existing big data approaches, no model training and
testing with population data are required for small data approaches such as
CURATE.AL This case report describes the interim results from two years
of treatment of the first patient enrolled under the WM cohort of the
PRECISE CURATE.AI clinical trial. CURATE.AI was intended as CDSS
supporting physicians in their decision-making. CURATE.AI dynamically
generated Ibrutinib dose recommendations that aimed to optimize response
based on serum IgM levels, considering patient toxicities. We performed a
preliminary evaluation of the feasibility of this setup through measures of
patient engagement, dose adherence, cumulative dose per cycle against
standard-of-care and adverse events as well as preliminary discussion on the
impact dimensions.

Results

Patient characteristics and diagnostic assessment

The patient was an 80-year-old male with an ECOG performance status of 1
and no significant comorbidities. He was diagnosed with WM in 2019 based
on IgM paraproteinemia confirmed on serum immunofixation, and a bone
marrow aspirate and biopsy confirming a clonal LPL infiltrate. The MYD88
L265P mutation was detected by PCR on the bone marrow sample. His

computed tomography scan showed no lymphadenopathy, and his renal
and liver functions were normal. He was initially asymptomatic with a mild
anemia of 9-10 g/dL. He developed worsening anemia in the subsequent
months requiring initiation of treatment. After discussing potential treat-
ment options, the patient provided consent and was enrolled in the trial in
October 2021. His IgM pre-treatment was 48.3 g/L and his hemoglobin had
dropped to 6.5 g/dL.

CURATE.AIl—supported Ibrutinib treatment

In the profile calibration phase, the CURATE.AI team proposed to the
physicians drug doses across the prespecified safety range. Based on the
patient’s [dose:response] data pairs, a CURATE.AI profile was generated.
During the efficacy-driven dosing phase, physicians were provided with
recommendations of optimal doses based on the patient’s profile and within
the prespecified safety dose range. The corresponding patient’s response was
paired with the effected dose and was used to update the profile. When the
patient experienced a systemic change, the profile was recalibrated with new
data pair (Fig. 1). The physicians themselves were deeply involved in pro-
spectively building the small dataset that was then used for the optimal dose
recommendation. Three physicians (users) participated in the patient’s
treatment decisions (Fig. 1). Ibrutinib was administered once a day with
doses ranging between 420, 280, and 140 mg, which were adjusted weekly
(Supplementary Fig. 1). The dose in cycle one was decided by the physicians
as they only considered one dose to be appropriate as the initial dose (e.g.,
the safety range included only one dose). CURATE.AI engagement for that
dose selection decision was considered irrelevant. CURATE.AI provided
dose recommendations to the physicians for the next two cycles with the
calibration intent. The first three cycles constituted the calibration phase
(Fig. 1a). The patient’s IgM demonstrated significant intracycle variability
(Fig. 2a). Within this phase, Ibrutinib doses oscillated between 61.9-
91.7% (7280-10,780 mg/cycle) of the established standard-of-care
(100% = 11760 mg/cycle) (Fig. 2b). The shape of the profile evolved with
the new data pairs incorporated at each subsequent cycle (Fig. 2c-e).

During cycle nine, Ibrutinib treatment was paused due to COVID-19
infection. The dose selection for the next two cycles was done by the users
without the assistance of CURATE.AI and the cycle 9-11 data pairs were
excluded from the profile to limit the potential noise from the response data
collected during the systemic change. CURATE.AI dose recommendation
for cycle 12 had a recalibration intent. The resulting AIgM had a good
alignment with the profile (1.59 g/L prediction error) in the dose range of
interest, and instead of proceeding with the full recalibration, the efficacy-
driven dosing restarted (Fig. 2d).

The patient experienced dose-limiting toxicities in cycle 12 (Grade 2
Epistaxis) and the dose range available for CURATE.AI recommenda-
tions was limited. Encouraged by high patient adherence, the dose
adjustment changed from weekly to daily starting from cycle 15
(Supplementary Fig. 1); CURATE.AI was adapted to provide recom-
mendations with increased dosing resolution. From cycle 20 onwards,
the CURATE.AI dose recommendation was provided for two con-
secutive cycles as the patient’s condition was considered stable. During
the dose selection for cycle 25, the users overrode the CURATE.AI
recommendation made from cycle 24 in accordance with an increased
maximum tolerated dose (MTD) in cycle 25. MTD is defined as the
highest dose that an individual patient can tolerate, given the evoked
toxicity. Based on the patient’s history and past cycles, the physicians
determine the MTD and decide on the daily titrated doses within the
cycle. A follow-up appointment is conducted at the end of each cycle to
assess the patient’s toxicities and determine the MTD for the next cycle.
As such, the MTD for Ibrutinib in this study was determined through the
physicians' assessment of the likelihood of the dose-dependent toxicities.

