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Most clinical information is encoded as free text, not accessible for quantitative analysis. This study
presents an open-source pipeline using the local large language model (LLM) “Llama 2” to extract
quantitative information from clinical text and evaluates its performance in identifying features of
decompensated liver cirrhosis. The LLM identified five key clinical features in a zero- and one-shot
manner from 500 patient medical histories in the MIMIC IV dataset. We compared LLMs of three sizes
and various prompt engineering approaches, with predictions compared against ground truth from
three blinded medical experts. Our pipeline achieved high accuracy, detecting liver cirrhosis with
100% sensitivity and 96% specificity. High sensitivities and specificities were also yielded for
detecting ascites (95%, 95%), confusion (76%, 94%), abdominal pain (84%, 97 %), and shortness of
breath (87%, 97 %) using the 70 billion parameter model, which outperformed smaller versions. Our
study successfully demonstrates the capability of locally deployed LLMs to extract clinical information
from free text with low hardware requirements.

It is estimated that 80% of clinical data exists in an unstructured format'. In natural language processing (NLP), computational methods are

Unstructured data includes data in non-tabular formats, such as images,
video, and text, that are not accessible for quantitative analysis. This “dark
matter” of healthcare data is currently unusable for quantitative computa-
tional analysis. While deep learning methods have made structured data
from Electronic Health Records (EHRs) usable for individual risk
prediction’, can make diagnoses and extract biomarkers from radiology or
histopathology images™, natural language has not been widely used as a
source to extract structured information. Making an unstructured data
resource readable for downstream tasks has a variety of benefits, such as
improvements in individual healthcare outcomes’, the possibility to obtain
scientific insights’, and improvements in billing processes and quality
control’.

applied to unstructured text. Medical applications of NLP have been
explored for decades’, but real-world applications are still very rare.
However, real-world data analysis is increasingly being recognized and
implemented for timely evidence generation, making the need to extract
real-world data from text even more pressing'’. Several hurdles have been
discussed for NLP in healthcare, among them the lack of annotated datasets
and user-centered design as well as hand-crafted over-engineered software
pipelines which lack scalability'"'>. Large language models (LLMs) have
impacted this field: they are transformer neural networks which are trained
on large bodies of unstructured text data with self-supervised learning
(SSL)"*"°. LLMs are foundation models which can be applied to a broad
range of tasks without having been explicitly trained for these tasks. This
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“zero-shot” application, where LLMs are tasked with a potentially unseen
problem, changes the conventional wisdom in medical artificial intelligence
by which a model for a certain task needs to be trained on a large dataset
representing this specific task'”. In particular, the LLM Generative Pre-
trained Transformer (GPT) and its user interface ChatGPT, have demon-
strated remarkable proficiency in structuring text and extracting relevant
information in a quantitative way'®. Their capabilities could revolutionize
the way we comprehend and process vast quantities of healthcare data'**".
For example, GPT-4 has been used to extract structured clinical information
from free text reports in radiology'’, pathology and medicine™.

However, these LLMs run as cloud services and using them
requires the transfer of privileged information to remote servers. This
brings along immense legal and ethical challenges, especially in the
European Union (EU), where the export of personal health data is not
legally permitted*. Ideally, LLMs should run on-premise of
healthcare institutions, potentially even at the point of care®’.
However, this requires software pipelines using lightweight LLMs
such as quantized LLMs, which are currently not validated for medical
tasks. Quantized models have lower numerical precision of the model
parameters and have lower graphics processing unit (GPU) memory
consumption than unquantized models, allowing for easier integra-
tion with existing hospital hardware. Here, we therefore aimed to
build and validate a fully automated pipeline for end-to-end proces-
sing of clinical text data which uses locally deployable LLMs and can
potentially be used at the point of care. We investigated the capabilities
of our new pipeline with a task of high clinical importance: the
extraction of specific clinical features from medical free text, using the
example of features that help detect decompensated liver cirrhosis.
Approximately 1% of the population in the EU has liver cirrhosis* and
decompensation is one of the most common emergencies faced by
these patients™. Decompensation is often overlooked initially, but can
be a turning point in the prognosis of cirrhotic patients, thus early
identification and management are crucial to improve patient
outcomes®’. Automatic detection of decompensated liver cirrhosis,
enhanced with features extracted from free text, provides a more
robust basis for future early warning systems. In addition, this

approach could facilitate retrospective analysis of clinical data for
scientific, quality control or billing purposes, and it could be applied to
other areas of medicine too.

Results

Key medical features are unevenly represented in medical
histories

Our analysis of the Llama 2 model’s data extraction capabilities from
text reports focused on five key medical features: liver cirrhosis,
ascites, abdominal pain, shortness of breath, and confusion. We found
that the frequency of these features varied significantly across the
reports. Abdominal pain and shortness of breath were frequently
documented in the data (“abdominal pain”: N =209/500 reports and
“shortness of breath”: N =130/500 reports). However, liver cirrhosis
and ascites were less prevalent (“liver cirrhosis™: N = 1/500, since liver
cirrhosis was sometimes explicitly mentioned in other combinations
(e.g. “HCV cirrhosis”), we also performed a keyword search on the
word stem “cirrhos”: N=29/500 reports, “ascites”: N=20), men-
tioned in only about 5% of cases, as detailed in Fig. 1.

