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Prediction of total and regional body
composition from 3D body shape
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Chexuan Qiao1,6, Emanuella De Lucia Rolfe 2,6, Ethan Mak 1, Akash Sengupta1, Richard Powell2,
Laura P. E. Watson3, Steven B. Heymsfield 4, John A. Shepherd5, Nicholas Wareham 2,
Soren Brage 2,6 & Roberto Cipolla1,6

Accurate assessment of body composition is essential for evaluating the risk of chronic disease. 3D
body shape, obtainable using smartphones, correlates strongly with body composition. We present a
novel method that fits a 3D body mesh to a dual-energy X-ray absorptiometry (DXA) silhouette
(emulating a single photograph) paired with anthropometric traits, and apply it to the multi-phase
Fenland study comprising 12,435 adults. Using baseline data, we derive models predicting total and
regional body composition metrics from these meshes. In Fenland follow-up data, all metrics were
predictedwith high correlations (r > 0.86).Wealso evaluate a smartphoneappwhich reconstructs a 3D
mesh from phone images to predict body composition metrics; this analysis also showed strong
correlations (r > 0.84) for all metrics. The 3D body shape approach is a valid alternative to medical
imaging that could offer accessible health parameters for monitoring the efficacy of lifestyle
intervention programmes.

Body composition is strongly related to the risk of chronic diseasemorbidity
and mortality1, and can be assessed accurately using medical imaging
methods such as dual-energy X-ray absorptiometry (DXA), magnetic
resonance imaging (MRI) and computed tomography (CT)2–4. However,
these methods are not readily available to be used routinely in clinical
practice and in epidemiological studies due to practical and ethical con-
straints, nor are they easily accessible to the general public5,6. In these set-
tings, conventional anthropometry such as body mass index (BMI), waist,
hip circumferences and waist-hip ratio are typically used to infer body
composition. Parente et al.7 determine waist-height ratio and waist as best
estimators for visceral fat in type-1 diabetes. Heymsfield et al.8 analyse
simple skeletal muscle mass prediction formulas in different ethnicities.
However, these indirect methods of assessing body composition are insuf-
ficiently accurate or convenient for longitudinal use as they often require
face-to-face clinical visits and trained staff. Furthermore, these surrogate
measures do not differentiate between fat and lean mass or their
distribution9,10.

There is a need to develop simple, accessible, and relatively inexpensive
tools to improve the accuracy of assessing body composition. This would
provide better prediction ofmetabolic health and identify people at high risk
of disease in the long term so that remedial action can be taken. Significant

works in recent years have focused on the development of 3D optical (3DO)
scanning11 to estimate body composition12–15. 3DO scanners use depth
sensors by projecting infrared patterns onto the scan subject to rapidly
construct a 3Dpoint cloudusingmultiviewstereo, and subsequently capture
3D surface shape information. Rather than predicting body composition
from anthropometric measurements alone, 3D body shape as a whole
provides more visual and implicit cues for predicting body composition
more accurately. Additional 3D shape cues can either be additional land-
mark diameters, circumferences, surface areas and volumes from 3DO
scans16, or parameters of a PCA shape space13–15.More recently Leong et al.17

use a variational autoencoder (VAE)18 to learn latent DXA encoding, and
map 3DO scans to pseudo-DXA images. These works have shown that 3D
shape information could augment conventional prediction models using
anthropometry, or outperform them as a standalone predictor for a variety
of body composition metrics. However, while the cost of 3DO scanners is
comparatively lower than that of DXA, MRI or CT, obtaining 3DO scans
still requires a dedicated apparatus, which makes it less accessible to the
general public.

To derive shape information without full reliance on 3DO scanners to
reconstruct 3D body meshes, recent works have taken advantage of devel-
opments in computer vision and machine learning algorithms, which have
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enabled accurate segmentation19 and pose estimation20 of objects including
the human body from RGB images, which are easily obtainable using a
smartphone camera. Majmudar et al.21 train a convolutional neural network
(CNN) to directly predict percentage body fat from front and back images.
Alves et al.22 locatekeypoints frommultiple views, derive circumferences, and
predict percentage body fat. Xie et al.23 construct a PCA shape space from 2D
DXA silhouettes and predict body composition. Sullivan et al.24 derive body
volume from a single image by measuring horizontal landmark diameters
anduse the volume in a3-compartmentmodel (bodymass, bodyvolumeand
body water) to calculate percentage body fat. Smith et al.25 compare cir-
cumference estimation accuracy using a smartphone app and 3DO scanners,
and claim that circumferences estimated from images can be relatively
accurate. McCarthy et al.16 derive lengths, circumferences and volumes from
body shape images, and predict skeletal muscle mass from these measure-
ments alongside demographic variables. Graybeal et al.26 evaluate two
smartphone apps and compare circumference and circumference ratio pre-
diction accuracy. The remote data capture and modelling of 3D shapes has
numerous applications, including helping patients track individual changes
over time for commonly assessed anthropometric measurements. Further-
more, patients are not required to physically attend clinics to have these
measures done, thus lowering the burden on health services and providing a
more cost-effective way to monitor aspects of patient health.

Unfortunately, there are few large-scale datasets containing 3D body
meshes with paired anthropometric and metabolic traits. Bennett et al.12

worked with a cohort of size 501, McCarthy et al.16 had a cohort size of 322,
and Ng et al.14 had a cohort size of 407. These small cohorts prevent larger
deep-learning models from being leveraged for body composition predic-
tions. Klarqvist et al.27 used a large-scale MRI database from the UK
Biobank28, to predict body composition from coronal and sagittal silhou-
ettes. To the best of our knowledge, this is the only study that containsMRI
data at this scale, as the use of MRI in population studies is limited due to
cost and accessibility for research. 3D body shape datasets are therefore
scarce, while datasets containing 2DDXA images with anthropometric and
metabolic traits (body composition) are in abundance.

