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Probing the limits and capabilities of
diffusion models for the anatomic editing
of digital twins
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Numerical simulations of cardiovascular device deployment within digital twins of patient-specific
anatomy can expedite and de-risk the device design process. Nonetheless, the exclusive use of
patient-specific data constrains the anatomic variability that can be explored. We study how Latent
DiffusionModels (LDMs) can edit digital twins to create digital siblings. Siblings can serve as the basis
for comparative simulations, which can reveal how subtle anatomic variations impact device
deployment, and augment virtual cohorts for improved device assessment. Using a case example
centered on cardiac anatomy, we study various methods to generate digital siblings. We specifically
introduce anatomic variation at different spatial scales or within localized regions, demonstrating the
existence of bias toward common anatomic features. We furthermore leverage this bias for virtual
cohort augmentation through selective editing, addressing issues related to dataset imbalance and
diversity. Our framework delineates the capabilities of diffusion models in synthesizing anatomic
variation for numerical simulation studies.

Physics-based simulations of cardiovascular interventions such as endo-
vascular stent expansion or heart valve implantation can help optimize
device design and deployment, especially in challenging anatomies1. These
“virtual interventions” can be modelled on a patient-specific digital twin,
which is a computational replication of a real anatomyderived frommedical
imaging2–4. Virtual interventions have been shown tomodel themechanical
and hemodynamic consequences of implanting heart valves5,6, atrial
appendage occluders7, and coronary stents8,9, as well as the electro-
physiological consequences of cardiac ablation10. Applied to a cohort of
digital twins, virtual interventions enable in silico trials of medical devices11,
in which their safety and efficacy can be assessed within a digital environ-
ment. Such trials can act as digital evidence for regulatory agencies, reducing
the exorbitant cost and failure rates involved with bringing a device to
market12,13. Virtual interventions also enable the simulation of hypothetical
scenarios, such as implanting alternative devices or modeling different
physiological conditions within the same patient1. This experimental fra-
mework provides mechanistic insight regarding what factors concerning
device design and physiology critically influence deployment. Such insights
can influence both regulatory and development processes, enhancing future
designs and guiding recruitment for clinical trials1,14.

In contrast, our ability to extract mechanistic insight involving alter-
native anatomic variants is highly limited. Specifically, we delineate three
phenomena critical to device development and regulatory evaluation that

digital twin frameworks are unable toproperly address. First, the uniqueness
of each digital twin complicates the assessment of uncertainty in device
performance attributable to scale-specific anatomic variation. Small scale
anatomic features can be highly influential on both hemodynamics and
biomechanics. Examples include coronary plaque rupture being influenced
by thin fibrous caps15, ventricular trabeculae influencing cardiac
hemodynamics16, and coronary branches affecting blood-flow through the
aortic root17. Second, due to the complex correlations between local ana-
tomic features within digital twin cohorts, it remains difficult to disentangle
the causal relationships and interaction effects exerted by localized anatomic
regions on device failure. Localized anatomic features have been widely
known to interact in influencing cardiovascular physics, examples include
the interactions between lipid and calcium in determining plaque rupture
risk2,4,mitral valve pathologyon aortic valve replacements18, andaortic valve
replacements on coronary flow19. Lastly, the reliance on digital twin cohorts
for in silico trials can compromise device evaluation on less common or
pathological anatomic shapes11,14. Accordingly, current digital twin para-
digms are unable to fully or precisely explore anatomic space, limiting the
broader applicability of virtual interventions for device development and
regulatory review.

To address such issues, generative models of virtual anatomies have
been proposed but typically struggle to balance between producing outputs
that are both realistic and controllable. The gold standard method is
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principal component analysis (PCA), which has traditionally been used to
generate virtual cohorts for biomechanical andhemodynamic simulations20.
Despite its utility, PCA is unable to accurately model the highly nonlinear
anatomic variation inherent to human anatomy. As such, there has been a
rising interest in deep learning approaches for producing virtual anatomies.
State-of-the-art deep learning architectures for this purpose have been
variational autoencoders (VAE) and generative adversarial networks
(GANs), which exhibit improved performance compared to PCA21–23.
While such architectures have demonstrated the ability to produce varia-
tions of anatomy by exploring their latent space21, as of yet current
approaches are limited in their ability to precisely edit patient-specific
models. This is because suchmethods represent anatomic shape in terms of
global shape vectors, which are not expressive enough to control anatomic
variation at different spatial scales or within localized regions while keeping
others constant. To overcome this limitation, a previous study byKong et al.
found that representing anatomy in terms of a higher-dimensional and
spatially extended latent grid enabled higher expressiveness but decreased
generation quality under an auto-decoder paradigm24.

In contrast, diffusionmodels are a novel class of generativemodels that
can synthesize 2D and 3D medical images with high quality and
diversity25–27. However, their use in generating virtual anatomy in the form
of anatomic label maps is still in its infancy. Preliminary studies used
unconditional diffusionmodels to producemulti-label 2D segmentations of
the brain and retinal fundus vasculature respectively in order to train
downstream computer vision algorithms28,29. The ability of diffusionmodels
to flexibly edit natural images is also well-characterized. For example, dif-
fusion models can create variations of natural images through a perturb-
denoise process, partially corrupting a seed image and restoring it through
iterative denoising30. The level of addednoise can controlwhether themodel
synthesizes global or local features31. Furthermore, diffusion models can be
used to locally in-paint regions within an image by specifying a spatially

extended mask32–36, either by directly replacing the masked portion during
each denoising step or using the gradient of a masked similarity loss. While
these technique has been used in the context of medical images for anomaly
detection37,38 and data augmentation39, their use in modifying virtual anat-
omy has not been studied.

Lastly, research into generative models for virtual anatomy is ham-
pered by the lack of appropriate evaluation frameworks to assess the quality
of synthetic cohorts for in silico trials. For example, the Fréchet inception
distance (FID)40 is difficult to use for evaluating generativemodels of virtual
anatomies, as no standard pre-trained network for 3D anatomic segmen-
tations is available.Moreover, point cloud-basedmetrics delineate 3D shape
quality and diversity but do not measure the interpretable morphological
metrics necessary to understand device performance, nor do they measure
topological correctness, a critical factor to ensure compatibility with
numerical simulation. Recent studies attempt to address this by visualizing
the 1D distributions of clinically relevant morphological variables such as
tissue volumes23,41, but fail to study the multi-dimensional relationship
betweenmorphological metrics, nor do they investigate morphological bias
due to imbalanced data distributions.