While liver cirrhosis and ascites were explicitly mentioned when pre-
sent (ascites was mentioned in 20 reports and also present in 20 reports),
making their detection more straightforward, the documentation of
abdominal pain, shortness of breath, and confusion often required more
nuanced interpretation, as these symptoms were described in multiple ways
by physicians. Abdominal pain, shortness of breath, and confusion were not
always explicitly stated but could be inferred from contextual information.
For example, abdominal pain might be indicated through a variety of
descriptors or understood from the absence of certain findings, e.g., “pain in
the RUQ” stands for “pain in the right upper quadrant of the abdomen” thus
indicating the presence of abdominal pain.

Similarly, shortness of breath and confusion, while not always directly
stated, could be inferred from contextual clues or specific medical termi-
nology used in the reports. This implies that accurately identifying such
implicit features demands a nuanced understanding of medical language
and context, as well as some level of clinical expertise. For example, a
statement like “10-point review of systems negative” implies the absence of
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Fig. 1 | Feature distribution in 500 MIMIC present medical histories. a The bar
chart visualizes data from 500 present medical history reports extracted from the
MIMIC-1V database. It displays the counts for five extracted features, with “true”
counts in red and “false” in blue. b The sunburst plot indicates the amount of reports,
in which the features’ term is explicitly mentioned as a share of false and true counts.
Liver cirrhosis and ascites are the features with the highest share of explicitly

False (459)

\

&%

%f.\

mentioned features, with every mention aligning with a “true” classification in the
ground truth evaluation. Abdominal pain and shortness of breath were most fre-
quently mentioned over all reports. “Explicit features” are consistently described
with identical terminology (e.g., ascites, cirrhosis), whereas “implicit features” vary
in description (e.g., shortness of breath: “SOB,” “difficulties in breathing,”
“dyspnea”).
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Fig. 2 | Confusion matrices for extracted features with zero-shot prompting.

a shows the prompt modules used for zero shot prompting. The detailed instruction
was included, followed by a report and the corresponding instruction formulated as a
question. This was followed by a definition of the features to be extracted. b The
confusion matrices visualize the performance of the Llama 2 models with 7 billion,
13 billion and 70 billion parameters in retrieving the presence or absence of the five
features ascites, abdominal pain, shortness of breath, confusion and liver cirrhosis in
all n =500 medical histories from MIMIC IV. All matrices are divided into four
quadrants with the two labels “true” or “false” in each axis. The x-axis depicts the
predicted labels, the y-axis depicts the true labels. The confusion matrices are nor-
malized to show proportions, where each cell represents the fraction of predictions
within the actual class. Values along the diagonal indicate correct predictions (true

positives and true negatives), while off-diagonal values represent misclassifications
(false positives and false negatives). The sum of each row’s fractions equals 1,
indicating the proportion of predictions for each actual class. The “n” values
represent the absolute number of observations in each category. In the top left
matrix, the extraction of ascites with the 70b model is shown. The top left quadrant
(true negatives) shows a high score of 0.95, indicating a high rate of correct pre-
dictions for non-cases of ascites. The top right quadrant (false positives) has a score
0f 0.05, suggesting few cases were incorrectly predicted as having ascites. The bottom
left quadrant (false negatives) has a score of 0.05, indicating few cases were incor-
rectly identified as not having ascites. Finally, the bottom right quadrant (true
positives) shows a high score of 0.95, which means a high rate of correct predictions
for actual cases.

symptoms like shortness of breath, abdominal pain, and confusion,
requiring the model to interpret these indirect clues effectively.

Llama 2 is able to extract relevant information from
unstructured text
In our assessment, the 70b model displayed remarkable proficiency. Sensi-
tivity of detecting liver cirrhosis and ascites was 100% and 95%, respectively.
For abdominal pain and shortness of breath, sensitivities were lower with 84%
and 87%, respectively. Confusion was the symptom that was most difficult to
extract for the LLM with a sensitivity of only 76%. Specificity for liver cirrhosis
was 96%, for ascites 95% and even higher for abdominal pain (97%), shortness
of breath (96%) and confusion (94%). Confusion matrices are shown in Fig. 2.

One-shot prompting yielded slightly better results with higher sensi-
tivities (ascites: 95%, abdominal pain: 92%, shortness of breath: 83%, con-
fusion: 88% and liver cirrhosis 100%) and specificities (ascites: 99%,
abdominal pain: 92%, shortness of breath: 96%, confusion: 94% and liver
cirrhosis 97%) (Fig. 3 and Table 2).

The models with more parameters performed better, with the most
substantial increase in accuracy from the Llama 2 7b to 13b model (Table 1

and Fig. 4). For implicit features, the 70b model yielded the highest accuracy.
The 7b model faced challenges in accurately identifying false classifications.
For example, in one case, the model stated “She had confusion present at
admission,” even though there was no information about confusion in the
report. Similarly, the model interpreted the feature “ascites” as present, but
the report only stated “(...) healthy female with incidental finding of right
renal mass suspicious for RCC (...)”. This hallucination was particularly
present in smaller models such as Llama 2 7b. All models presented a high
negative predictive value. Precision and specificity tended to improve most
from 7b to 13b parameter model size. Recall was best in the explicitly
mentioned features (Tables 1 and 2).