Therefore in this work, we present a novel method that first fits 3D
bodymeshes to DXA silhouettes and paired anthropometry measurements
consisting of height, waist and hip circumferences. Similar to our approach,
Keller et al.29 register a 3D mesh to a DXA silhouette to infer skeletal
structure, andTian et al.30fit a 3Dmesh to a pose-constrained frontal image.
However, these methods are limited to the coronal silhouette, while our
method injects sagittal information in the form of waist and hip cir-
cumferences. Using our method, we generate a large 3D body shape data-
base of 17,461meshes.We then show that using the fittedmeshes, total and
regional body composition metrics can be predicted accurately.

We also test and evaluate the performance of a smartphone app (3D
Body Shape App) that uses phone images alone to make it easier for indi-
viduals to visualise and track changes in their body shape31. The app captures
four photographs (front, back, left-side, and right-side profiles of the par-
ticipant), and reconstructs a 3D body mesh using these images. McCarthy
et al.16 and Smith et al.25 also generate 3D body meshes from RGB images
using an app, which is the most similar to our smartphone approach.
However, their app requires constrained A-pose for the photographs and
could fail due to noisy background in our testing. In contrast, ourmethod is
robust to background, participant poses, camera orientation, and could be
extended to accept an arbitrary number of input images. We show pre-
liminary body composition prediction results using the app. Our aim is to
improve performance by increasing reconstruction accuracy in the future.

In summary, we make the following contributions in this study:
• Construct a large 3D body shape database derived from 2D DXA

silhouettes and paired anthropometry measurements (height, waist
and hip circumferences);

• Predict, from 3D body shape, total and regional body composition
metrics including:
— Total fat mass;
— Percentage body fat (PBF);

— Android fat mass;
— Gynoid fat mass;
— Peripheral fat mass;
— Visceral adipose tissue (VAT) mass;
— Abdominal subcutaneous adipose tissue (SCAT) mass;
— Total lean mass;
— Appendicular lean mass;
— Appendicular lean mass index (ALMI).

• Evaluate and show preliminary results of a smartphone app that pre-
dicts body composition by reconstructing 3D body meshes from
images only.

To the best of our knowledge, our method is the first that fits 3D body
meshes to DXA images and predicts downstream body composition
metrics. In thisway,we show that accurate 3Dmeshes can be derived froma
single 2D silhouette plus simple anthropometry (height, waist and hip cir-
cumferences), from which body composition metrics can be predicted.

Results
The demographic and anthropometric characteristics of the Fenland study
samples and the smartphone validation study are summarised in Table 1.
Participants in the smartphone validation study were younger, lighter and
leaner, compared to participants in the Fenland study. In terms of body
volume, we observed a mean (SD) of 64.4 (13.2) liters in the smartphone
validation study, the only dataset with air plethysmography measures.

3D body mesh fitting
Figure 1 shows samples of our fitted 3D body meshes. We show individuals
from different weight groups to qualitatively demonstrate that our fitting
pipeline works for different body shapes. Row 1 shows the raw DXA scans.
Row 2 shows the initial pose and shape estimations obtained using HKPD20.
These roughly capture the pose and shape of the body, but the fit to the
coronal silhouette is often poor. Row 3 of Fig. 1 shows samples of optimised
fits. We found that optimised meshes agree much better with the silhouettes
of DXA images compared with the initial fit. Furthermore, Supplementary
Fig. 1 shows samples ofmeshes before and after optimisation in sagittal view.
We observed that the optimisation has resulted in significant changes to the
bodyshapes in thedepthdimensionwhencomparing the initialmeshes to the
optimised meshes. This further shows that initial fits do not represent the
actual body shape and that waist and hip circumferences were needed to
generatemeshes that better represent the true body shapeof participants.Our
method, in conclusion, has generated bodymeshes that are injected with 3D
body shape information using paired anthropometry, while creating an
improved fit to theDXA silhouettes. SMPL shape parameters corresponding
to these optimisedmeshes are then used for the body composition regressor.

Body composition prediction
Table 2 shows themodel performance on Fenland and smartphone datasets
in the formofmean bias (95% limits of agreement), root-mean-square error
(RMSE), and Pearson correlation for the agreement between ground truth
body composition values from DXA and model predictions using the 3D
meshes. The last column in this table is the model performance using the
smartphone method. Supplementary Fig. 2 shows selected scatter plots of
model predictions against target values on Fenland phase 2 data. Figure 2
shows scatter plots and Bland–Altman plots for percentage body fat for
Fenland phase 1 (validation), phase 2 (validation), smartphone study using
DXA silhouette optimisation, and smartphone study using RGB images.

In the Fenland phase 1 validation sample, correlation coefficients
betweenpredicted andmeasuredDXAparameterswere strong (r > 0.89) for
all fat mass and lean mass variables. Bland–Altman analyses revealed no
significant mean bias for the following predicted DXA parameters: total fat
mass, percentage body fat, android fat, appendicular lean mass and
appendicular lean mass index (all P > 0.05). However, significant (P < 0.05)
mean bias was observed for gynoid fat, visceral fat, abdominal SCATmass,
peripheral fat and total lean mass. In the Fenland phase 2 (validation)
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sample, which included now older individuals, correlation coefficients
between predicted and measured DXA parameters were also strong
(r > 0.86) for all the body composition variables. Agreement analyses
revealed significant (P < 0.05) mean bias for all predicted DXA measured
parameters. Mean bias was−0.24 (−6.7; 6.2)% for percentage body fat and
for the other body compositionmetrics, themeanbias ranged between -0.04
to 0.41 kg. Similar results for theDXA silhouettemethodwere also observed
in the external validation (Column 3 of Table 2), which included younger

individuals. Correlation coefficients between predicted andmeasured DXA
parameters were r > 0.89. Mean bias was 1.13 (−7.2; 9.5)% for percentage
body fat and for the other body composition parameters, the mean bias
ranged between −1.21 to 1.13 kg.