Over two years, CURATE.AI’s accuracy improved, moving from a
median 2.7 (IQR 1.7-14.0) g/L absolute prediction error in cycles 4-8, t0 2.2
(IQR 1.4-3.6) g/L in cycles 12 to 20 and 2.2 (IQR 0.5-3.4) g/L in cycles
21-26. Of note, starting at cycle 14, the CURATE.AI dose recommendation
predominantly overlapped with MTD-adjusted standard-of-care. The flat,

npj Digital Medicine | (2024)7:223


https://www.fda.gov/about-fda/oncology-center-excellence/project-optimus
https://www.fda.gov/about-fda/oncology-center-excellence/project-optimus
https://www.cms.gov/inflation-reduction-act-and-medicare/medicare-drug-price-negotiation
https://www.cms.gov/inflation-reduction-act-and-medicare/medicare-drug-price-negotiation
https://www.cms.gov/inflation-reduction-act-and-medicare/medicare-drug-price-negotiation

https://doi.org/10.1038/s41746-024-01195-5

Article

a ﬁr, Adherence + Effected Dose
g = Additional + Response Data Transfer
7 L Data DOSE: Ibrutinib (mg)
VT RESPONSE: IgM level (g/L)
B Prescribed Dose o CURATE.AI O "
CURATE.AI RO) ~ C2+P:£a+|°n5
recommendation CURATE.AI . =ax g
. . Patient specific coefficients
Patient accepted or not Medical Team Recommended @ b, o)
(CURATE.Al irrelevant, Physicians (users) Dose T
standard-of-care) and CRC
b . . - - - -
Profile Calibration Efficacy-Driven Dosing Profile Recalibration
Patient takes pre-planned doses New data pair to update the profile New doses upon systemic changes
‘ Cycle Dose Response Cycle Dose Response Cycle Dose Response
4 200 il

Response
Response

Dose

Recommended dose: 95
Expected response: 1

Fig. 1 | CURATE.AI operations. a CURATE.AI is designed as a clinical decision
support system, providing recommendations to physicians who are the users of
CURATE.AIL New data from the patients (adherence) and from the healthcare
system (patient results) are used to dynamically update patient profiles. b Phases of

R(C) =

Recommended dose: 145
Expected response: 4

| |

0.001C?-0.30C + 20 R(C) = 0.015C? - 8.32C + 1138.57
26.61 18 o2

Response

\ 7
Recommended \..-f
0 dose v
130 30 80 130 180 230

Dose Dose

Recommended dose: 275
Expected response: 2

CURATE.AT include calibration and efficacy-driven dosing. Additionally, if sys-
temic changes in the patient dose-response profile are expected/detected the profile
can go through a recalibration. CRC clinical research coordinator.

horizontal shape of the profile at the high doses indicated that at that dose
range, the increase in the dose led only to a limited AIgM change.

Using CURATE.AT added two steps to the clinical workflow: involving
the CURATE.AI team and informing the patient (via verbal communica-
tion and a written dosing calendar) of the dose adjustment before the next
cycle. CURATE.AI was considered relevant in 88.5% (23/26) cycles and the
CURATE.AI recommendations were accepted by the users for prescription
in 95.7% (22/23) of those instances, demonstrating high human-computer
agreement. In four cycles (9, 12, 15 and 25), the users adjusted Ibrutinib dose
intracycle (Supplementary Fig. 1). Cumulatively, over the two years of
patient enrollment, CURATE.Al-recommended dose was different by
22.3% (60,200 mg) from the projected standard-of-care, and by 11.6%
(27,580 mg) from the MTD-adjusted standard-of-care. Additional assess-
ments of CURATE.AI are included in the Supplementary Results.