Prompt engineering enhances accuracy, especially in smaller
sized models

In our initial test with the 7b model, we used a combination of a system
prompt with general instructions and a user prompt containing the report
and questions (prompting strategy details in Supplementary Figs. 2 and 3).
Including a one-shot example in the prompt slightly enhanced the model’s
accuracy except for the feature abdominal pain (Supplementary Fig. 2). The
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Fig. 3 | Confusion matrices for extracted features with one-shot prompting. The
confusion matrices visualize the performance of the Llama 2 models with 70 billion
parameters in retrieving the presence or absence of the five features ascites,
abdominal pain, shortness of breath, confusion and liver cirrhosis in all n = 500
medical histories from MIMIC IV. All matrices are divided into four quadrants with
the two labels “true” or “false” in each axis. The x-axis depicts the predicted labels, the
y-axis depicts the true labels. The confusion matrices are normalized to show pro-
portions, where each cell represents the fraction of predictions within the actual
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class. Values along the diagonal indicate correct predictions (true positives and true
negatives), while off-diagonal values represent misclassifications (false positives and
false negatives). The numbers indicate absolute counts, the figure in brackets indi-
cate fractions. The sum of each row’s fractions equals 1, indicating the proportion of
predictions for each actual class. a shows the best one-shot prompt architecture and
results. Whereas adding definitions, which improved performance with zero-shot
prompting, deteriorated the results for one-shot prompting (b).

Table 1 | Model performance —zero-shot prompting with definitions

Sensitivity Specificity Positive predictive value Negative predictive value Accuracy

7b 13b 70b 7b 13b 70b 7b 13b 70b 7b 13b 70b 7b 13b 70b
Ascites 1.00 0.75 0.95 0.77 0.99 0.95 0.16 0.71 0.44 1.00 0.99 1.00 0.78 0.98 0.95
Abdominal pain 0.88 0.74 0.84 0.67 0.89 0.97 0.38 0.60 0.86 0.96 0.94 0.97 0.71 0.86 0.95
Shortness of breath 0.87 0.42 0.87 0.77 0.99 0.96 0.45 0.86 0.82 0.96 0.89 0.97 0.79 0.88 0.94
Confusion 0.63 0.59 0.76 0.89 0.90 0.94 0.34 0.34 0.54 0.96 0.96 0.98 0.87 0.87 0.93
Liver cirrhosis 1.00 0.96 1.00 0.70 0.99 0.96 0.16 0.81 0.56 1.00 1.00 1.00 0.71 0.99 0.96

Comparing three versions of Liama 2, the largest (70b) model showed the highest performance whereas the smallest (7b) model performed worst. The 13b and 70b models show higher accuracy across all

conditions when compared to the 7b model.

human instructions in the Llama prompt needed to be indicated within
specific tags ([INST],[/INST]). Notably, the one-shot example needed to be
excluded from the instruction section, otherwise the performance deterio-
rated substantially, because the model answered the questions with the
example given. Requesting an excerpt from the text followed by a binary
answer (Chain-of-thought prompting) did not yield improved results. We
found deteriorated accuracy for the features ascites (—25 percentage points
(ppts)), abdominal pain (—6 ppts) and confusion (—5 ppts). The features
shortness of breath (41 pp) and liver cirrhosis (415 ppts) improved slightly
(Supplementary Fig. 2). For explainability reasons, we nevertheless forced
the model with the grammar (which is outlined in detail in the github
repository) to provide, first, an excerpt, and only then the binary outcome
and found that this did not adversely affect performance.

Providing definitions for all features only improved the extraction of
the more implicitly mentioned features shortness of breath and abdominal

pain, but deteriorated the extraction of explicitly mentioned features. Sub-
sequent testing involved consolidating both the report and question com-
ponents within the system prompt, instead of dividing them between system
and user prompts. This change resulted in improved performance for the 7b
model, whereas this trend was not consistently present for the 70b model.
Whereas system prompting improved the accuracy of detecting ascites by 4
ppts, liver cirrhosis by 7 ppts, abdominal pain by 6 ppts, shortness of breath
by 4 ppts and confusion by 2 ppts in the 7b model, the system prompting
effect was less consistent in the 70b model, leading to improvement for
ascites detection by 9 ppts, liver cirrhosis by 1 pp, abdominal pain by 1 pp
and slight deterioration of accuracy for confusion and shortness of breath (1
pp) (All metrics are displayed in Supplementary Fig. 3). These results
indicate a more effective prompt structure when integrated into the system
prompt (Supplementary Methods). Finally, the most effective prompt
structure for zero-shot prompting, as concluded from our experiments, was
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extracting the five features Ascites, Abdominal pain, Shortness of breath, Confusion,
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zero shot prompting without additional definition or example, ¢ the accuracy of the
best one-shot prompting example. Error bars represent the variability or confidence
intervals, calculated with 1000-fold bootstrapping.