Results using SMPL shape generated directly from the four smart-
phone images in this external validation are shown in Column 4 of Table 2.
The correlation coefficients between DXA metrics and all the predicted
body composition values were r > 0.84. Mean bias (95% LoA) was 1.62

Fig. 1 | Body meshes fitted to DXA. DXA image
inputs (Row 1), initial fits using HKPD (Row 2)
and optimised fits (Row 3). Initial fits are not
accurate enough to represent the participant. Opti-
mised fits have better agreements with the DXA
silhouettes.

Table 1 | Participant characteristics

Variables units Fenland Study Smartphone validation study

Phase 1 (training) Phase 1 (validation) Phase 2
(validation)

n = 9087 n = 2272 n = 6102 n = 119

Age yrs 48.7 ± 7.5 48.8 ± 7.6 55.8 ± 7.05 42.3 ± 12.3

Weight kg 77.6 ± 15.3 77.6 ± 15.3 77.3 ± 15.2 69.9 ± 13.5

Height cm 170.0 ± 9.3 170.0 ± 9.3 170.4 ± 9.3 168.4 ± 9.8

BMI kg/m2 26.8 ± 4.5 26.7 ± 4.5 26.6 ± 4.4 24.6 ± 4.2

Sex n (%) male 4298 (47.3) 1035 (45.6) 2979 (48.8) 39 (32.7)

Total body fat mass kg 26.4 ± 9.0 26.5 ± 9.2 26.3 ± 9.0 21.0 ± 9.0

Percentage body fat % 33.5 ± 7.7 33.8 ± 8.0 33.7 ± 7.8 29.4 ± 9.5

Android fat mass kg 2.3 ± 1.2 2.3 ± 1.2 2.4 ± 1.2 1.5 ± 1.1

Gynoid fat mass kg 4.4 ± 1.6 4.4 ± 1.6 4.3 ± 1.5 3.9 ± 1.5

Visceral fat mass kg 1.0 ± 0.8 1.0 ± 0.8 1.0 ± 0.8 0.5 ± 0.5

Abdominal SCAT massa kg 1.4 ± 0.6 1.4 ± 0.7 1.3 ± 0.6 1.1 ± 0.8

Peripheral fat massb kg 11.6 ± 4.0 11.7 ± 4.1 11.3 ± 4.0 10.2 ± 4.0

Total lean mass kg 48.8 ± 10 48.4 ± 9.8 48.2 ± 10 46.8 ± 10

Appendicular lean massc kg 22.3 ± 5.5 22.1 ± 5.4 21.6 ± 5.3 21.7 ± 5.5

ALMId kg/m2 7.6 ± 1.3 7.5 ± 1.3 7.4 ± 1.3 7.5 ± 1.3

Data are mean ± SD.
aSCAT = subcutaneous adipose tissue.
bPeripheral fat mass = arms+ legs fat mass.
cAppendicular lean mass = arms+ legs lean mass.
dALMI: appendicular lean mass index = appendicular lean mass/height2.
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(−9.2; 12.5)% for percentage body fat and for the other body composition
parameters, the mean bias ranged between −1.51 to 0.93 kg. Volume
derived from the smartphone achieved RMSE of 5.21 L compared to
BODPOD volume, with mean bias (95% LoA) of 5.36 (−4.9; 15.6) L. We
also compared accuracy of waist, hip, calf, and arm circumferences from the
smartphone avatars, which achieved RMSE of 5.04 cm, 4.38 cm, 2.76 cm
and 2.42 cm, respectively.

Comparison between prediction models
We conducted a comparison study on different regressor model inputs, to
verify that 3Dbodymeshes provide crucial information for the downstream

composition regressor. Results of the different models investigated in the
comparison study are shown in Table 3. Model A (weight and height only)
achieved some level of predictive ability. Performance of the model was
improved by adding waist and hip circumferences (Models B and C), as
waist and hip are strong indicators of composition metrics such as android
fatmass andgynoid fatmass. In thefinalmodel (ModelE),wequantified the
contribution of the SMPL shape parameters in addition to using height and
weight only. This model substantially improved the estimation of the body
composition metrics compared to anthropometry alone. The explained
variance (R2) in percentage body fat increased from 73% to 82%; total fat
mass from 88% to 92%; total lean mass from 91% to 93%; gynoid fat from

Fig. 2 | Body fat prediction scatter plots and Bland–Altman plots. Scatter plots
(Row 1) and Bland–Altman plots (Row 2) for agreement between predicted and
measured percentage body fat in the Fenland samples and the external validation

set. All predictions are based on 3Dmeshes derived fromDXA silhouettes, except
last panel which is based on 3D meshes derived from four RGB photos from
smartphone.