In this study, we develop an experimental framework to study how
latent diffusionmodels (LDMs) can act as a controllable source of anatomic
variants for in silico trials to fulfill two main functionalities. The first func-
tionality centers on the controlled synthesis of informative anatomies
through editing digital twins,whichwe term “digital siblings”. As opposed to
a digital twin, which is a computational replication of a patient-specific
anatomy, a digital sibling would resemble the corresponding twin, but
exhibit subtle differences in anatomic form. Comparative simulation studies
using twins and their siblings would yield insight regarding how scale-
specific and region-specific anatomic variation can influence simulated
deployment. The second functionality revolves around virtual cohort aug-
mentationby creatingdigital siblings froma curated subpopulation of digital
twins. This would enrich virtual cohorts with specified anatomic attributes,
addressing issues related to cohort imbalance and diversity.We accordingly
develop a latent diffusion model to generate 3D cardiac label maps and
introduce a novel experimental framework to study the synthesis of ana-
tomic variation (Fig. 1).Wefirst characterize the baselineperformanceof the
model through generating de-novo cardiac label maps (Fig. 2). We then
investigate two methods to generate digital siblings with diffusion models:
(1) perturbational editing of cardiac digital twins to enable scale-specific
variation; and (2) localized editing of cardiac digital twins to enable region-
specific variation. In our experimental framework, we select various digital
twins to act as “seed” volumes and produce several digital siblings through
editing. We then apply this procedure over different hyperparameters and
seed characteristics to study how generative editing can alter the morpho-
logical and topological attributes of digital twins. Lastly, we study how such
editing methods can be used to augment virtual cohorts with less common
anatomic features. Our main contributions and insights are as follows:
1. We develop and train a latent diffusion model to generate 3D cardiac

label maps and introduce a novel experimental framework to study
how generative editing techniques can produce scale-and-region
specific variants of digital twins.

2. Wedemonstrate that latent diffusionmodels can introduce topological
violations during generation and editing, where the number of viola-
tions is influenced by editing methodology and seed characteristics.

3. We find that dataset imbalance induces a bias within the generation
process towards common anatomic features. This anatomic bias
extends to scale-and-region specific editing. The degree and spatial
distribution of this bias is influenced by editing hyperparameters and
seed characteristics.

4. We demonstrate that this anatomic bias can be leveraged to enhance
virtual cohort diversity in two manners. Virtual cohort augmentation
with scale-specific variation can help explore less populated spaces
within the anatomicdistributionboundedby the training set. Similarly,
augmentation with region-specific variation can augment the cohort
with anatomic forms outside the anatomic distribution.

Fig. 1 | We study the ability of diffusion models to generate digital siblings for
virtual interventions and augment in silico trials. Top row: we unconditionally
generate latent codes ð�zÞ which are decoded (D) into cardiac label maps (�x). Middle
row:We encode (E) patient-specific digital twins (x) into a latent space (z) and apply
a partial perturb-denoise process to achieve scale-specific variations (�xψ). Bottom
row: We locally edit pre-specified tissues to achieve region-specific variations (�xm).
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Results
Unconditional sampling of virtual anatomies
We conducted a sensitivity analysis of cohort quality with respect to the
sampling steps and cohort size and anduse aminimumof 50 sampling steps
and a cohort size of 120 (Supplementary Figs. 7 and 8).We then sample 360
labelmapswith a diffusionmodel for 50 steps for analysis and visualization.
We also train a baseline generative VAE that samples a global latent vectors
which can be decoded into cardiac label maps. Example label maps can be
seen in Fig. 3. We further visualize the reconstructed and synthetic cardiac
labelmaps in 3Dwithin Supplementary Figs. 5 and6.The scatterplot (Fig. 4)
and the difference heatmap (Fig. 5) show the morphological distribution of
the synthetic anatomies generated by the diffusion model on a global and
local scale respectively. Both figures demonstrate that unconditional

sampling tends to generate mean-sized cardiac label maps, but fails to
sample rarer anatomic configurations on the periphery of the distribution.
This is especially the case for the baseline VAE, which learns a much more
constraineddistribution concentrated around the anatomicmean. This bias
also exists on a local level as seen in the difference heatmapPdiff in Fig. 5. The
heatmaps for each individual chamber are shown in Supplementary Fig. 4.

Table 1 shows the morphological and 3D shape based metrics for the
generative VAE and diffusionmodel. Our diffusionmodel is able to sample
from a wider distribution of anatomy due to it’s expressive latent grid, with
higher recall and coverage values. However, the generative VAE exhibits
higher morphological precision, MMD, and 1-NNA values, likely due to
sampling common anatomies near the center of the distribution. Table 2
indicates the primary source of topological violation stems from the initial

Fig. 2 | Schematic for the forward and reverse diffusion process. The decoded
cardiac label maps for several intermediately noised latent representations zσ.
During training, a neural denoiser learns to approximate the incremental reverse

process at each noise level σ. During sampling, the network is recursively applied to
produce de-novo cardiac label maps.

Fig. 3 | Example 2D slices from 3D cardiac label maps. Top left: digital twin label
maps from the training set. Top right: unconditionally generated label maps gen-
erated by the diffusion model. Bottom left: perturbational edits of a single cardiac
digital twin over various sampling ratios. Bottom right: localized edits of cardiac

digital twins over various tissue masks. Bottom row has a white outline of the edited
twin for perturbational edits (left) and an outline of the edited tissue region for
localized edits (right).
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segmentations used to train the generative models. Violations in the real
dataset stem from the segmentation network used to create the original
dataset, in which small clusters of misclassified tissues contribute to the
amount of topological violations (Fig. 3 and Supplementary Fig. 2).

Scale specific variation through perturbational editing
We select four seed label maps that represent different types of cardiac
anatomy: a seed with a large LV and RV (L↑R↑), a seed with a small LV and
RV (L↓R↓), a seedwith a large LVbutmean sized RV (L↑R↔), and a seedwith

a mean sized LV and RV (L↔R↔). For each seed, we generate synthetic
anatomies with varying sampling ratios, corresponding to ψ = [0.35, 0.50,
0.65, 0.8, 1], leading to a total of 20 virtual cohorts of 120 anatomies each.
Example label maps can be seen in Fig. 3.

Figure 6 shows that the cohorts generated by perturbational editing are
increasingly biased towards the most common anatomies with increasing
noise. Figure 7 further shows that the amount of injected noise corresponds
to spatial scale, as the bias exhibited by the spatial heatmap Pdiff expands
with increasing noise. Table 3 demonstrates that the topological quality of
the sampled labelmapcandegradewhen editing outlier twins, as canbe seen
when perturbationally editing seed L↑R↔ with a sampling ratio ψ of 0.35.
This is because the seed occupies a sparsely populated region of the ana-
tomic distribution. A visualization of the topological violations exhibited
after perturbational editing can be found in Supplementary Fig. 3

Region specific variation through localized editing
For each of the previously mentioned seeds, we specify twomasks designed
to edit the RV and LV respectively. The myocardium was not included for
each tissue mask, allowing it to vary with each ventricular chamber. This
process resulted in eight synthetic cohorts of 120 anatomies each. Example
label maps can be seen in Fig. 3.