Table 2 | Model performance —one-shot prompting

Sensitivity Specificity Positive predictive value Negative predictive value Accuracy

7b 13b 70b 7b 13b 70b 7b 13b 70b 7b 13b 70b 7b 13b 70b
Ascites 0.95 1.00 0.95 0.94 0.76 0.99 0.38 0.13 0.79 1.00 1.00 1.00 0.94 0.76 0.99
Abdominal pain 0.99 0.95 0.92 0.18 0.68 0.92 0.22 0.40 0.72 0.99 0.98 0.98 0.33 0.73 0.92
Shortness of breath 0.64 0.59 0.83 0.95 0.98 0.96 0.72 0.87 0.82 0.92 0.91 0.96 0.89 0.91 0.94
Confusion 0.71 0.85 0.88 0.85 0.78 0.94 0.30 0.25 0.56 0.97 0.98 0.99 0.84 0.79 0.93
Liver cirrhosis 1.00 1.00 1.00 0.65 0.76 0.97 0.14 0.18 0.69 1.00 1.00 1.00 0.67 0.77 0.98

Comparing three versions of Liama 2, the largest (70b) model showed the highest performance whereas the smallest (7b) model performed worst. The 13b and 70b models show higher accuracy across all

conditions when compared to the 7b model.

to include all components within the system prompt. This encompassed
providing a report, asking specific questions, giving definitions for implicit
features, and enforcing a chain-of-thought response through grammatical
structuring without a chain-of-thought questioning strategy. Nevertheless,
the prompt experiments changed each feature differently. In principle, the
least differences between the prompting techniques can be seen in the lar-
gest, 70b model. In summary, these data show that prompt engineering can
help improve performance especially in the smallest model, whereas larger
model sizes demonstrated greater robustness, with remarkably high per-
formance of simple prompts, improving only marginally through prompt
engineering.

Discussion

In this study, we present an open-source software pipeline which can use
local LLMs to extract quantitative data from clinical free text and evaluate it
on the detection of symptoms indicating decompensated liver cirrhosis, an
important medical emergency. We demonstrate that the LLM “Llama 2”
yields an excellent performance on this task, even in a zero-shot way without
any task-specific fine-tuning. Specifically, the 70 billion parameter model

was able to achieve 90% accuracy or more for both implicitly and explicitly
mentioned features. Historically, rule-based or dictionary-based methods
were used for information extraction™, but these approaches struggle with
the variability of medical texts and the scarcity of labeled training data®’.
Additionally, such rule-based hand-crafted methods cannot extract impli-
citly stated information in a zero-shot way. Therefore, we show that LLMs
can fill the gap in information extraction and will be of utmost importance
for versatile healthcare data processing.

The performance of LLMs is increasing massively’> and we expect that
future LLMs will further improve the performance. Many proof-of-concept
studies for LLMs in medicine only show a semiquantitative analysis—in
contrast, we employ a rigorous, quantitative, pre-specified analysis com-
paring the models’ outputs to a ground truth obtained by three blinded
observers. We posit that such a systematic analysis should be the gold
standard in assessing the benefits and shortcomings of LLMs in medicine.

Not surprisingly, we find that clinical features that are explicitly
mentioned in clinical texts are recalled more effectively by our model than
those that are implied, indicating a limited grasp of contextual subtleties.
The model particularly struggled with extracting “confusion” due to
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inconsistent documentation and definition, which even required medical
experts to consent about a definition (see Supplementary Tables 1 and 2 in
the Supplementary Information for raters’ agreement and feature con-
sensus definition). Despite this, the Llama 2 70b model excels in identifying
implicitly mentioned features, showing a superior understanding of con-
text linked to its larger parameter size. Our prompt experiments’ findings
indicate that models with larger parameter size demonstrate enhanced
robustness, and their performance remains largely unaffected by variations
in prompt engineering, suggesting promising prospects for the develop-
ment of even better and larger models in the future. Llama has been
previously successful in tasks like DRG prediction and tested for ICD code
extraction from clinical notes™". Our analysis reaffirms Llama 2’s strong
information extraction capabilities and secure processing of sensitive
patient data. Nevertheless, Llama as a decoder-only model has proven to
struggle more with unseen information types than encoder-decoder
models®, although decoder-only models with more extensive pre-training
overcome this limitation. Continuous improvements to Llama and other
LLMs, as seen with ChatGPT, could further boost their performance in
complex tasks™. Several related studies have shown that the LLM GPT-4
excels at structured information extraction from medical text and is often
superior to Llama 2. However, GPT-4 runs in the cloud and its architecture
is unknown to the public”, making it currently not suitable for processing
personal healthcare data.

LLMs have some fundamental limitations that users must be
aware of. In our analysis, we encountered some of these: For instance,
our analysis revealed that when Llama 2 was asked to determine a
patient’s gender from medical history, it based its decision on the
prevalence of certain symptoms in one gender over another, rather
than using clear identifiers like personal pronouns, which prove the
gender instead of suggesting it by probabilities (Supplementary Fig. 1,
Supplementary Information). Addressing biases in LLM:s is essential
to ensure the accuracy and impartiality of the information they deli-
ver. Continuous investigation and the development of advanced
methods to assess these models’ functioning are vital. This will enable
us to rely on these models for information that reflects the actual
content, rather than assumptions made by the model. Furthermore,
we analyzed Llama’s proficiency in evaluating English-language
patient histories; its ability to handle data in other languages needs
to be further elucidated, since 90% of Llama-2’s training data was
English language data™.