Clinical outcomes

The patient showed a 99.2% (722/728 days) adherence as measured by basic
pharmacovigilance at the regular clinical visits. The non-adherence occur-
red in cycle four, when the patient delayed switching from the high dose
(420 mg) to the medium dose (280 mg) by three days, and in cycle 14 when
the patient adjusted the dose himself for three days due to the experienced
side effects (Supplementary Fig. 1). The treatment was well tolerated. Over
the two-year-long trial engagement, the patient experienced rare grade two
toxicities (epistaxis and diarrhea) and grade one toxicities (rash, which
resolved with topical therapy, self-limiting diarrhea, bruising, and itch) with

probable relatedness to Ibrutinib (Fig. 3b). Additionally, the patient con-
tracted COVID-19, and it is probable that Ibrutinib made them more
susceptible to the infection. From cycle 15, the daily dose variations between
high (420 mg) and medium (280 mg) doses might have affected side effects
compared to the previous weekly adjustments (Supplementary Fig. 1).

The patient’s IgM level demonstrated an 11.4% (5.5 g/L) reduction from
baseline to the level measured at the two-year mark. The response at the two-
year mark fell short of the minor response criteria and qualified for stable
disease (SD) based on IWWM criteria®. The maximal IgM reduction from
the baseline was 43.6% (21.1 g/L) noted after week one of cycle two, which
increased back to the near pre-cycle level within a week (Fig. 2a). A rapid rise
in the IgM level was noted during the pause of treatment at the time of the
COVID-19 infection (Fig. 2a). The hemoglobin level rose to 10 g/dL by cycle
three and was maintained between 10-11 g/dl throughout the engagement
except for the dip in during the COVID-19-related treatment pause (Fig. 3a).

The patient did not require hospital admission throughout the two-
year engagement except for during his COVID-19 infection. Although no
formal patient-reported outcomes were collected, the patient remained fully
independent in his activities of daily living and reported a willingness to
continue with the trial engagement. Similar sentiments were shared by the
patient’s caregiver.

Discussion
We present the first application of CDSS for individualized dosing of BTKi in
WM. Importantly, we demonstrated the feasibility of performing the
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necessary response assessments and cycle-by-cycle dose adjustments based
on CURATE.Al in an elderly patient. It is noteworthy that the patient did not
achieve a deep response based on a reduction in IgM. However, the significant
improvement in hemoglobin, and good quality of life enjoyed by the patient
over the two years is arguably more important. Indeed, WM is an incurable
malignancy and the depth of response by IWWM criteria may not necessarily
translate into a progression free survival benefit”. Prioritizing symptom
control, quality of life, and minimizing toxicity is, hence, a reasonable strategy,
especially in the elderly, who comprise the majority of patients with WM.
The rapid rise in IgM associated with the COVID-19 infection may
have been related to the treatment interruption. However, COVID-19 is

Efficacy-driven COVID-19

a

High resolution

known to have a plethora of immunomodulatory effects” and it is possible
that these may have played a part in the IgM rise. With COVID-19
becoming an endemic infection worldwide, its impact on the tumor
microenvironment and immune surveillance of WM is an important area to
be addressed by future research.

Evidence is growing about the variability in interpatient pharmacoki-
netics and the limitations of uniformly treating patients with anticancer
drugs at standard-of-care/label doses™. Small data solutions for persona-
lized care have advantages over big or complex data approaches and can
help move beyond “pilotitis™*. In the context of this trial, and this case
report, the small dataset behind CURATE.AI operations not only enabled
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personalized treatment of the patient with a rare disease but also facilitated
dynamic treatment adaptation to his unique circumstances and systemic
changes such as elevated IgM levels post-COVID-19. Small data aligns with
patients’ desire for personalization, while avoiding extensive data collection
and issues like algorithmic bias. It can also enhance interoperability and
integration into diverse healthcare systems, influencing digital health
uptakel’35 . Finally, the discussion in healthcare innovation and Al in med-
icine increasingly involves the required computational power and related
carbon emissions™. Reflecting a move towards greener IT solutions,
CURATE.AI transitioned from a more computationally expensive neural
network computation to a computation-light quadratic [dose:response]
approach, in line with trends like tiny machine learning and compact AI'.