Table 3 | Comparison study on model inputs

Model Name A B C D E

Model Inputs – – – SMPL SMPL
Height,
Weight

Height,
Weight

Height,
Weight

Height,
Weight

Height,
Weight

– Waist Waist, Hip – –

Method Network Network Network Linear Network

Metrics Fenland phase 2 R2

Total fat mass 0.884 0.909 0.910 0.897 0.922

Percentage body fat 0.739 0.792 0.797 0.766 0.823

Android fat mass 0.809 0.887 0.884 0.880 0.894

Gynoid fat mass 0.811 0.830 0.863 0.843 0.886

Visceral fat mass 0.698 0.779 0.792 0.774 0.802

Abdominal SCAT massa 0.701 0.727 0.730 0.716 0.723

Peripheral fat massb 0.802 0.824 0.832 0.821 0.872

Total lean mass 0.910 0.925 0.921 0.916 0.934

Appendicular lean massc 0.895 0.921 0.911 0.906 0.927

ALMId 0.739 0.853 0.824 0.833 0.853

Best R-squared values are in bold font.
aSCAT = subcutaneous adipose tissue.
bPeripheral fat mass = arms+ legs fat mass.
cAppendicular lean mass = arms+ legs lean mass.
dALMI: appendicular lean mass index = appendicular lean mass/height2.
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81% to 89%; android fat from 81% to 89%; peripheral fat mass from 80% to
87%; appendicular leanmass 90 to 93%; appendicular leanmass index from
74%to86%; visceral fat from70%to80%andabdominal SCATfrom70%to
72%. We also attempted to predict body composition using a simple linear
regressor (Model D), but the neural network approach (Model E) out-
performed it noticeably.

Predictions of body composition change
A total of 5733 individuals participated in both Fenland Phase 1 and
Phase 2, which enabled us to examine the model’s ability to detect
within-individual body composition changes over a mean (SD) of
6.7 (2.0) years.

Table 4 shows model predictions of changes in body composition
metrics for individuals present in both Fenland phases. Our model was
able to detect change for numerous fat mass metrics. The agreement
between predicted body composition values and DXA parameters (r)
for changes in percentage body fat, total fat mass, gynoid fat mass,
android fat mass, peripheral fat mass, visceral fat mass and abdominal
SCAT mass were 0.92, 0.76, 0.87, 0.83, 0.74, 0.76, 0.82, respectively,
with RMSE of 2.3%, 1.75 kg, 0.39 kg, 0.29 kg, 1.00 kg, 0.26 kg, 0.21 kg
respectively. Changes in lean mass were less well captured, mainly due
to the fact that lean mass largely remains unchanged for most indivi-
duals over this time period. r values for change for total lean mass,

appendicular lean mass and ALMI were 0.60, 0.64, and 0.63, respec-
tively, with RMSE of 1.82 kg, 1.06 kg, and 0.36 kg respectively. Figure 3
shows selected scatter plots between the predicted changes in per-
centage body fat, lean mass, android and gynoid fat mass against
changes measured by DXA for the same variables and the corre-
sponding Bland–Altman plots.

Discussion
In this paper, we derived a novel computer vision-based method that fits a
3D body mesh to a single DXA silhouette with paired anthropometry data
(height, waist and hip circumferences). Using our method, we generated a
large database of 3D bodymeshes (n = 17,461) with paired anthropometric
and metabolic traits. We then showed that total and regional body com-
position metrics could be predicted accurately using these meshes. In the
comparison study, we showed that shape parameters provide additional
cues for predicting body composition by comparing the performance of
models with different inputs. We demonstrated the derived model’s ability
to detect longitudinal change in these characteristics over time by making
predictions for individuals that were present in both phases of the Fenland
study. In our smartphone validation study, we showed how avatars were
generated using four smartphone photographs directly, without the use of
optimisation. Finally, we showed preliminary body composition prediction
results using these avatars.

The model using optimised 3D meshes predicted body composition
metrics with sufficient accuracy to assess relative differences between
individuals and was sufficiently accurate to predict absolute values for total
and regional body composition including visceral fat and abdominal SCAT
mass, as well as leanmass, appendicular leanmass, and ALMI. All the body
composition metrics predicted from the optimised 3D meshes had small
significant mean bias and showed Pearson correlation coefficients r > 0.86.
Thesemean biases were likely caused by the older population in the phase 2
cohort compared tophase 1 used for training.Nevertheless, themeanbiases
were small (less than2%for allmetrics except visceral and abdominal SCAT
mass (4%, and 7% respectively)), and the corresponding scatter plots
showed strong prediction results (Fig. 2, Supplementary Fig. 2). In addition,
our prediction model achieved similar performance for different body
groupswhen stratifiedbyBMIandsex (SupplementaryTable 1).Ourmodel
outperformed those using traditional anthropometry7,8 discussed pre-
viously as expected. In a similar study, Xie et al.23 which used a 2D PCA
shape space constructed from key points selected on a silhouette achieved
the following results on a cohort of size 1554: percentage body fat R2 adj.
(adjusted R2) = 0.728, RMSE = 3.12% for boys, and R2 adj. = 0.691,
RMSE = 3.39% for girls. However, this comparison is limited as this study
was conducted in children, as they have proportionally larger body surface

Table 4 | Predictions of body composition changes for
participants in both Fenland phases

Metrics Bias (95%LoA) RMSE r

Total fat mass −0.11 (−3.5; 3.3) 1.75 0.92

Percentage body fat −0.25 (−4.7; 4.2) 2.30 0.76

Android fat mass 0.01 (−0.6; 0.6) 0.29 0.87

Gynoid fat mass −0.02 (−0.8; 0.7) 0.39 0.83

Visceral fat mass −0.02 (−0.5; 0.5) 0.26 0.74

Abdominal SCAT massa 0.03 (−0.4; 0.4) 0.21 0.76

Peripheral fat massb −0.05 (−2.0; 1.9) 1.00 0.82

Total lean mass 0.32 (−3.2; 3.8) 1.82 0.60

Appendicular lean massc 0.45 (−1.4; 2.3) 1.06 0.64

ALMId 0.16 (−0.5; 0.8) 0.36 0.63
aSCAT = subcutaneous adipose tissue.
bPeripheral fat mass = arms+ legs fat mass.
cAppendicular lean mass = arms+ legs lean mass.
dALMI: appendicular lean mass index = appendicular lean mass/height2.