Our analysis has the potential to form a basis for clinical decision
support systems, aiding in identifying symptoms of conditions like
decompensated liver cirrhosis and applicable in various medical fields.
Further refinement and evaluation, potentially through fine-tuning, retrie-
val augmented generation approaches™ and improved LLMs are necessary
to obtain the necessary security in handling medical data, especially to
overcome the tendency of LLMs to hallucinate®, which has also been shown
in examples of our experiments. Nevertheless, our research reveals sub-
stantial chances for broader medical settings: Enhanced information
extraction from free text enables more effective quantitative analysis in
research. Moreover, it can streamline quality control in hospital procedures
and simplify billing encoding, thereby reducing labor-intensive information
extraction tasks.

Methods

Ethics statement

We solely utilized anonymized patient data from the MIMICIV database. The
MIMIC 1V dataset is a comprehensive and publically available collection of
anonymized medical data from patients admitted to the emergency depart-
ment or intensive care unit at Beth Israel Deaconess Medical Center in Boston
Massachusetts, United States and enables text based research in healthcare
and serves as a benchmark for medical Al studies™. The MIMIC IV database
contains a broad spectrum of patient data collected from 2009 to 2019, thereby
being representative of multiple clinical scenarios*. All research procedures
were conducted in accordance with the Declaration of Helsinki.

Data preparation

We applied for access to the MIMIC-IV database available from phy-
sionet.org and obtained access to the comprehensive health-related data
of patients treated in an emergency department or intensive care
setting*>***’. Central to our study was the early detection of decom-
pensated liver cirrhosis in admission records, a critical task due to the
condition’s potential lethality and rapid progression to complications
such as variceal bleeding, hepatic encephalopathy, or renal failure. Early
and accurate identification is vital for initiating immediate treatment
and guiding patient management. For this study, we selected the first 500
patient histories (0.15% of all MIMIC IV clinical notes), focusing on
identifying signs of decompensation in liver cirrhosis. We utilized Llama
2 to extract three symptoms—shortness of breath, abdominal pain, and
confusion—from the text, and to identify two explicitly stated condi-
tions: liver cirrhosis and ascites. This approach aimed to demonstrate the
model’s effectiveness in discerning both implicit and explicit medical
information crucial for patient care.

Model details and data processing

The study’s goal was to assess the capability of the LLM “Llama 27, in
extracting the mentioned information from the textual medical data.
We employed the zero-shot method to run the model. In our
approach, all three versions of Llama 2 were used, the 7 billion-, 13
billion-, and 70 billion parameter-sized model. Our aim was to
retrieve information about the five predefined features from patients’
present medical histories*’. Initially, the model was prompted to give
JavaScript Object Notation (JSON) formatted output, but the model’s
JSON output was inconsistent and defective. The model output
missed relevant parenthesis displaying non-escaped characters that
could not be parsed. Therefore, we utilized the llama.cpp version*, a
framework originally designed to run Llama 2 models on lower-
resource hardware as well as support grammar-based output for-
matting. Thus, we enforced the JSON format generation using lla-
ma.cpp’s grammar-based sampling, which dictates text generation
through specific grammatical rules to ensure valid JSON. We then
converted these JSON outputs into CSV format using Python’s
pandas library. The whole pipeline is depicted in Fig. 5.

Prompt engineering

We implemented a technique known as zero-shot chain-of-thought
prompting, wherein the model is tasked with identifying relevant text
passages without prior training specific to the task, which tests the model’s
ability to apply its pre-trained knowledge to new problems. By employing a
specific grammar-based sampling approach, we enhanced the explainability
of the model. Thus, it structured the output as follows: First, an explanation
with excerpts from the original report were given, then the binary response
indicating the presence or absence of a feature was determined (example
output: \“abdominal pain\“: {\“excerpt\“: \“Patient reported mild right
upper quadrant pain.\“, \“present\: true}. This also implemented a “chain-
of-thought” process, which allowed sequential reasoning where the LLM
output transparently outlines its thought process, to verify the existence of a
particular feature within the text. To enhance outcomes via prompt engi-
neering, one-shot prompting was also employed*, providing the model with
an example report and corresponding JSON formatted output. Blinded
medical raters established a consensus on precise definitions for the queried
features during ground truth definition, which were subsequently provided
to the model (definition prompting). Ultimately, single-shot and definition
chain-of-thought prompting were combined. The standard Llama 2 prompt
contains two modules, the “system” and the “user” part. The system prompt
provides initial instructions or explanations to guide the interaction, while
the user prompt includes the user’s input or query, further shaping the
response process. We experimented with different arrangements of system
and user prompts in combination with definition, one-shot and chain-of-
thought prompting and prompt modules containing general instructions,
original report and questions. The MAIN ZERO SHOT PROMPT
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Fig. 5 | Experimental design and feature extraction pipeline. a We implemented
an automated process to extract 500 free-text clinical notes from the MIMIC IV
database, focusing specifically on the patients’ present medical histories. These
selected anamnesis reports were then systematically converted and stored in a CSV
file for further processing. b Utilizing this CSV file, our custom-designed software
algorithm selected one report at a time and combined it with a predetermined
prompt and grammatical structures. This combination was then input into the
advanced large language model, Llama 2. The primary function of Llama 2 in our
study was to meticulously identify and extract specific, predefined clinical features
(namely, Shortness of Breath, Abdominal Pain, Confusion, Ascites, and Liver
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Cirrhosis) from the clinical reports. The extracted data were subsequently for-
matted into a JavaScript Object Notation (JSON) file. To ensure a high degree of
precision and structured output, we applied a grammar-based sampling technique.
¢ To establish a benchmark, we engaged three medical experts who independently
analyzed the same clinical reports. They extracted identical items as the Llama 2
model, thereby creating a reliable “ground truth” dataset. d This ground truth
dataset served as a reference point for a quantitative comparison and analysis of the
model’s performance, assessing the accuracy and reliability of the information
extracted by Llama 2. Icons are generated by the author with the AI generation tool
Midjourney™.