Stakeholder inclusion and patient-centered care are emerging as best
practices in digital health innovation and implementation'. The co-creation
with physicians was pointed out as foundational in bridging Al fairness and
meaningful clinical benefits”. Additionally, user inclusion can ameliorate
the uncertainty around the reliability of the underlying data—one of the
commonly voiced concerns™. PRECISE CURATE.Al involved users in both
the study design, with physicians as part of the team™, and the co-creation of
the patient profile dataset. Accordingly, in an additional behavioral study on
physicians' sentiments toward CURATE.AI, we identified collaborative
functioning and data availability as some of the key aspects that define their
technology adoption®’. Another key aspect was patient safety. In this regard,
the CURATE.AI workflow positions the users as the ultimate decision-
makers. Over two years, users found CURATE.AI irrelevant in 3/26 cycles
and rejected its recommendation in 1/26 cycles, showing strong utilization
and agreement. The users were also free to amend the dose intracycle as per
standard-of-care and did so for 4/26 cycles (Supplementary Fig. 1).

While we have not included patients in the co-creation of the study or
formally sought their feedback, his adherence may serve as a proxy in
gauging his sentiments'. 99.2% (722/728 days) adherence to varying weekly
and daily doses of Ibrutinib is indicative that the patient had a high perceived
value of the treatment. Over the two years of engagement, he had an
opportunity to learn about the treatment value through experiencing the
treatment and its trade-offs (effectiveness vs. side effects and cost) and chose
to adhere to it over non-adherence or switching to alternative treatments.
Finally, new models are being proposed to reconcile patient voice and
physician expert judgment with the robustness of Al-based decision-mak-
ing. In one example, Cohen et al. drew from judiciary processes to propose
human involvement and Al decision review only on appeal®. The utility and
implementation of such models in healthcare is yet to be demonstrated.

CDSSs are considered among the top three investment priorities in
digital health, together with digital connectivity infrastructure and tele-
medicine (https://transformhealthcoalition.org/wp-content/uploads/2022/
10/Closing-the-digital-divide-mainReport.pdf). When evaluating the
impact of CDSS from both health and economic perspectives, it is crucial to
recognize them as complex interventions. As a result, their potential impact
on clinical, process, and patient-reported outcomes may be complex*’. For
example, not only primary outcomes directly influenced by CDSS-driven
decisions should be considered but also secondary outcomes, which may be
affected, for instance, by the reallocation of healthcare resources”’.

According to Wright et al.‘s clinical decision support taxonomy",
CURATE.AL falls into the front-end clinical decision support intervention
category for medication dosing support. The benefits of such a system are
manifold, ranging from improved patient outcomes and error prevention to
enhanced decision support and process improvement”. CURATE.AI
represents an incremental innovation in personalized medicine, and while it
is early in its innovation lifecycle, some of the evidence of its impact can be
already gleaned.

CURATE.AI offers a structure to a passive personalized medicine,
where patient response characteristics are learned exposing the patient to a
range of doses™. This structure streamlines the process of the treatmentas an
experience good (i.e., a service that is experienced as opposed to owned) and
lowers the related costs (understood broadly) by limiting the duration of the

learning process (i.e., calibration phase). Additionally, it enables dynamic
adjustment of the dose throughout the treatment duration.

From a health impact perspective, Hult (2014) highlighted that changes
in dosages, the primary outcome of CURATE.AI account 60% of FDA-
approved incremental innovations”. The current 100% standard-of-care
Ibrutinib dose is 420 mg daily, which accounts for the cumulative dose of
11,760 mg in a 28-day cycle. In this study, the cumulative dose in a 28-day
cycle recommended by CURATE.AI was either the same or lower than the
MTD-adjusted standard-of-care (Fig. 2b). The total dose difference between
the CURATE.Al and MTD-adjusted standard-of-care approach was 11.6%.
Such changes in dosages could potentially reduce dose-dependent toxicities.
The reduction in the toxicities may subsequently encourage patient
adherence to treatment™. In our study, the patient demonstrated 99.2%
adherence. Additionally, despite the reduced cumulative doses, we noted
stabilization of the patient’s IgM level (Fig. 2a), and a marked improvement
in hemoglobin level (Fig. 3a) was achieved.

A comparison of the toxicities experienced by the patient in our study
with published toxicity data for Ibrutinib suggests a promising safety profile
of CURATE.Al-based Ibrutinib dosing. Notably, the patient did not
experience any cardiac toxicity (which has been reported in over 10% of
patients treated with Ibrutinib in clinical trials*®). Furthermore, he reported
no significant skin (reported in 16% of patients) or gastrointestinal toxicities
(reported in 6% of patients)*’. Although a formal comparison of safety with a
standard-of-care group should be conducted in the context of a randomized
trial, the data emerging from this case report support such investigation.