Figure 8 shows that the 1D distributions of edited ventricular volumes
are biased towardsmost common values of the real cohort. This can be seen
most prominently with seed L↑R↔where the edited LVs have a substantially
lower volume as compared to the seed labelmap. From the spatial difference
heatmaps Pdiff visualized in Fig. 9, we further observe that localized editing
can change individual chambers while maintaining others as constant,
where the editedchambers are biased towards ameananatomic shape.With
the exception of editing the RV of seed L↑R↔, locally editing the seed label
maps increased the percentage of topological violations as compared to the
seeds, as can be seen in Table 4. A visualization of the topological violations
exhibited after localized editing can be found in Supplementary Fig. 3, and a
comparison of our replacement-based inpainting method to guidance-
based inpainting can be found in Supplementary Fig. 1.

Virtual cohort augmentation through selective editing
In this experiment we contrast and compare three strategies that can aug-
ment virtual cohorts with rare anatomies to improve dataset imbalance and
diversity. In this case, we aim to enrich a target cohort with rare patient-

Fig. 4 | Unconditional generation captures common anatomic variations but fail
to capture outliers.Diagonal plot shows the 2Dmorphological distribution (shown
as a scatterplot) exhibited by real cohorts and synthetic cohorts generated by
unconditional sampling from a generative VAE and diffusionmodel. Marginal plots
show the equivalent 1Dmorphological distributions for the virtual anatomy cohorts,
visualized as a kernel density estimate plot.

Fig. 5 | The distribution of labelmaps synthesized by the diffusionmodel exhibits
spatially varying differences against that of real label maps. Spatial occupancy
heatmaps show the distribution of real (Preal) and synthetic (Psynthetic) label maps, as

well as the difference in occupation (Pdiff). Heatmaps are masked out where Preal or
Psynthetic are zero. Real or synthetic bias correspond to increased relative occupancy
by real or synthetic anatomies respectively.
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specific cardiac label maps distinguished by an RV volume larger than a
threshold value of 115ml. Our first strategy is to unconditionally sample
7200 labelmaps and filter all outputs with RV volumes less the threshold. In
our second strategy, we utilize the bias inherent to perturbational editing
and modify digital twins from the target cohort to create digital sibling
cohorts. Half of the digital twins received a large perturbation (ψ = 0.5) and
the other half received a small perturbation (ψ = 0.35). Following the editing
process, digital siblings with an RV volume below the threshold were
excluded. Our third strategy leverages the bias inherent to localized editing,
in which half of the target cohort was locally edited to have different LV
shapes, while the other half were edited to have different RV shapes.
Similarly, outputs that donotmeet the RVvolume thresholdwere excluded.
All three strategies resulted in filtered cohorts of size 140 each. The eva-
luation metrics, namely Frechet morphological distance, morphological
precision, and morphological recall, were computed against the target
cohort consisting of 50 cardiac labelmaps from the train set as the reference
standard.

Figure 10 demonstrates that unconditional generation does not fully
explore the peripheries of the target cohort distribution, where it can be seen
that the largest RV volumes within the target cohort (black stars) are not
represented. In contrast, perturbational editing excels in filling sparsely
populated peripheries of the distribution (producing anatomies with both
ventricles enlarged). Table 5 reinforces these insights, demonstrating that
augmentation through perturbational editing enhances diversity through
exhibiting higher recall and COV values as compared to unconditional
generation. Augmenting cohorts with localized editing yields cardiac label
maps with morphological features that conform to the distribution of
individual morphological metrics but deviate from the multidimensional
distribution, producing anatomies with only a single large ventricle. Table 5
shows that localized editing results in increased diversity metrics. Further-
more, both editing-based strategies yield similar or better fidelity metrics
such as precision and MMD when compared to unconditional sampling.
Table 5 also demonstrates that virtual cohorts produced by the all aug-
mentation strategies exhibit similar topological quality.

Discussion
In this study we developed an experimental framework to investigate how
generative diffusion models of human anatomy can be integrated into vir-
tual intervention workflows through the precision editing of digital twins.
This novel paradigm is designed to facilitate the generation of mechanistic
insights for device development as well as digital evidence for regulatory
assessment. Specifically, we trained a diffusion model on a dataset of 3D
cardiac label maps and leveraged the model to edit digital twins under
various hyperparameters. By examining the 3D shape, morphological
attributes and topological quality of the labelmaps post-editing,wefind that
diffusion model-based editing techniques can generate insightful morpho-
logical variants of digital twins for virtual interventions. Perturbational

editing can produce scale-specific variations of digital twins, which can
isolate the sensitivity of device deployment to both small and large-scale
variations. In contrast, localized editing can produce region-specific varia-
tions of digital twins, which can elucidate the localized effect of anatomic
features on device deployment. Such insights can streamline the develop-
ment of novel medical devices and provide a more comprehensive assess-
ment of device performance for regulatory agencies.

While the integration of generative editing with virtual interventions
has the potential to producemechanistic insight and augment in silico trials,
they should be employed with caution. For example, we find that generative
editing can produce anatomieswith topologically incorrect features, such as
connected atria or several left ventricle components, which induce non-
physiological phenomena within numerical simulations of cardiovascular
physics. Moreover, we demonstrate that diffusion models exhibit a bias
towards generating themore common anatomic features within the dataset,
a bias that extends to diffusion model-based editing techniques. Anatomic
variants with low morphological plausibility can induce inaccuracies in the
regulatory assessment of device safety and fail to capture possible failure
modes. As such, methods that evaluate and control anatomic bias will be
critical to the integration of generative artificial intelligence within work-
flows regarding device development and regulatory review.Wenevertheless
demonstrate that such anatomic bias can be leveraged to enhance the digital
evidence producedby in silico trials. This is achievedby augmenting cohorts
with digital siblings, thereby improving factors critical to regulatory
approval, such as cohort balance and diversity. Specifically, we found that
perturbational editing can fill the sparsely populated regions within the
anatomic distribution, potentially improving device assessment for realistic
anatomies. Similarly, localized editing can expand the space of plausible
anatomies that can be probed with virtual interventions, enabling the
assessment of possible failure modes, at the expense of decreased anatomic
realism.