(Supplementary information) shows the final zero shot prompt, underlying
the results in Figs. 2 and 4a.

Definition of the ground truth

For validation, the 500 reports were independently assessed by three
human observers to establish a ground truth. In the event of disagree-
ment, a consensus was always reached through discussion (Supple-
mentary Tables 1 and 2). A comprehensive overview regarding
consensus about the ground truth rating, as well as challenges and
methodologies concerning ground truth definition, can be found in the
Supplementary Information.

Evaluation of model results

Positive Predictive Value (Precision, PPV), Sensitivity (Recall), Specificity,
Negative Predictive Value (NPV) and Accuracy were computed to assess the
performance of the different model’s outputs. To obtain reliable estimates,
we employed bootstrapping, a statistical resampling technique, executing
1000 iterations. This method involves repeatedly sampling from the dataset
with replacement to create many “bootstrap” samples. These samples are
then used to estimate the variability and confidence of our statistical esti-
mates, enhancing their robustness and credibility.

Data availability

All data used in the study were obtained from the MIMIC-IV database
available from physionet.org and can be accessed as credentialed user, who
has completed required training and signed the data use agreement for the
project4(),42,43.

Code availability
All  source codes are available at https:/github.com/I2COW/
fromtexttotables/releases/tag/v0.5.0. All scripts are compatible with

Python 3.8. All Python packages required are listed in the requirements.txt
file. Execution advice guidance can be found in the README file.

Received: 9 January 2024; Accepted: 19 August 2024;
Published online: 20 September 2024

References

1. Kong, H.-J. Managing unstructured big data in healthcare system.
Healthc. Inform. Res. 25, 1-2 (2019).

2. Tomasev, N. et al. Use of deep learning to develop continuous-risk
models for adverse event prediction from electronic health records.
Nat. Protoc. 16, 2765-2787 (2021).

3. Shmatko, A., Ghaffari Laleh, N., Gerstung, M. & Kather, J. N. Artificial
intelligence in histopathology: enhancing cancer research and clinical
oncology. Nat. Cancer 3, 1026-1038 (2022).

4. Vanguri, R. S. et al. Multimodal integration of radiology, pathology
and genomics for prediction of response to PD-(L)1 blockade in
patients with non-small cell lung cancer. Nat. Cancer 3,1151-1164
(2022).

5. Chiu, C.-C. et al. Integrating structured and unstructured EHR
data for predicting mortality by machine learning and latent
Dirichlet allocation method. Int. J. Environ. Res. Public Health 20,
4340 (2023).

6. Price, S. J., Stapley, S. A., Shephard, E., Barraclough, K. & Hamilton,
W. T. Is omission of free text records a possible source of data loss
and bias in Clinical Practice Research Datalink studies? A
case—control study. BMJ Open 6, e011664 (2016).

7. Pivovarov, R., Coppleson, Y. J., Gorman, S. L., Vawdrey, D. K. &
Elhadad, N. Can patient record summarization support quality
metric abstraction? AMIA Annu. Symp. Proc. 2016, 1020-1029
(2016).

npj Digital Medicine | (2024)7:257


https://github.com/I2C9W/fromtexttotables/releases/tag/v0.5.0
https://github.com/I2C9W/fromtexttotables/releases/tag/v0.5.0
www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-024-01233-2

Article

8. Locke, S. et al. Natural language processing in medicine: a review.
Trends Anaesth. Crit. Care 38, 4-9 (2021).

9. Chary, M., Parikh, S., Manini, A. F., Boyer, E. W. & Radeos, M. Areview
of natural language processing in medical education. West. J. Emerg.
Med. 20, 78-86 (2019).

10. Castelo-Branco, L. et al. ESMO guidance for reporting oncology real-
world evidence (GROW). Ann. Oncol. https://doi.org/10.1016/].
annonc.2023.10.001 (2023).

11. Chapman, W. W. et al. Overcoming barriers to NLP for clinical text: the
role of shared tasks and the need for additional creative solutions. J.
Am. Med. Inform. Assoc. 18, 540-543 (2011).

12. Wang, Y. et al. Clinical information extraction applications: a literature
review. J. Biomed. Inform. 77, 34-49 (2018).

13. PaaB, G. & Giesselbach, S. Foundation Models for Natural Language
Processing: Pre-Trained Language Models Integrating Media
(Springer Nature, 2023).

14. Yang, X., Bian, J., Hogan, W. R. & Wu, Y. Clinical concept extraction
using transformers. J. Am. Med. Inform. Assoc. 27, 1935-1942 (2020).

15. Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process.
Syst. 30, 1-11 (2017).

16. Clusmann, J. et al. The future landscape of large language models in
medicine. Commun. Med. 3, 141 (2023).

17. Bommasani, R. et al. On the opportunities and risks of foundation
models. arXiv https://doi.org/10.48550/arXiv.2108.07258 (2021).