The information on the expected response to a given dose can be
beneficial to both physicians and patients. Patients have become increas-
ingly interested and empowered in the decision-making on their own
treatment™, and even healthcare design®'. Daugherty et al. demonstrated
that in phase one clinical trials, 76% of oncology patients, given the choice,
opted to select the dose of their anticancer drugs”. CURATE.AI can provide
the basis to further involve patients in the discussions on which dose to
choose, given the cost of the IgM improvements in terms of side effects and
financial toxicity.

From an economic impact perspective, factors such as healthcare
resource utilization, and cost of the pharmaceutical treatment are often
reported as having a significant impact on the cost-effectiveness of digital
health solutions™. In this study, the use of CURATE.AI during the cali-
bration stage resulted in an additional ten blood tests, totaling USD 217.
Subsequent to the calibration stage, there was no need for additional con-
sultations, hospital visits, laboratory tests, or scans compared to the
standard-of-care. Any potential efficiency gains through CURATE.AI such
as reduced physician time spent on decision-making, would likely be
marginal.

The cost of pharmaceutical treatment is another important aspect of
the potential economic impact of CDSS for medication dosing support, for
three main reasons: (1) drug expenditures account for an increasing pro-
portion of health costs, totaling USD 1.1 trillion in annual expenditure
worldwide™, (2) drug spending is heavily driven by a relatively small
number of high-cost products (https://aspe.hhs.gov/sites/default/files/
documents/88c547¢c976e915fc31fe2c6903ac0bc9/sdp-trends-prescription-
drug-spending.pdf), and (3) hundreds of billions of dollars are spent each
year on “overtreatment with prescribed medications that are either unne-
cessary or are in excess of lowest cost-effective therapy”. This explains
recent price negotiations for a list of 10 prescription medicines, including
Ibrutinib (Imbruvica), by the US Medicare health program (https://www.
cms.gov/inflation-reduction-act-and-medicare/medicare-drug-price-
negotiation).

In our patient’s case, there was an 11.6% total dose difference between
the CURATE.AI and MTD-adjusted standard-of-care approaches, resulting
in cost savings of USD 7811 based on retail drug costs over a period of two
years for the patient. This has the potential to significantly reduce out-of-
pocket expenses for patients in specific countries. While the primary goal of
the CURATE.AI approach is not to control pharmaceutical costs, it aims to
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optimize treatment by considering individual treatment effects and burdens,
which can lead to direct cost savings.

From both an economic and clinical standpoint, in a future compre-
hensive health technology assessment of CURATE.AL, it will be crucial to
quantify the healthcare resources required to support its implementation
and potential efficiency gains while also considering potential medication
errors, complications, and drug-related adverse events.

This case study serves as a starting point for a discussion on perso-
nalized medicine in the age of Al. CURATE.AI and this study is not without
limitations. Firstly, with the emergence of more sensitive techniques for the
measurement of monoclonal proteins (such as mass spectrometry), we look
forward to their application in monitoring WM and as readouts for
CURATE.AI Additionally, a single case study is not sufficient to conclude
about the potential or feasibility of this technology and the observations
made in the treatment of this patient have limited generalizability.

AT holds great promise for improving healthcare quality and access. In
this case study, we describe the results of a two-year-long enrollment of the
first patient with Waldenstrém macroglobulinemia into PRECISE CUR-
ATE.AI trial—a single-center, single-arm, open-label, pilot feasibility trial.
We demonstrate high WM patient and physician adherence to CURATE.AI
recommendations, and CURATE.AT’s adaptability to patient circum-
stances. While CURATE.AI recommendations in the efficacy stage over-
lapped significantly with MTD-adjusted doses, the CURATE.AI profile
revealed the [dose:response] dynamics that supported informed decision-
making by the physicians and had the potential to enhance patient invol-
vement in balancing the IgM outcomes with the side effects and cost of the
treatment.