Fig. 3 | Prediction scatter plots of body composition changes. Selected scatter plots (Row 1) and corresponding Bland–Altman plots (Row 2) for prediction of change in
body composition metrics.
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area to volume ratio than adults, as well as sex differences in dimensions of
body shapes such as central:peripheral ratio32. In a more relevant study, Ng
et al.14 which predicted composition using PCA parameters of 3DO scans
on a cohort of size 407, observed similar results to our analysis: total fatmass
R2 = 0.91, RMSE = 3.07 kg formales,R2 = 0.95, RMSE = 2.63 kg for females;
percentage body fat R2 = 0.70, RMSE = 3.55% for males, R2 = 0.72,
RMSE = 3.88% for females. Similarly, Tian et al.30 fitted a 3D shape to a
single coronal silhouette on a cohort of size 416, and predicted body
composition with the following results: total fat mass R2 = 0.90,
RMSE = 3.63 kg for males, R2 = 0.94, RMSE = 2.29 kg for females; percen-
tage body fat:R2 = 0.725, RMSE = 3.90% formale,R2 = 0.74, RMSE = 3.29%
for female. In comparison, we achieved similar performance on a much
larger dataset n = 6102, with the following results: total fat mass R2 = 0.922,
RMSE = 2.5 kg; percentage body fat R2 = 0.823, RMSE = 3.28% overall. In
addition, our approach also injects information in the depth dimension by
usingwaist andhip circumferences,while thefittingbyTian et al.30 is limited
to the coronal silhouette. In Klarqvist et al.27, stronger correlations were
observed for visceral fat, abdominal SCAT mass and gynoid fat, using
coronal and sagittal silhouettes derived from MRI, the gold standard for
those measures of adiposity. Our estimates for these metrics were based on
an in-built algorithm from the DXAmanufacturer, which is not a criterion
method. However, compared to Klarqvist et al.27, our analysis included
more body composition metrics such as appendicular lean mass and its
index, which are used as a proxy for the assessment of sarcopenia33,34. Even
though comparison to these studies may be limited as they were conducted
in cohorts of different ages, using different body composition instruments
and computer vision approaches, we have shown that our method pro-
ducedmeshes that were comparably accurate to 3DO scans14, by predicting
body composition to a similar accuracy on a large test dataset. This allows
for the construction of large 3D shape databases using our method, and in
turn, enables larger deep-learning models to be used to analyse 3D body
shapes. Our prediction results for change in body composition were similar
to Wong et al.35 which report predicting DXAmetrics from 3DO scanning
images from 133 participants, where the change in fat mass is slightly
underestimated, and lean mass overestimated.

The strengths of our study include the large sample size of the Fenland
study, the same DXA instruments in the different samples, the same DXA
analytical software, and the robust validation in two separate independent
cohorts (Fenland phase 2, representing an older group from the derivation
sample and the external validation, which consisted of younger individuals).
Furthermore, our method assesses changes to body composition over time.
Another benefit of the 3D body mesh approach is to enables anonymity of
user data. Ourmethod does not require raw images of the participants to be
retained, rather we only store the generated body meshes, which could also
be done efficiently by only storing the SMPL shape parameters. This pro-
vides additional incentive in scientific and clinical studies for participants to
partake indata collection since concernover sharing sensitive information is

largely eliminated. Compared to other smartphone apps that estimate body
composition from photographs, we note that they either do not reconstruct
3D meshes21,24, or they require strict pose constraints16,24. Our app works
robustly for noisy backgrounds, can be extended to incorporate an arbitrary
number of images, and in practice works for arbitrary body and
camera poses.

This work is not without limitations. Our optimised body mesh
did not achieve a perfect fit to the DXA silhouette. The soft tissues of
the DXA participants might be deformed since DXA scans were
captured with participants lying flat on the scanbed. This was not
modelled by our method. We acknowledge that our study samples
were predominantly adults of white European origin. Future analyses
should assess the validity of these models in other ethnic groups as
well as younger populations since there are significant racial and age
differences in body composition32,36–39. Future work should also focus
on improving the avatar accuracy generated using the smartphone
app.While our findings support the validity of ourmethod in Fenland
phase 2 data and in the smartphone validation study, we expected and
found lower performance using avatars derived from RGB images, as
avatars obtained using the phone app can be inaccurate. We do not
optimise our smartphone-generated avatars although this would
improve prediction accuracy since we do not retain the photographs
due to ethical constraints and data security. Alternatively, using
domain-agnostic representations such as waist-hip ratio, waist-
height ratio might produce stronger results as they are normalised
with respect to height. Choudhary et al.40 showed that accurate waist-
hip ratio could be derived directly from images using attention based
networks, which could prove useful in this regard. With improve-
ments to avatar accuracy, app-generated avatars would be able to
approach the prediction performance on Fenland.

Through the implementation of the app, users will be able to
visualize their body shapes and track potential changes using a por-
table and relatively inexpensive but accurate device. Using our
method in clinical research studies, we could potentially identify
individuals at the highest risk of preventable complications (e.g.
significant increase in body fat from their first assessment). For
instance, Fig. 4 shows the modelled body shapes at phase 1 and 6 years
later at phase 2 of three participants who eithermaintained, gained, or
lost fat mass. The first and last three columns show two participants
who lost and gained a significant amount of fat mass between the two
phases. Significant changes could be seen comparing the two sets of
meshes. The end goal would be to encourage users to adopt a healthier
way of life, by visualizing changes to their body shapes with time,
rather than just focusing on numerical values (e.g. increase in BMI).