18. Adams, L. C. et al. Leveraging GPT-4 for post hoc transformation of
free-text radiology reports into structured reporting: a multilingual
feasibility study. Radiology 307, €230725 (2023).

19. Kleesiek, J. An Opinion on ChatGPT in Health Care-Written by
Humans Only. J. Nucl. Med. 64, 701-703 (2023).

20. Li, J., Dada, A., Kleesiek, J. & Egger, J. ChatGPT in healthcare: a
taxonomy and systematic review. bioRxiv https://doi.org/10.1101/
2023.03.30.23287899 (2023).

21. Truhn,D., Reis-Filho, J. S. & Kather, J. N. Large language models should
be used as scientific reasoning engines, not knowledge databases. Nat.
Med. https://doi.org/10.1038/s41591-023-02594-z (2023).

22. Simon Jones, N. J. et al. Evaluating ChatGPT in information
extraction: a case study of extracting cognitive exam dates and
scores. medRxiv https://doi.org/10.1101/2023.07.10.

23292373 (2023).

23. Minssen, T., Vayena, E. & Cohen, |. G. The challenges for regulating
medical use of ChatGPT and other large language models. JAMA 330,
315-316 (2023).

24. Weatherbed, J. OpenAl’s regulatory troubles are only just beginning.
The Verge. Artificial Intelligence. https://www.theverge.com/2023/5/
5/23709833/openai-chatgpt-gdpr-ai-regulation-europe-eu-
italy (2023)

25. Raeini, M. Privacy-preserving large language models (PPLLMs).
https://doi.org/10.2139/ssrn.4512071 (2023).

26. Touvron, H. et al. Llama 2: open foundation and fine-tuned chat
models. arXiv https://doi.org/10.48550/arXiv.2307.09288 (2023).

27. Huang, D. Q. et al. Global epidemiology of cirrhosis—aetiology,
trends and predictions. Nat. Rev. Gastroenterol. Hepatol. 20,
388-398 (2023).

28. Volk, M. L., Tocco, R. S., Bazick, J., Rakoski, M. O. & Lok, A. S.
Hospital readmissions among patients with decompensated
cirrhosis. Am. J. Gastroenterol. 107, 247-252 (2012).

29. Balcar, L. et al. Risk of further decompensation/mortality in patients
with cirrhosis and ascites as the first single decompensation event.
JHEP Rep. 4, 100513 (2022).

30. Landolsi, M. Y., Hlaoua, L. & Ben Romdhane, L. Information extraction
from electronic medical documents: state of the art and future
research directions. Knowl. Inf. Syst. 65, 463-516 (2023).

31. He, K. et al. A survey of large language models for healthcare: from
data, technology, and applications to accountability and ethics. arXiv
https://doi.org/10.48550/arXiv.2310.05694 (2023).

32. Open LLM Leaderboard. Huggingface https://huggingface.co/
spaces/HuggingFaceH4/open_lim_leaderboard (2023).

33. Wang, H. et al. DRG-LLaMA : tuning LLaMA model to predict
diagnosis-related group for hospitalized patients. NPJ Digit Med. 7,
16 (2024).

34. Boyle, J. S. et al. Automated clinical coding using off-the-shelf large
language models. arXiv https://doi.org/10.48550/arXiv.2310.06552
(2023).

35. Gao, J. et al. Benchmarking large language models with augmented
instructions for fine-grained information extraction. arXiv https://doi.
0rg/10.48550/arXiv.2310.05092 (2023).

36. OpenAl. GPT-4 technical report. arXiv https://doi.org/10.48550/arXiv.
2303.08774(2023).

37. Meskd, B. & Topol, E. J. The imperative for regulatory oversight of
large language models (or generative Al) in healthcare. NPJ Digital
Med. 6, 120 (2023).

38. Ferber, D. &Kather, J. N. Large language models in uro-oncology. Eur.
Urol. Oncol. https://doi.org/10.1016/j.eu0.2023.09.019 (2023).

39. Xu, Z.,Jain, S. & Kankanhalli, M. Hallucination is inevitable: an innate
limitation of large language models. arXiv https://doi.org/10.48550/
arXiv.2401.11817 (2024).

40. Johnson, A.E. W. etal. MIMIC-1V, a freely accessible electronic health
record dataset. Sci. Data 10, 1 (2023).

41. Mark, R. The story of MIMIC. 2016 Sep 10. In Secondary Analysis
of Electronic Health Records (ed. MIT Critical Data) (Springer
Nature, 2016).

42. Johnson, A., Bulgarelli, L., Pollard, T. & Horng, S. MIMIC-IV—
PhysioNet (2020).

43. Goldberger, A. L. et al. PhysioBank, PhysioToolkit, and PhysioNet:
components of a new research resource for complex physiologic
signals. Circulation 101, E215-E220 (2000).

44. Gerganov, G. llama.cpp. GitHub (2023).

45. White, J. et al. A prompt pattern catalog to enhance prompt
engineering with ChatGPT. arXiv https://doi.org/10.48550/arXiv.
2302.11382 (2023).

