Table 7 Detection results on EOAD-I and ROMCI-I using different encoders

From: Early detection of dementia through retinal imaging and trustworthy AI

Dataset

Encoder

Accuracy

Precision

F1-score

Kappa

AUC

ROAD-I

ResNet18

0.8885

0.8862

0.8867

0.7018

0.9355

ResNet50

0.8921

0.8902

0.8883

0.7027

0.9365

DenseNet

0.8914

0.8891

0.8881

0.7018

0.9471

EfficientNet

0.8790

0.8833

0.8806

0.6954

0.9330

ConvNeXt

0.8914

0.8891

0.8881

0.7018

0.9471

ViT

0.7744

0.7524

0.7514

0.3109

0.6902

ROMCI-I

ResNet18

0.8487

0.8506

0.8410

0.6229

0.8630

ResNet50

0.8527

0.8702

0.8405

0.6254

0.8607

DenseNet

0.8320

0.8314

0.8237

0.5836

0.8785

EfficientNet

0.8208

0.8192

0.8119

0.5564

0.8124

ConvNeXt

0.8671

0.8747

0.8588

0.6608

0.8732

ViT

0.7946

0.7984

0.7964

0.3381

0.7399