However, while our experimental framework can derive novel insights
regarding the morphological and topological behaviour of generative edit-
ing for virtual interventions, it exhibits a number of limitations. First, it does
not quantitatively analyze morphology on multiple scales, instead mea-
suring global level metrics such as 3D shape, volumes and axis lengths.
Second, the influence of the diffusion model architecture or sampling
methodology on generative editing was not explored. Lastly, the validity of
visualizing spatial heatmaps depends on spatial correspondence between
anatomic features, and would not apply to anatomies that have a variable
topology such as organs with multi-component inclusions. All of these
limitations present exciting directions for futurework on evaluationmetrics
and experimental frameworks regarding the generative editing of digital
twins for device development and regulation.

Methods
Dataset
We used the TotalSegmentator dataset42, consisting of 1204 Computed
Tomography (CT) images, each segmented into 104 bodily tissues. We
filtered out all patient label maps that do not have complete and adequate-
quality segmentations for all four cardiac chambers. This resulted in a
dataset of 512 3D cardiac label maps, where each label map consisted of 6
tissues: aorta (Ao), myocardium (Myo), right ventricle (RV), left ventricle
(LV), right atrium (RA), and left atrium (LA). All cardiac label maps were

Table 1 | Morphological and shape based metrics comparing a baseline generative VAE and diffusion model for unconditional
cardiac generation

Model Morphological metrics MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

Prec. (↑) Rec. (↑) FMD (↓) CD EMD CD EMD CD EMD

VAE 0.99 0.46 3.79 1.25 4.06 22.16 23.40 65.37 66.12

Diffusion (ours) 0.85 0.74 2.28 1.32 4.20 28.72 31.91 77.05 76.62

Generative VAE’s suffer from reduced generation diversity in terms of both morphology and 3D shape, while diffusion models are able to sample a wide variety of cardiac segmentations at the cost of
reduced fidelity. MMD-CD and MMD-EMD values were multiplied by 1000 and 100 respectively.

Table 2 | Topological violations exhibited by real,
reconstructed real, and synthetic cohorts respectively

Real Recon Synthetic

TV (%) 15.6 12.0 13.3
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cropped and resampled to a size of 7 × 128 × 128 × 128, with an isotropic
voxel size of 1.4 mm3.We then reoriented each cardiac segmentation so that
the axis between the LV and LA centroids is aligned with the positive z-axis.
Lastly, we rigidly registered all segmentations to a reference label map using
the methodology described by Avants et al.43.

Latent diffusion model training
We employed a latent diffusion model (LDM), consisting of a variational
autoencoder (VAE) and a denoising diffusion model. The VAE encodes
cardiac label maps x into latent representations z, which can be decoded into
labelmaps�x. The trainingprocess forourdiffusionmodel is done in the latent
space of the trained autoencoder, we represent the probability distribution of
cardiac anatomy by pdata(z) and consider the joint distribution p(zσ; σ)
obtained through a forward diffusionprocess, inwhich i.i.dGaussiannoise of

standard deviation σ is added to the data, where at σ = σmax the data is
indistinguishable from Gaussian noise. The driving principle of diffusion
models is to sample pure Gaussian noise and approximate the reverse
diffusion process through using a neural network to sequentially denoise the
latent representations zσwith noise levels σ0 = σmax > σ1 >⋯> σN = σmin such
that the final denoised latents correspond to the clean data distribution.
Following Karras et al.44, we represent the reverse diffusion process as the
solution to the following stochastic differential equation

dzσ ¼ �2σ∇z log pðzσ ; σÞ dt þ
ffiffiffiffiffi
2σ

p
dw ð1Þ

Where the score function∇zσ
log pðz; σÞ denotes the direction inwhich the

rate of change for the log probability density function is greatest and dw is
the standard Wiener process. Since the data distribution is not analytically

Fig. 6 | Perturbationally editing seed cardiac label maps (star marker) with
increasing levels of injected noise ψ produces cohorts that are biased towards the
most common anatomies (blue contour). Each scatterplot corresponds to a dif-
ferent seed labelmap, showingmultiple cohorts synthesized by editing the same seed

with different sampling ratios (ψ). For improved visual clarity, scatterplots are
supplemented with kernel density estimate plots, and the number of data points
displayed per cohort is reduced by half.
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tractable we train a neural network to approximate the score function. We
start with clean latent representations z and model a forward diffusion
process that produces intermediately noised latents zσ = z+ n where
n � N ð0; σ2IÞ, parameterized by a noise level σ. The diffusion model is
parameterizedas a functionFθ, encapsulatedwithin a denoiserDθ, that takes
as input an intermediately noised output zσ and a noise level σ to predict the
clean data z.

Dθðzσ; σÞ ¼ cskipðσÞ zσ þ coutðσÞ FθðcinðσÞ zσ; cnoiseðσÞÞ; ð2Þ

where cskip controls the skip connections that allow the Fθ to predict the
noise n at low σ and the training data z at high σ. This parametrization has
been shown to improve convergence speed and performance44. The
variables cout and cin scale the input and output magnitudes to be within
unit variance, and the constant cnoise maps the noise level σ to a con-
ditioning input to the network44. The denoiser output is related to the
score function through the relation∇zσ

log pðzσ ; σÞ ¼ Dθðzσ; σÞ � z
� �

=σ2

and Fθ is chosen to be a 3D U-net with both convolutional and self-
attention layers, similar to previous approaches28,30,44,45. The loss L is then
specified based on the agreement between the denoiser output and the

original training data:

L ¼ Eσ;z;n½λðσÞjjDθðzσ ; σÞ � zjj22�; ð3Þ

such that the loss weighting λ(σ) = 1/cout(σ)
2 ensures an effective loss weight

that is uniform across all noise levels, and σ is sampled from a log-normal
distribution with a mean of 1 and standard deviation of 1.2.

Once the denoiser has been sufficiently trained, we define a specific
noise level schedule governing the reverse process, in which the initial noise
level, σ, starts at σmax and decreases to σmin:

σ i ¼ σ
1
ρ
max þ i

N � 1
σ

1
ρ

min � σ
1
ρ
max

� �� �ρ

ð4Þ

where ρ, σmin and σmax are hyperparameters that were set to 3, 2e−3, and 80
respectively. We specifically leverage a stochastic variant of the solver
detailed inKarras et al.44 to sequentially denoise the latent representations zσ
and solve the reverse diffusion process detailed in Eq. (1) (Fig. 1).

Latent diffusion model implementation
We trained the variational autoencoder with anMSE reconstruction loss
and a KL divergence loss with a relative weight of 1e−6.Wemodified the
architecture from Rombach et. al.45 to ensure compatibility with 3D
voxel grids and adjusted the number of channels to [64,128,192]. We
augmented our data with random scaling (0.5–1.5), rotations (0–180°),
and translations (0–20 voxels) in each direction. For the denoising dif-
fusion model, we modified the original architecture of the specified by
Rombach et al.45 to ensure compatibility with 3D voxel grids and
adjusted the model channels to [64,128,192]. We used the Adam
optimizer46 for the VAE and diffusion model, using learning rates of 1e
−4 and 2.5e−5 respectively.