In conclusion, capturing 3D body shape using two-dimensional (2D)
images coupled with appropriate inference techniques to reconstruct a 3D
model of the body, may be a viable alternative tool to clinical medical

Fig. 4 | Visualisation of changes to body shape.
Each three columns shows one participant who lost
(Columns 1–3), maintained (Columns 4–6) or
gained (Columns 7–9) fat mass, their DXA scans
and fitted meshes for Fenland phase 1 (Row 1) and
phase 2 (Row 2). Changes in body shape for the first
and third participants are significant.
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imaging, and it could offer a readily accessible health metric for monitoring
the efficacy of lifestyle interventions.

Methods
The Fenland study
DXA scans, paired anthropometry data and metabolic health variables used
for ourmethod come from the Fenland study. Details of the study have been
described elsewhere41. Briefly, the Fenland study is a population-based cohort
study established in 2005. It comprisesmainlyparticipants ofwhiteEuropean
descent, born between 1950 and 1975, and recruited from general practice
lists in Cambridgeshire (Cambridge, Ely, and Wisbech) in the United
Kingdom. A total of 12,435 people took part in Phase 1 of the study
(2005–2015) and7795 inPhase 2 of the study (2014–2020). Exclusion criteria
for the Fenland study were pregnancy, diagnosed diabetes, inability to walk
unaided, or psychosis. The study was approved by the Cambridge Local
Research Ethics Committee and performed in accordance with the
Declaration of Helsinki. All participants provided written informed consent
to participate in the study.

In the current analyses, we excluded participants whose DXA scans
had technical irregularities such as missing tissues or other scan artefacts.
The analyses included 11,359 individuals (5333 men and 6026 women)
from Phase 1, 6102 individuals from Phase 2 (2979men and 3123 women),
of whom 5733 had valid data from both phases. 80% of the Fenland Phase
1 sample was used for the derivation and training of the 3D body shape
compositionmodels, and the remaining 20% of Phase 1 was used to test the
validity of those models. The Phase 2 sample was used as a test dataset for
validity in a now older population and to assess the sensitivity of prediction
models to track within-individual changes over time.

Smartphone validation study
We also conducted a separate study which in addition to DXA scans also
includedair plethysmography (BODPOD)anda smartphoneappcapturing
front, back and two-sidepose images.Thiswas carriedout in a sample of 119
healthy adults (39 men and 80 women) aged between 18 and 65 years old,
free from disease and medications between July and November 2023. The
participants in this study were recruited locally through advertisements and
approval was granted by the Cambridge Central Ethics Committee (REC
06.Q0108.84). Written informed consent was obtained prior to the parti-
cipants’ visit. This independent sample was used to test the validity of our
derivedmodels from the Fenland study, aswell as to evaluate the accuracy of
the 3D shape obtained from smartphone images alone.

Anthropometry and body composition
In the Fenland study (both Phase 1 and Phase 2), weight wasmeasured to
the nearest 0.2 kg with a calibrated electronic scale (TANITAmodel BC-
418 MA; Tanita, Tokyo, Japan). Height was assessed to the nearest
0.1 cm with a wall-mounted stadiometer (SECA 240; Seca, Birmingham,
United Kingdom). Body mass index (BMI; in kg/m2) was calculated as
weight divided by height squared. Waist circumference and hip cir-
cumference were measured to the nearest 0.1cm with a non-stretchable
fibre-glass insertion tape (D loop tape; Chasmors Ltd, London, United
Kingdom). Waist circumference was defined as the midpoint between
the lowest rib margin and the iliac crest, and hip circumference was
defined as the widest level over the trochanters. All measurements were
taken by trained field workers. Body composition was assessed by DXA,
a whole-body, low-intensity X-ray scan that precisely quantifies fat mass
in different body regions (models used: Lunar Prodigy Advanced fan
beam DXA scanner, or an iDXA system; GE Healthcare, Hatfield, UK).
Participants were scanned supine by trained operators, using standard
imaging and positioning protocols. All images were manually processed
by one trained researcher, who corrected DXA demarcations according
to a standardised procedure. In brief, the arm region included the arm
and shoulder area (from the crease of the axilla and through the gle-
nohumeral joint). The trunk region included the neck, chest, and
abdominal and pelvic areas. The abdominal region (android region) was

defined as the area between the ribs and the pelvis and was enclosed by
the trunk region. The leg region included all of the area below the lines
that form the lower borders of the trunk. The gluteofemoral region
(gynoid region) included the hips and upper thighs and overlapped both
leg and trunk regions. The upper demarcation of this region was below
the top of the iliac crest at a distance of 1.5 times the abdominal height.
DXA CoreScan software (GE Healthcare, Hatfield, UK) was used to
determine visceral abdominal fat mass within the abdominal/android
region. This software uses a proprietary inbuilt algorithm42 to derive
visceral abdominal fat mass within the android region, validated by the
manufacturer using computed tomography and magnetic resonance
imaging. The inbuilt algorithm estimates visceral abdominal fat mass by
firstly estimating the subcutaneous fat width and the anteroposterior
thickness of the abdominal wall. These parameters together with derived
geometric constants are implemented to extrapolate the amount of
subcutaneous fat mass in the android region. Visceral abdominal fat
mass is then calculated by subtracting the estimated subcutaneous
abdominal fat mass from the total android fat mass. Subcutaneous
abdominal fat is therefore android fat mass minus visceral fat mass. The
other body composition variables used in these analysis are derived as
follows: Appendicular lean mass (ALM) is the sum of the lean tissue
mass in the arms and legs. Appendicular lean mass is scaled to height to
derive appendicular lean mass index ALMI (ALM/height2)34. Peripheral
fat mass is the sum of the fat tissue mass in the arms and legs.