46. Midjourney. Midjourney (V5) [Text-to-image model]. (2023).

Acknowledgements

J.N.K. is supported by the German Cancer Aid (DECADE, 70115166), the
German Federal Ministry of Education and Research (PEARL,
01KD2104C; CAMINO, 01EO2101; SWAG, 01KD2215A; TRANSFORM
LIVER, 031L0312A; TANGERINE, 01KT2302 through ERA-NET Trans-
can; Come2Data, 16DKZ2044A; DEEP-HCC, 031L0315A), the German
Academic Exchange Service (SECAI, 57616814), the German Federal
Joint Committee (TransplantKI, 01VSF21048) the European Union’s
Horizon Europe and innovation programme (ODELIA, 101057091;
GENIAL, 101096312), the European Research Council (ERC; NADIR,
101114631), the National Institutes of Health (EPICO, R01 CA263318)
and the National Institute for Health and Care Research (NIHR,
NIHR203331) Leeds Biomedical Research Centre. The views expressed
are those of the author(s) and not necessarily those of the NHS, the NIHR
or the Department of Health and Social Care. This work was funded by
the European Union. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European
Union. Neither the European Union nor the granting authority can be held
responsible for them.

Author contributions

1.C.W. conceptualized the study and developed the methodology in close
coordination with J.N.K., D.F., M.T.and J.Z.1.C.W. developed the scripts and
1.C.W. and S.M. ran the experiments. |.C.W., D.F. and S.M. were determining
the ground truth and evaluating the model results. .C.W., D.F. and J.N.K.
were writing the initial manuscript, reviewed by D.T., Z.I.C., R.J., S.M., J K,
D.P. and M.P.E. All authors contributed scientific advice and approved the
final version of the manuscript.

npj Digital Medicine | (2024)7:257


https://doi.org/10.1016/j.annonc.2023.10.001
https://doi.org/10.1016/j.annonc.2023.10.001
https://doi.org/10.1016/j.annonc.2023.10.001
https://doi.org/10.48550/arXiv.2108.07258
https://doi.org/10.48550/arXiv.2108.07258
https://doi.org/10.1101/2023.03.30.23287899
https://doi.org/10.1101/2023.03.30.23287899
https://doi.org/10.1101/2023.03.30.23287899
https://doi.org/10.1038/s41591-023-02594-z
https://doi.org/10.1038/s41591-023-02594-z
https://doi.org/10.1101/2023.07.10.23292373
https://doi.org/10.1101/2023.07.10.23292373
https://doi.org/10.1101/2023.07.10.23292373
https://www.theverge.com/2023/5/5/23709833/openai-chatgpt-gdpr-ai-regulation-europe-eu-italy
https://www.theverge.com/2023/5/5/23709833/openai-chatgpt-gdpr-ai-regulation-europe-eu-italy
https://www.theverge.com/2023/5/5/23709833/openai-chatgpt-gdpr-ai-regulation-europe-eu-italy
https://www.theverge.com/2023/5/5/23709833/openai-chatgpt-gdpr-ai-regulation-europe-eu-italy
https://doi.org/10.2139/ssrn.4512071
https://doi.org/10.2139/ssrn.4512071
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2310.05694
https://doi.org/10.48550/arXiv.2310.05694
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://doi.org/10.48550/arXiv.2310.06552
https://doi.org/10.48550/arXiv.2310.06552
https://doi.org/10.48550/arXiv.2310.05092
https://doi.org/10.48550/arXiv.2310.05092
https://doi.org/10.48550/arXiv.2310.05092
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1016/j.euo.2023.09.019
https://doi.org/10.1016/j.euo.2023.09.019
https://doi.org/10.48550/arXiv.2401.11817
https://doi.org/10.48550/arXiv.2401.11817
https://doi.org/10.48550/arXiv.2401.11817
https://doi.org/10.48550/arXiv.2302.11382
https://doi.org/10.48550/arXiv.2302.11382
https://doi.org/10.48550/arXiv.2302.11382
www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-024-01233-2

Article

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests

J.N.K. declares consulting services for Bioptimus, France; Owkin, France;
DoMore Diagnostics, Norway; Panakeia, UK; AstraZeneca, UK; Scalilyte,
Switzerland; Mindpeak, Germany; and MultiplexDx, Slovakia. Furthermore he
holds shares in StratifAl GmbH, Germany, has received a research grant by
GSK, and has received honoraria by AstraZeneca, Bayer, Eisai, Janssen, MSD,
BMS, Roche, Pfizer and Fresenius. D.T. has received honoraria for lectures for
Bayer and holds shares in StratifAl GmbH, Dresden, Germany. I.C.W. received
honoraria from AstraZeneca. The authors have no other financial or non-
financial conflicts of interest to disclose. D.F., J.Z., M.T., S.M.,R.J., ZI.C., D.P.,
J.K. and M.P.E. have no competing interests to declare.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41746-024-01233-2.

Correspondence and requests for materials should be addressed to
Jakob Nikolas Kather.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

npj Digital Medicine | (2024)7:257


https://doi.org/10.1038/s41746-024-01233-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjdigitalmed

	Privacy-preserving large language models for structured medical information retrieval
	Results
	Key medical features are unevenly represented in medical histories
	Llama 2 is able to extract relevant information from unstructured text
	Prompt engineering enhances accuracy, especially in smaller sized models

	Discussion
	Methods
	Ethics statement
	Data preparation
	Model details and data processing
	Prompt engineering
	Definition of the ground truth
	Evaluation of model results

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