Perturbational editing
To create digital siblings by perturbational editing, we first encode a
seed cardiac label map xseed into the latent representation zseed. Instead

Fig. 7 | Perturbationally editing seed cardiac label
maps (columns) with increasing levels of injected
noise ψ (rows) enables scale-specific variation.
Difference heatmaps Pdiff show spatially varying
discrepancies between the seed and synthetic
cohorts generated by perturbationally editing var-
ious seed label maps.

Table 3 | Topological violations exhibited by each cohort
produced by perturbationally editing various seed label maps
for different sampling ratios ψ

Seed Label Map

TV (%) L↑R↑ L↓R↓ L↑R↔ L↔R↔

Recon 8.3 8.3 8.3 8.3

ψ = 0.35 9.7 10.4 23.3 11.1

ψ = 0.50 11.4 10.6 11.9 10.7

ψ = 0.65 10.6 11.4 10.4 11.4

ψ = 0.80 11.3 12.5 10.8 12.1

ψ = 1.00 12.0 10.5 11.3 11.7

https://doi.org/10.1038/s41746-024-01332-0 Article

npj Digital Medicine |           (2024) 7:354 7

www.nature.com/npjdigitalmed


of sampling from pure Gaussian noise, we recursively apply the
denoiser using the intermediately noised latent zσ as the starting
point (Fig. 1) to produce �zψ . The latent �zψ is then decoded into the
cardiac label map �xψ using the autoencoder. The intermediate step
i < N is a hyperparameter that determines how much of the sampling
process is recomputed. We express this hyperparameter in terms of
the the sampling ratio ψ = (N− i)/N in our experiments, such that
ψ = 0 is equivalent to the reconstruction of the original label map, and
ψ = 1 is equivalent to the unconditional generation of cardiac
label maps.

Localized editing
To create digital siblings by localized editing, we first encode a seed cardiac
label map xseed into the latent representation zseed. To better preserve the
masked region, we set zseed as the mean prediction of the encoder without
sampling from theGaussian prior. A tissue-basedmask,m, denoting which
cardiac tissues are to be preserved, was created and downsampled to the
same size as the latent representation. The mask was then dilated twice to
ensure that tissue interfaces remain stable during editing. The sampling
process is similar to that of unconditional sampling, with the addition of an
update step that replaces the unmasked portion of the intermediately
denoised image with an equivalently corrupted latent representation

belonging to the seed label map:

zσ ¼ m� ðzseed þ nðσÞÞ þ ð1�mÞ � zσ ð5Þ

At the end of sampling, the denoised latent �zm is then decoded into the
cardiac label map �xm through the decoder (Fig. 1).

Shape evaluation
To evaluate virtual cohorts in terms of 3D shape, we use point cloud-based
metrics as proposed by Yang et al.47. These metrics include (1) minimum
matching distance (MMD), which measures shape fidelity, (2) coverage
(COV),whichmeasures shapediversity, and (3) 1-nearest-neighbor accuracy
(1-NNA), which measures distributional similarity. To convert label maps
intopoint clouds,wegroup themain cardiac chambers andmyocardium into
a single shape and use marching cubes48 to obtain a 3D surface mesh from
which we randomly sample a point cloud of 1024 points. To calculate the
shapemetrics,We first define the similarity between point clouds in terms of
Chamfer distance (CD) and earth mover’s distance (EMD) as follows:

CDðX;YÞ ¼
X
x2X

min
y2Y

k x� yk22 þ
X
y2Y

min
x2X

k x� yk22; ð6Þ

Fig. 8 | Localized editing of seed cardiac label maps (star marker) produces cohorts with region-specific variation that is biased towards those of the most common
anatomies. Each scatterplot corresponds to a different seed, showing multiple cohorts synthesized by locally editing the same seed label map with different tissue masksm.
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EMDðX;YÞ ¼ min
ψ:X!Y

X
x2X

k x� ψðxÞk2; ð7Þ

whereX andY are twopoint cloudswith the samenumber of points andψ is
a bijection between them. Given a set of generated (Sg) and real (Sr) point
clouds, we measure shape fidelity through MMD as follows:

MMDðSg ; SrÞ ¼
1
jSrj

X
Y2Sr

min
X2Sg

DðX;YÞ; ð8Þ

where lower values indicate the generated shapes are of higher fidelity. To
measure shape diversity, we computeCOVas the fraction of point clouds in
the real set that are matched to at least one point cloud in the generated set.
Mathematically we compute COV as follows:

COVðSg ; SrÞ ¼
argminY2SrDðX;YÞjX 2 Sg

n o��� ���
jSrj

; ð9Þ

where higher values indicate better diversity or coverage in terms of 3D
shape. Finally, we use 1-NNA to compare the distribution of real and

generated shapes, to do this we let S−X = Sr∪ Sg− {X} andNX be the nearest
neighbor of X in S−X. 1-NNA is the leave-one-out accuracy of the 1-NN
classifier:

1� NNA ðSg; SrÞ ¼P
X2Sg

I½NX2Sg �þ
P

Y2Sr
I½NY2Sr �

jSg jþjSr j ;
ð10Þ

where I is the indicator function. A value close to 50% implies that Sg and Sr
are sampled from the same distribution.

Lastly, to analyze anatomic bias on a local scale, a voxel-wisemeanwas
computed over all virtual anatomies within a cohort. This results in a spatial
heat map P of size 7 × 128 × 128 × 128 for the real and synthetic cohorts.
The inverse of the background channel was chosen for further visualization.

Morphological evaluation
To assess the morphological quality of a virtual cohort, we represent each
virtual anatomy in terms of a 12-dimensionalmorphological feature vector.
For each cardiac label map, we calculate the volume, major axis length, and
minor axis length for the LV,RV, LA, andRA.Twoof thesemetrics (LVand
RV volumes) were further chosen to plot the global morphological dis-
tribution of each cohort. To calculate measures of morphological fidelity
anddiversity,we adapt the improvedprecisionand recallmetrics defined for
generative image models49. Our key idea is to form explicit non-parametric
representations of the manifolds of real and generated data within mor-
phological space, rather than the feature space of a neural classifier.

Following Kynkaanniemi et al.49, we embed our real and synthetic
anatomy (in the form of multi-label segmentations) into morphological
feature space. We denote the morphological feature vectors of the real and
generated anatomies by φr and φg, respectively, and the corresponding sets
of morphological feature vectors by Φr and Φg.