In the smartphone validation study, demographic information on age,
sex, ethnicity was self-reported. Trained staff acquired all clinical measures.
Height andweight weremeasured using a column scale (Seca GmbH&Co.
KG, Hamburg). Waist and hip circumferences were measured using a tape
measurer (CEFES-FIBRE by Hoechstmass Germany). Body volume was
assessed using air plethysmography (BODPOD ADP system, Cosmed Srl,
Rome, Italy), for which participants were in fitted clothing without shoes,
andwearing a swim cap before entering the system. Total and regional body
composition was measured using an iDXA scanner (GE Healthcare, Hat-
field, UK). Four 2D photographs were captured by a smartphone camera
(iPhone X, Apple Inc. IOS v15.6.1) using our purpose-built 3D Body Shape
app, which constructs a 3D body mesh using phone images only. We
adopted a standardised image capture procedure: Participants wore form-
fitting clothing, without shoes, and were asked to stand in an ‘A’ pose 2.5 m
from the camera; The smartphone was held upright and positioned at chest
level; Four photographs consisting of participant front, back, left-side and
right-side profiles were taken.

Model derivation
Firstly, our method fits a 3D body mesh to a DXA silhouette with paired
anthropometric measurements (participant height, waist and hip cir-
cumferences). Then, the fitted mesh shape parameters (SMPL shape
β 2 R10) are used to predict body composition metrics. Our smartphone
validation study generates 3D bodymeshes from RGB images by averaging
avatars across multiple views according to the uncertainty of shape para-
meters in each view31.

The following describes our fitting pipeline, the body composition
regressor, and smartphone avatar generation.

DXA images are single view and orthographic43,44, and hence lack
depth information. To fit a 3D mesh, we, therefore, augment DXA sil-
houettes with paired anthropometry measurements, namely height,
waist and hip circumferences. Directly fitting a high-dimensional point
cloud to a single silhouette is challenging. We utilise Skinned Multi-
Person Linear Model (SMPL)45, a low-rank PCA shape representation,
which provides a strong prior for human body shape. Predicting SMPL
pose and shape accurately in one go is also challenging, thus we utilise a
two-stage approachwhere an optimiser refines an initial guess. SMPL45 is
widely used for Human Pose and Shape (HPS) regression tasks20,31,46.
Given input pose and shape parameters θ 2 R24 × 3; β 2 R10,
SMPL returns a 3D meshM 2 R6890× 3 in a fully differentiable manner.
Figure 5 shows the structure of the SMPL model.

https://doi.org/10.1038/s41746-024-01289-0 Article

npj Digital Medicine |           (2024) 7:298 8

www.nature.com/npjdigitalmed


To reconstruct a 3Dmesh from a DXA image, we first make an initial
guess of pose and shape using an off-the-shelf method. Most existing HPS
networks take in RGB images as inputs and do not readily apply to DXA
images47,48. Instead, we utilise proxy representations of DXA images, con-
sisting of edge images and joint heatmaps46 in an attempt to bridge the
domain gap between DXA and RGB images. Our initial pose and shape
guess uses Hierarchical Kinematic Probability Distributions (HKPD) by
Sengupta et al.20, which adopts this proxy representation, and regresses
probability distributions over SMPL pose and shape parameters. Regressing
distributions also enable us to aggregate information across different views
for the smartphone validation study.

While initial predictions from the HKPD method yield an estimation
of body pose and shape froma single coronal viewof theDXAparticipant, it
is not sufficiently accurate for downstream metric regression tasks. The
reason for this is two-fold: firstly, the coronal DXA silhouette provides little
information about the body shape in the depth dimension, which is
important in terms of assessing body composition metrics such as visceral
fat, which is correlated with the sagittal abdominal diameter (SAD)49; Sec-
ondly,HKPDis trainedusing synthetic body shapes sampled fromGaussian
distributions and tends to predict body shapes biased towards the SMPL
mean. Therefore, we construct an optimisation method to refine the initial
guess, taking advantage of paired anthropometry measurements, DXA sil-
houettes, and further losses derived from special properties of DXA scan-
ning (e.g. participants lying flat on the scanbed).We detail the optimisation
losses below.

Anthropometry loss. We ensure that the mesh agrees with anthro-
pometry measurements consisting of waist, hip circumferences and height
by minimising the following loss:

L1 ¼ λ1jjĈW � CW jj22 þ λ2jjĈH � CH jj22 þ λ3jjĤ � Hjj22 ð1Þ

where �̂ are measurements from the optimised mesh. [CW, CH,H] stand for
waist, hip circumferences and height of the participant respectively. Height
of the mesh is measured using the extrema vertices of the T-pose mesh.

To inject waist and hip information to the mesh whilst maintaining
differentiability, we use a local ellipsoidal approximation to estimate
circumferences. This is done by selecting a ring of key points around
waist and hip, then fitting an ellipse using least squares. The selected key
points are projected onto the horizontal plane, as SMPL vertices usually
do not share the same height, and their relative heights vary across
different body shapes.

