Table 1 Baseline characteristics of the patients in training and testing dataset

From: Identifying who are unlikely to benefit from total knee arthroplasty using machine learning models

Cohorts

Knee dataset

Training set

Testing set

 Number of images

7224

5778

1446

 Number of participants

5720

4575

1145

Demographics

 Male

1513 (21)

1232 (21)

281 (19)

 Age, year

67.0\(\pm\)7.6

67.2\(\pm\)7.5

67.0\(\pm\)7.7

 BMI

  Normal (BMI\(<\)24)

1462 (21)

1151 (20)

311 (22)

  Overweight (24\(\le\)BMI\(<\)28)

2693 (37)

2138 (37)

555 (38)

  Obese (28\(\le\)BMI\(<\)32)

1954 (27)

1609 (28)

345 (24)

  Severely obese (BMI\(\ge\)32)

1115 (15)

880 (15)

235 (16)

 Ethnicity

  Chinese

6288 (87)

5024 (87)

1264 (87)

  Malay

500 (6.9)

410 (7.1)

90 (6.2)

  Indian

370 (5.1)

295 (5.1)

75 (5.2)

  Others

66 (0.9)

49 (0.8)

17 (1.2)

Clinical characteristics

 Hypertension

4501 (62)

3,619 (63)

882 (61)

 Diabetes

1332 (18)

1094 (19)

238 (16)

 Hyperlipidemia

3515 (49)

2828 (49)

687 (48)

 Ischemic heart disease

596 (8.3)

483 (8.4)

113 (7.8)

 Arthritis other than knee OA

240 (3.3)

188 (3.3)

52 (3.6)

 Depression

66 (0.9)

43 (0.7)

23 (1.6)

Outcomes at 6 months

 Not achieve KSS MCID

2035 (28)

1631 (28)

404 (28)

 Not achieve OKS MCID

857 (12)

556 (9.6)

134 (9.3)

 Not achieve SF-MCS MCID

5309 (73)

4262 (74)

1047 (72)

 Not achieve SF-PCS MCID

2734 (38)

2196 (38)

538 (37)

Outcomes at 2 years

 Not achieve KSS MCID

1808 (25)

1432 (25)

376 (26)

 Not achieve SF-MCS MCID

5172 (72)

4137 (72)

1035 (72)

 Not achieve SF-PCS MCID

2320 (32)

1841 (32)

479 (33)

 Not achieve OKS MCID

559 (7.7)

346 (6.0)

88 (6.1)

  1. Data are mean (SD) or n (%).
  2. BMI body mass index, KSS Knee Society knee and function scores, MCID minimal clinical important difference, MCS mental component score, OA osteoarthritis, OKS Oxford Knee Score, PCS physical component score, SD, standard deviation, SF Short Form-36 Health Survey.