Fig. 9 | Locally editing seed cardiac labelmaps (columns) with different tissuemasksm (rows) enables region-specific variation.Difference heatmapsPdiff show spatially
varying discrepancies between the seed and synthetic cohorts generated by locally editing 4 seed label maps.

Table 4 | Topological violations exhibited by each cohort
produced by localized editing of various seed label maps with
different tissue masks

Seed Label Map

TV (%) L↑R↑ L↓R↓ L↑R↔ L↔R↔

Recon 8.3 8.3 8.3 8.3

RV Edit 10.9 13.2 14.9 9.7

LV Edit 10.9 10.7 9.6 9.0
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For each set of feature vectors Φ∈ {Φr, Φg}, we estimate the corre-
spondingmanifold in the feature space.Weobtain the estimate by forming a
hypersphere aroundeach feature vectorwith a radius equal to thedistance to
its kth nearest neighbor. Together, these hyperspheres define a volume in
morphological feature space that serves as an estimate of the true manifold.
To determine whether a given sample φ is located within this volume, we
define a binary function

f ðφ;ΦÞ ¼
1; if k φ� φ0k2 ≤ k φ0 � NNkðφ0;ΦÞk2

for at least one φ0 2 Φ

0; otherwise

8><
>: ð11Þ

whereNNkðφ0;ΦÞ returns the kth nearest feature vector ofφ0 from setΦ. As
such, f(φ, Φr) provides information on whether an individual anatomy is
morphologically realistic, whereas f(φ,Φg) determines if an anatomy could
be reproduced by the diffusion model. We can now define our metrics as

precisionðΦr;ΦgÞ ¼
1

jΦg j
X
φg2Φg

f ðφg ;ΦrÞ ð12Þ

recallðΦr;Φg Þ ¼
1

jΦrj
X
φr2Φr

f ðφr;Φg Þ; ð13Þ

whereprecisiondenotes the fractionofmorphologically ‘realistic’ anatomies
in the generated dataset, while recall denotes the fraction of real anatomies
that could have been generated by the diffusion model.

Lastly, we implement a variant of the Frechet Inception Distance50

whichwe call “FrechetMorphological Distance” (FMD). The key difference
is that instead of using the features of a pretrained Inception v3 model, we
utilize morphological features. Given the set of real and generated mor-
phological feature vectors Φg and Φr, we calculate the means (μg, μr) and

standard deviations (Σg, Σr) and compute FMD as follows:

FMDðμ; μ0;Σ;Σ0Þ ¼ k μ� μ0k22
þtrðΣþ Σ0Þ

�2tr ΣΣ0ð Þ12
� 	

;

ð14Þ

where a lower FMD indicates the morphological distribution of real and
generated anatomies are similar.

Topological evaluation
In order to study how well anatomic constraints and compatibility with
numerical simulation are respected, we assess the topological quality of each
label map. Clinically, topological defects such as a septal defect between the
right and left hearts can have a significant effect on electrophysiology51 and
hemodynamics52. Specifically, for each generated anatomy we evaluate 12
different topological violations and calculate the percentage of topological
violations exhibited by the cohort. We assess three types of topological
violations. The first fivemetrics checks for the correct number of connected
components for the Myo, LV, RV, LA, and RA channels. The next five
metrics assesses the required adjacency relations between the following
tissues: LV&Ao, LV&Myo, LV&LA, RV&Myo, RV&RA. The final two
metrics examine the absence of adjacency relations between the LV&RVas
well as the LA&RA.Multi-component topological violationswere foundby
determining the presence of critical voxels as described in Gupta et al.53,
while the number of connected components was assessed by the method
describedby Silversmith et al.54. For computational efficiency, the labelmaps
were subsampled by a factor of two before calculating all topological
violations.

Generative autoencoder baseline
To establish a baseline for comparison with our diffusion model approach,
we trained a generativeVAE that encodes the cardiac labelmap into a global
latent vector and decodes it back into voxel space. We generate new label
mapswith the generativeVAEby sampling the global latent froma gaussian
distribution and using it as input to the decoder. The generative VAE

Table 5 | Comparison of various metrics across different virtual cohort augmentation strategies

Augmentation strategy Topological violations (%) Morphological metrics MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

Prec. (↑) Rec. (↑) FMD (↓) CD EMD CD EMD CD EMD

Uncond+ Filter 11.2 0.98 0.38 5.40 2.6 6.0 20.00 20.00 95.26 94.74

Pert.+ Filter 12.2 0.98 0.92 2.11 1.19 3.95 82.00 84.00 64.11 54.21

Local. + Filter 12.0 0.96 0.90 2.94 1.16 3.96 94.00 94.00 49.47 53.69

All comparison metrics were calculated using the target cohort as a reference. MMD-CD and MMD-EMD values were multiplied by 1000 and 100 respectively.

Fig. 10 | Scatterplots demonstrating three augmentation strategies for a target
cohort of real cardiac label maps distinguished by right ventricle volumes larger
than a minimum threshold (dashed lines). The first strategy uses unconditional

generation while second and third strategies utilized generative editing applied to a
cohort of seed label maps. All generated cohorts underwent filtering to ensure a
minimum right ventricular volume.
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architecture is similar to our reconstructive VAE, except we use 6 down-
sampling blocks to reduce the 128 × 128 × 128 voxel resolution to
4 × 4 × 4 before flattening the latent grid and feeding it as input to a fully
connnected layer to produce a global latent vector of size 128. We also
change the number of channels in the encoder and decoder to
[64,128,196,256,256,512]. We trained the VAE with the same reconstruc-
tion andKLdivergence loss, but increased theKL loss term to 1e−3 tomore
strongly enforce a Gaussian distribution on the global latent vectors for
improved sampling.

Data availability
The label map data used for this study was derived from the TotalSeg-
mentatorv1 dataset, which is available at the following URL https://zenodo.
org/records/6802614.

Code availability
The code for training and evaluation will be available at https://github.com/
kkadry/AnatomicEditing/.

Received: 22 January 2024; Accepted: 9 November 2024;

References
1. Sarrami-Foroushani, A. et al. In-silico trial of intracranial flow diverters

replicates and expands insights from conventional clinical trials. Nat.
Commun. 12, 3861 (2021).

2. Kadry, K., Olender,M. L., Marlevi, D., Edelman, E. R. & Nezami, F. R. A
platform for high-fidelity patient-specific structural modelling of
atherosclerotic arteries: from intravascular imaging to three-
dimensional stress distributions. J. R. Soc. Interface 18, 20210436
(2021).

3. Rouhollahi, A. et al. Cardiovision: a fully automated deep learning
package for medical image segmentation and reconstruction
generating digital twins for patients with aortic stenosis. Comput.
Med. Imaging Graph.https://doi.org/10.1016/j.compmedimag.2023.
102289 (2023).