Methods

Research governance and reporting standards

The patient gave informed consent and was recruited under the PRECISE
CURATE.AI trial (registration no. NCT04522284 at clinicaltrials.gov)
approved under NHG DSRB 2020/00334 and NUS IRB 2021-671. All
procedures followed the Helsinki Declaration of 1975, as revised in 2008.
The study is reported according to DECIDE-AI guidelines™ and addition-
ally includes reporting elements from CARE guidelines™. The users of
CURATE.AI were physicians who treated the patient and joined the trial as
co-investigators. Users, but not patients, participated in the development
and research-relevant conduct of the study.

Study design

PRECISE CURATE.AI, WM Cohort is a single-center, single-arm, open-
label, pilot feasibility trial in patients diagnosed with WM and intended for
treatment with BTKi, specifically Ibrutinib or Acalabrutinib. CURATE.AI
provided Ibrutinib dose recommendations to the users for each four-week
cycle operating within the prespecified safety range of 50-100% standard-
of-care dose calculated as a total dose per cycle (ie, not more than
28 days x 420 mg once daily). The users were free to adjust the safety range
for each dosing event and to accept or reject the CURATE.AI recommen-
dations. The primary and secondary outcome measures were focused on
scientific and logistical feasibility and are presented in Supplementary Table
1; however, this single case report is not intended to categorically assess any
of them. Patient’s safety was monitored as per the institutional guidelines—
please see the study protocol for details (Supplementary File 1). Recruitment
began at Singapore’s National University Hospital at the start of 2021. The
study protocol (Supplementary File 1), and the summary of changes since
the patient recruitment with reasons (Supplementary Table 2), can be found
in the Supplementary Information.

Clinical decision support system

CURATE.AI algorithmic process used a quadratic relationship correlating
dose modulations with the patient’s biomarker responses. The profile gen-
erated in the calibration stage was then used to identify the dose that would
have provided an optimal biomarker response in the following cycle, towards
either reaching maximal biomarker reduction or sustaining its current level,

as decided by the users (physicians). The subsequent cycle’s data pair
[Ibrutinib dose:AIgM], representing the patient’s [dose:response], was added
cumulatively to the profile, such that the patient’s profile was continuedly
updated and remained relevant to the patient’s state at each time point,
throughout their enrollment. If the patient was undergoing systemic changes,
either due to the course of their disease and treatment (e.g., biomarker surge,
relapse) or due to unrelated reasons (e.g., infectious disease, flare-up of
comorbidities), CURATE.AI would undergo recalibration, i.e. collection of
new data pair(s) with the intention of a profile recalibration to adjust/redefine
the [Ibrutinib dose:AIgM] profile (Fig. 1b). This is in contrast to the objective
of achieving an optimal efficacy, which is typical for the efficacy-driven dosing
phase. Of note, if a systemic change was known to have a temporal character
and to be irrelevant to the [dose:response] relationship after the period of a
systemic change, the data from the systemic change period were excluded and
not used for the profile adjustment.

Supplementary Table 3 lists the data given to the CURATE.AI team.
Dose recommendations were provided to the users via a recommendation
sheet attached to an email (Supplementary File 2) by the CURATE.AI team.
Both users and the CURATE.AI team could request extra data or expla-
nations. Users’ sentiments towards CURATE.AI was evaluated in a separate
study via qualitative interviews®.

Treatments and procedures

Key recruitment criteria included age >21, ECOG performance status of 0-2
and a WM diagnosis”. Immunoglobulin M paraproteinemia was confirmed
by serum immunofixation and the total IgM needed to be at least above two
times the upper limit of normal. After the recruitment, patient received
Ibrutinib doses selected with the support of CURATE.AI and underwent
longitudinal monitoring and other planned or emergency treatment as per
standard-of-care. The research-specific treatments were limited to per-
forming blood draws to quantify IgM and serum-free light chain (sFLC) ata
higher frequency for the first 6 cycles. For a full description of recruitment
criteria, treatment, and procedures, please see the attached protocol (Sup-
plementary File 1).

Analytical methods
Datasets with less than 30 data points were considered to have non-normal
distribution and are presented as median and interquartile range (IQR).

Data availability

All data were included in the main manuscript and in the supplementary
information. The data-sharing plan at clinicaltrials.gov has changed after the
trial registration to include the sharing of anonymized, individual
patient data.

Code availability

Data processing and CURATE.AI analyses were conducted using built-in
functions in Python programming language. The custom code can be
shared on a reasonable request to Prof. Dean Ho.
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