DXA silhouette loss.Our optimiser alsofits to the silhouette of the scan
by differentiably rendering the silhouette of the optimised mesh onto the
image. We also impose a joint regulariser to prevent the optimised mesh
from straying too far from the initial guess. This forms the secondpart of the
loss function,

L2 ¼ λ4jjRðMðθ̂; β̂Þ; ĉÞ � SgtÞk22 þ λ5 k Ĵ2D � J2Dk22 ð2Þ

whereRð�Þ is a PyTorch3D50 differentiable silhouette renderer, c = [s, tx, ty]
are weak perspective camera parameters consisting of scale and translation.
Sgt is the ground truth silhouette obtained by thresholding the DXA image.
J2D are 2D joint locations obtained by,

J2D ¼ sΠðJMðθ̂; β̂ÞÞ þ ½tx; ty� ð3Þ

whereΠ(⋅) is orthographic projection,J is a linear vertex-to-joint regressor.
Scanbed alignment loss. Due to the orthographic nature of DXA

images, pose of the DXA participant can be ambiguous from a single sil-
houette. As a result, initial guesses from HKPD often produce meshes that
have forward-leaning torsos, or legs that are not fully extended. Since DXA
participants are lying flat on the scanbed, we impose an additional ‘scanbed
alignment constraint’. During implementation, we also impose a pose
regulariser on the arms as well as a deviation from z loss to regularise arm
poses.

L3 ¼ λ6jjθ̂
ð1Þjx;yjj22 þ λ7jjθ̂

ð2Þ � θð2Þjj22 þ λ8jjzarms � zpelvisjj22 ð4Þ

where θ(1) is a subset of SMPL pose parameters containing spine and leg
joints, θ(2) is a subset of SMPL pose parameters containing arm and wrist
joints.

We optimise body pose, shape and camera parameters using the fol-
lowing total loss function,

Lðβ; θ; cÞ ¼ L1 þ L2 þ L3 ð5Þ

Fig. 6 | Our 3D bodymesh fittingmethod.Given a DXA image, an initial pose and shape estimation is made using HKPD. Then, the output pose and shape parameters are
optimised using losses constructed from DXA silhouettes and paired anthropometry data. Optimised shape parameters are used for body composition regression.

Fig. 5 | SMPL bodymodel. SMPLmodel which uses a low-rank PCA representation
of the body shape space. The model requires 24 joint rotation parameters and
10 shape parameters as input and returns an expressive bodymesh in a differentiable
manner. Example avatar is taken from https://meshcapade.wiki/SMPL.
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where λi aremanually tuned to produce the best fits. Figure 6 shows our full
mesh fitting pipeline. Optimised SMPL shape parameters β̂ 2 R10 are used
for the next phase which regresses body composition metrics.

We construct a simple feed-forward neural network to regress body
compositionmetrics from the 3Dmeshes. The inputs to the network are the
10 SMPL shape parameters obtained from DXA optimisation, height,
weight, BMI, and gender of the participant. The outputs of the network are
the estimated body composition metrics such as total fat mass, total lean
mass, etc.We use residual connections in the first two layers as they slightly
improveour leanmasspredictions.The structureof ournetwork is shown in
Fig. 7.

Thenetwork is trained using amean squared error (MSE) loss function
constructed from target and predicted mass values. We weight the loss
function using homoscedastic uncertainty51, and learn these metric-wise
uncertainties automatically,

LðW; σÞ ¼
X

i

1
2σ2i

jjŷi � yijj22 þ
X

i

log σ i ð6Þ

where �̂ are model predictions, σi are metric-wise uncertainties.
The network is relatively small, with around 16,000 parameters, to

prevent overfitting.We train thenetworkusing anAdam52 optimiser for 100
epochs with a learning rate of 0.01. Dropout53 is adopted to regularise the
network. We train our model using an 80–20% train–validation split on
Fenland phase 1 data. We test our method on Fenland phase 2 and the
smartphone validation study.

The smartphone validation study uses the HKPD20 method and gen-
erates SMPL avatars usingmultiview information fromRGB images. Given
a group of images [I1, I2, …] of the same participant, each photo is firstly
processed using HKPD to generate a Gaussian distribution over SMPL
shape parameters p(β∣In). A final body shape is derived by combining shape
information across multiple views according to,

pðβjfIngNn¼1Þ /
YN

n¼1

pðβjInÞ ð7Þ

where we have assumed conditional independence across views20,31.

Statistical analysis
Statistical analyses were performed using STATA version 17 (StataCorp,
College Station, Texas, USA) and Python. A P value less than 0.05 was
considered statistically significant. Descriptive data were reported as
mean ± standard deviation (SD) or n (%). Using our methods, we
constructed our model to predict total and regional body composition
metrics. The performance of the derived model was compared by cal-
culating the Pearson correlation coefficients r for each outcome para-
meter and root-mean-square error (RMSE) values. Pearson correlation
coefficients were used to investigate associations between the different
predicted values of body composition and themeasurements of total and
regional body composition from DXA. Scatter plots were used to
visualise the associations between predicted and measured values.
Bland–Altman analysis was used to investigate the agreement between

the predicted body composition from our approach against DXA
reference measures of total and regional body composition. In the
Bland–Altman plot, the y-axis represents the difference or bias between
predicted values and measured values (e.g. from DXA) with limits of
agreement (LoA) described as the 95% confidence range (mean bias ±
1.96SD), while the x-axis represents the mean value of the reference
method (e.g. DXA) rather than the mean between the two methods.
Mean differences/biases between the two methods were calculated and
significancewas tested against zero by paired t-tests. For all the variables,
change in body composition was defined as the difference between
predictions from Fenland Phase 2 (follow-up assessment) and Fenland
Phase 1 (baseline assessment). Scatter plots were used to compare
changes in body composition from our predictions with DXA body
composition changes. Bland–Altman plots were implemented to assess
the agreement between changes in body composition predicted by our
method and those measured by DXA. Root-mean-square error (RMSE)
was used to assess the accuracy of these comparisons.

Data availability
The datasets generated and analysed during the current study are available
at request via the MRC Epidemiology website (http://www.mrc-epid.cam.
ac.uk/research/data-sharing/).
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