4. Straughan, R., Kadry, K., Parikh, S. A., Edelman, E. R. & Nezami, F. R.
Fully automated construction of three-dimensional finite element
simulations from optical coherence tomography. Comput. Biol. Med.
165, 107341 (2023).

5. Bianchi, M. et al. Patient-specific simulation of transcatheter aortic
valve replacement: impact of deployment options on paravalvular
leakage. Biomech. Model. Mechanobiol. 18, 435–451 (2019).

6. Kusner, J. et al. Understanding tavr device expansion as it relates to
morphology of the bicuspid aortic valve: a simulation study.PloSONE
16, e0251579 (2021).

7. Ranard, L. S. et al. Feops heartguide patient-specific computational
simulations for watchman flx left atrial appendage closure: a
retrospective study. JACC 1, 100139 (2022).

8. Karanasiou, G. S. et al. Design and implementation of in silico clinical
trial for bioresorbable vascular scaffolds. In 2020 42nd Annual
International Conference of the IEEE Engineering in Medicine &
Biology Society (EMBC), 2675–2678 (IEEE, 2020).

9. Conway, C. et al. Acute stent-induced endothelial denudation:
biomechanical predictors of vascular injury. Front. Cardiovasc. Med.
8, 733605 (2021).

10. Roney,C.H. et al. In silico comparison of left atrial ablation techniques
that target the anatomical, structural, and electrical substratesof atrial
fibrillation. Front. Physiol. 11, 1145 (2020).

11. Viceconti, M. et al. Possible contexts of use for in silico trials
methodologies: a consensus-based review. IEEE J. Biomed. Health
Inform. 25, 3977–3982 (2021).

12. Sertkaya, A., DeVries, R., Jessup, A. & Beleche, T. Estimated cost of
developing a therapeutic complex medical device in the us. JAMA
Netw. Open 5, e2231609–e2231609 (2022).

13. Niederer, S. et al. Creation and application of virtual patient cohorts of
heart models. Philos. Trans. R. Soc. A 378, 20190558 (2020).

14. Fogel, D. B. Factors associated with clinical trials that fail and
opportunities for improving the likelihood of success: a review.
Contemp. Clin. Trials Commun. 11, 156–164 (2018).

15. Fabris, E. et al. Thin-cap fibroatheroma rather than any lipid plaques
increases the risk of cardiovascular events in diabetic patients:
Insights from the combine oct–ffr trial.Circulation: Cardiovasc. Interv.
15, e011728 (2022).

16. Sacco, F. et al. Left ventricular trabeculations decrease the wall shear
stress and increase the intra-ventricular pressure drop in cfd
simulations. Front. Physiol. 9, 458 (2018).

17. Moore, B. L. & Dasi, L. P. Coronary flow impacts aortic leaflet
mechanics and aortic sinus hemodynamics. Ann. Biomed. Eng. 43,
2231–2241 (2015).

18. Keshavarz-Motamed, Z. et al. Mixed valvular disease following
transcatheter aortic valve replacement: quantification and systematic
differentiation using clinicalmeasurements and image-based patient-
specific in silico modeling. J. Am. Heart Assoc. 9, e015063 (2020).

19. Garber, L., Khodaei, S.,Maftoon,N. &Keshavarz-Motamed,Z. Impact
of tavr on coronary artery hemodynamics using clinical
measurements and image-based patient-specific in silico modeling.
Sci. Rep. 13, 8948 (2023).

20. Williams, J. G. et al. Aortic dissection is determined by specific shape
and hemodynamic interactions. Ann. Biomed. Eng. 50, 1771–1786
(2022).

21. Beetz, M. et al. Interpretable cardiac anatomy modeling using
variational mesh autoencoders. Front. Cardiovasc. Med. 9, 983868
(2022).

22. Beetz, M., Banerjee, A. & Grau, V. Generating subpopulation-specific
biventricular anatomy models using conditional point cloud
variational autoencoders. In International Workshop on Statistical
Atlases and Computational Models of the Heart, 75–83 (Springer,
2021).

23. Qiao,M. et al. Cheart: a conditional spatio-temporal generativemodel
for cardiac anatomy. (IEEE transactions on medical imaging, 2023).

24. Kong, F. et al. Sdf4chd: generative modeling of cardiac anatomies
with congenital heart defects.Med. Image Anal. 97, 103293 (2024).

25. Pinaya, W. H. et al. Brain imaging generation with latent diffusion
models. In Deep Generative Models: Second MICCAI Workshop,
DGM4MICCAI 2022, Held in Conjunction with MICCAI 2022,
Singapore, September 22, 2022, Proceedings, 117–126 (Springer,
2022).

26. Müller-Franzes, G. et al. Diffusion probabilistic models beat gans on
medical images. Preprint at arXiv https://doi.org/10.48550/arXiv.
2212.07501 (2022).

27. Khader, F. et al. Denoising diffusion probabilistic models for 3d
medical image generation. Sci. Rep. 13, 7303 (2023).

28. Fernandez, V. et al. Can segmentation models be trained with fully
synthetically generated data? In Simulation and Synthesis in Medical
Imaging: 7th International Workshop, SASHIMI 2022, Held in
Conjunction with MICCAI 2022, Singapore, September 18, 2022,
Proceedings, 79–90 (Springer, 2022).

29. Go, S., Ji, Y., Park, S. J. & Lee, S. Generation of structurally realistic
retinal fundus images with diffusion models. In Proceedings of the
IEEE/CVF Conferenceon Computer Vision and Pattern Recognition,
p 2335–2344 (2024).

30. Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models.
Adv. Neural Inf. Process. Syst. 33, 6840–6851 (2020).

31. Meng, C. et al. Sdedit: guided image synthesis and editing with
stochastic differential equations. Preprint at arXiv https://doi.org/10.
48550/arXiv.2108.01073 (2021).

32. Nichol, A. et al. Glide: towards photorealistic image generation and
editingwith text-guided diffusionmodels. Preprint at arXiv https://doi.
org/10.48550/arXiv.2112.10741 (2021).

https://doi.org/10.1038/s41746-024-01332-0 Article

npj Digital Medicine |           (2024) 7:354 11

https://zenodo.org/records/6802614
https://zenodo.org/records/6802614
https://github.com/kkadry/AnatomicEditing/
https://github.com/kkadry/AnatomicEditing/
https://doi.org/10.1016/j.compmedimag.2023.102289
https://doi.org/10.1016/j.compmedimag.2023.102289
https://doi.org/10.1016/j.compmedimag.2023.102289
https://doi.org/10.48550/arXiv.2212.07501
https://doi.org/10.48550/arXiv.2212.07501
https://doi.org/10.48550/arXiv.2212.07501
https://doi.org/10.48550/arXiv.2108.01073
https://doi.org/10.48550/arXiv.2108.01073
https://doi.org/10.48550/arXiv.2108.01073
https://doi.org/10.48550/arXiv.2112.10741
https://doi.org/10.48550/arXiv.2112.10741
https://doi.org/10.48550/arXiv.2112.10741
www.nature.com/npjdigitalmed


33. Song, Y. et al. Score-based generative modeling through stochastic
differential equations. Preprint at arXiv https://doi.org/10.48550/
arXiv.2011.13456 (2020).

34. Song, Y., Shen, L., Xing, L. & Ermon, S. Solving inverse problems in
medical imaging with score-based generative models. Preprint at
arXiv https://doi.org/10.48550/arXiv.2111.08005 (2021).

35. Song, J., Vahdat, A., Mardani, M. & Kautz, J. Pseudoinverse-guided
diffusionmodels for inverse problems. In International Conference on
Learning Representations (2023).

36. Chung, H., Kim, J., Mccann, M. T., Klasky, M. L. & Ye, J. C. Diffusion
posterior sampling for general noisy inverse problems. Preprint at
arXiv https://doi.org/10.48550/arXiv.2209.14687 (2022).

37. Bercea, C. I., Neumayr, M., Rueckert, D. & Schnabel, J. A. Mask,
stitch, and re-sample: enhancing robustness and generalizability in
anomaly detection through automatic diffusion models. Preprint at
arXiv https://doi.org/10.48550/arXiv.2305.19643 (2023).

38. Fontanella, A.,Mair, G.,Wardlaw, J., Trucco, E. &Storkey, A. Diffusion
models for counterfactual generation and anomaly detection in brain
images. Preprint at arXiv https://doi.org/10.48550/arXiv.2308.02062
(2023).

39. Rouzrokh, P. et al. Multitask brain tumor inpainting with diffusion
models: a methodological report. Preprint at arXiv https://doi.org/10.
48550/arXiv.2210.12113 (2022).

40. Ho, J. & Salimans, T. Classifier-free diffusion guidance. Preprint at
arXiv https://doi.org/10.48550/arXiv.2207.12598 (2022).

41. Romero, P. et al. Clinically-driven virtual patient cohorts generation:
an application to aorta. Front. Physiol. 1375 (2021).

42. Wasserthal, J. et al. Totalsegmentator: robust segmentation of 104
anatomical structures in ct images. Radiol Artif Intell. 5 (2023).

43. Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric
diffeomorphic image registration with cross-correlation: evaluating
automated labeling of elderly and neurodegenerative brain.Med.
Image Anal. 12, 26–41 (2008).

44. Karras, T., Aittala, M., Aila, T. & Laine, S. Elucidating the design space
of diffusion-based generative models. Adv. Neural Inf. Process. Syst.
35, 26565–26577 (2022).

45. Rombach, R., Blattmann, A., Lorenz, D., Esser, P. & Ommer, B. High-
resolution image synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 10684–10695 (2022).

46. Kingma, D. P. & Ba, J. Adam: amethod for stochastic optimization. In
International Conference on Learning Representations (ICLR). (San
Diega, CA, USA, 2015).

47. Yang, G. et al. Pointflow: 3d point cloud generation with continuous
normalizing flows. In Proceedings of the IEEE/CVF international
conference on computer vision, 4541–4550 (2019).

48. Lorensen, W. E. & Cline, H. E. Marching cubes: A high resolution 3d
surface construction algorithm. In Seminal graphics: pioneering
efforts that shaped the field, 347–353 (1998).

49. Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J. & Aila, T. Improved
precision and recall metric for assessing generative models. Adv.
Neural Inf. Process. Syst. 32, 3927–3936 (2019).

50. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. & Hochreiter, S.
Gans trained by a two time-scale update rule converge to a local nash
equilibrium. Adv. Neural Inf. Process. Adv. Neural Inf. Process. Syst.
30, 6626–6637 (2017).

51. Williams, M. R. & Perry, J. C. Arrhythmias and conduction disorders
associatedwith atrial septal defects. J. Thorac. Dis. 10, S2940 (2018).

52. Shah, S. R. et al. The impact of an atrial septal defect on
hemodynamics in patients with heart failure. US Cardiol. Rev. 11, 72
(2017).

53. Gupta, S. et al. Learning topological interactions for multi-class
medical image segmentation. In European Conference on Computer
Vision, 701–718 (Springer, 2022).

54. Silversmith, W. cc3d: Connected components on multilabel 3D & 2D
images. (2021).

Acknowledgements
Theauthorswould like to thankVivekGopalakrishnanandPayalChandak for
their helpful feedback on the manuscript and figure design. This work was
supported in part by grants to E.R.E. and F.R.N. from the National Institutes
of Health (R01 HL161069) and a Henri Termeer Fellowship to K.K.

Author contributions
K.K. curated the dataset, wrote the paper, and performed all experiments.
K.K. and S.G. performed experiments. K.K., S.G., F.R.N., and E.R.E.
reviewed the results.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41746-024-01332-0.

Correspondence and requests for materials should be addressed to
Karim Kadry.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41746-024-01332-0 Article

npj Digital Medicine |           (2024) 7:354 12

https://doi.org/10.48550/arXiv.2011.13456
https://doi.org/10.48550/arXiv.2011.13456
https://doi.org/10.48550/arXiv.2011.13456
https://doi.org/10.48550/arXiv.2111.08005
https://doi.org/10.48550/arXiv.2111.08005
https://doi.org/10.48550/arXiv.2209.14687
https://doi.org/10.48550/arXiv.2209.14687
https://doi.org/10.48550/arXiv.2305.19643
https://doi.org/10.48550/arXiv.2305.19643
https://doi.org/10.48550/arXiv.2308.02062
https://doi.org/10.48550/arXiv.2308.02062
https://doi.org/10.48550/arXiv.2210.12113
https://doi.org/10.48550/arXiv.2210.12113
https://doi.org/10.48550/arXiv.2210.12113
https://doi.org/10.48550/arXiv.2207.12598
https://doi.org/10.48550/arXiv.2207.12598
https://doi.org/10.1038/s41746-024-01332-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjdigitalmed

	Probing the limits and capabilities of diffusion models for the anatomic editing of digital twins
	Results
	Unconditional sampling of virtual anatomies
	Scale specific variation through perturbational editing
	Region specific variation through localized editing
	Virtual cohort augmentation through selective editing

	Discussion
	Methods
	Dataset
	Latent diffusion model training
	Latent diffusion model implementation
	Perturbational editing
	Localized editing
	Shape evaluation
	Morphological evaluation
	Topological evaluation
	Generative autoencoder baseline

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




