npj | digital medicine

Article

Published in partnership with Seoul National University Bundang Hospital

https://doi.org/10.1038/s41746-024-01353-9

Predicting control of cardiovascular
disease risk factors in South Asia using

machine learning

M| Check for updates

Anna Reuter ® 2, Mohammed K. Ali ®?3, Viswanathan Mohan*®, Lydia Chwastiak®, Kavita Singh?’,
K. M. Venkat Narayan®, Dorairaj Prabhakaran’, Nikhil Tandon® & Nikkil Sudharsanan ® 2°°

A substantial share of patients at risk of developing cardiovascular disease (CVD) fail to achieve control
of CVD risk factors, but clinicians lack a structured approach to identify these patients. We applied
machine learning to longitudinal data from two completed randomized controlled trials among 1502
individuals with diabetes in urban India and Pakistan. Using commonly available clinical data, we predict
each individual’s risk of failing to achieve CVD risk factor control goals or meaningful improvements in
risk factors at one year after baseline. When classifying those in the top quartile of predicted risk scores
as at risk of failing to achieve goals or meaningful improvements, the precision for not achieving goals
was 73% for HbA1c, 30% for SBP, and 24% for LDL, and for not achieving meaningful improvements
88% for HbA1c, 87% for SBP, and 85% for LDL. Such models could be integrated into routine care and
enable efficient and targeted delivery of health resources in resource-constrained settings.

Over the past decades, the burden of cardiovascular diseases (CVD) has
been rising in South Asia, both in terms of mortality and disability-adjusted
life years'”. The risk of CVD can be substantially reduced by controlling
blood glucose, blood pressure, and lipids™, but patients repeatedly fail to
achieve these goals. For example, a recent study using nationally repre-
sentative data from India showed that only 36%, 49%, and 42% of indivi-
duals receiving care for type 2 diabetes achieved blood glucose control
(HbAlc < 7%), blood pressure control (<140/90 mmHg), and LDL cho-
lesterol control (<100 mg/dL) respectively.

Additional healthcare interventions may help individuals achieve
their care goals. For example, past studies showed that complementary
care management by nurses, lay people, or peers, as well as the use of
mobile phones to provide reminders or advice, can help to improve the
management of CVD risk factors among individuals with diabetes®™.
But even if such interventions are cost-effective in the long-run, they
might not be feasible to implement for entire patient populations due to
lack of staff, infrastructure, and financial resources’. Available
resources may need to be targeted to the patients most in need of
additional assistance. Yet it is unclear how to identify such individuals
for intervention targeting.

We developed machine learning algorithms which rank and categorize
individuals based on their predicted risk of failing to achieve CVD risk factor
control, or failing to achieve meaningful reductions in CVD risk factor
levels. The resulting models are similar to widely-used CVD risk scores such
as the ACC/AHA ASCVD Risk Score'’, but with the goal to identify the
patient’s risk of not meeting CVD care goals rather than their risk of a CVD
endpoint. We took advantage of rare longitudinal clinical data collected with
high quality protocols on diabetic patients in India and Pakistan, the CARRS
and the INDEPENDENT trials'' ™. We built our machine learning models
from commonly available characteristics, such as biomarkers routinely
collected in CVD care, medical history, and basic sociodemographic char-
acteristics. This enables the use of the models in real clinical settings. Our
resulting models can thus be provided as a calculator for clinicians and
health administers, allowing them to easily determine how to target addi-
tional efforts and improve CVD risk factor control among their patients.

Results

Sample characteristics

Women comprised 60% of the INDEPENDENT sample and 54% of the
CARRS sample (Table 1). In both samples, patients were about 53 years old
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Fig. 1 | Predictors used in the small, medium, and large machine learning models. Predictors come from baseline data of the CARRS and INDEPENDENT trials. Units
respectively scales in brackets. Total cholesterol was omitted after the preselection based on its high correlation (>0.8) with other predictors.

on average. Patients in the CARRS sample had poorer CVD risk factor levels
at baseline compared to patients from the INDEPENDENT sample. After
12 months, in the INDEPENDENT sample, the share of patients with an
HbA1 > 8% (“failure to achieve HbA1c control”) reduced from 71% to 50%,
the share of patients with SBP > 140 mmHg (“failure to achieve SBP con-
trol”) from 43% to 18%, and the share of patients with LDL > 130 mg/dL
(“failure to achieve LDL control”) from 25% to 15%. In the CARRS data, the
share of patients with HbA1 > 8% reduced from 100% to 60%, the share of
patients with SBP > 140 mmHg from 69% to 25%, and the share of patients
with LDL > 130 mg/dL from 48% to 21%. In the INDEPENDENT sample,
60% of the patients had a reduction in HbA1lc of less than 1 percentage point
(“failure to achieve clinically meaningful reduction in HbA1c”), 60% a
reduction of less than 10 mmHg in SBP (“failure to achieve clinically
meaningful reduction in SBP”), and 58% a reduction of less than 10 mg/dL
in LDL (“failure to achieve clinically meaningful reduction in LDL”). In the
CARRS sample, 46% did not achieve a clinically meaningful reduction in
HbA1c, 44% in SBP, and 44% in LDL levels.

Selected models and composition

We ran boosted logistic models, boosted tree models, and support
vector machines (SVM) on three different sets of predictors, shown in
Fig. 1. We developed our models based on a random 80% subset of the
CARRS data, tested on the remaining 20%, and validated on the
INDEPENDENT data. The 10-fold cross-validation resulted in the
selection of boosted logistic models for all outcomes except failure to
achieve SBP improvements with the medium-sized (basic patient
information and medical history) model for predicting failure to
achieve HbAlc control, LDL control, and LDL improvement, the small
(basic patient information only) model for failure to achieve SBP
control, and the large model (all predictors) for not achieving mean-
ingful HbAlc improvements (parameter specifications shown in
Supplementary Table 2). For failure to achieve SBP improvement, the
small boosted tree model was chosen. While the larger models were
selected based on their higher median AUC, the small models using
only basic patient information performed similarly to larger models
(Supplementary Fig. 1, Supplementary Tables 3-5).

Variable importance

For all selected models, the baseline measurement of the respective risk
factor (e.g., baseline HbA1c levels for failure to achieve HbA1c control) is the
most important predictor (Fig. 2). For HbAlc, the years since the diabetes
diagnosis, age, and neuropathy in hands or feet are important predictors of
failure to achieve control and meaningful reductions in HbAlc. For not
achieving SBP control, age and HbAlc are important predictors, while for
not achieving SBP improvements, basic patient information plays a com-
paratively small role. For both LDL outcomes, blindness and neuropathy in
hands or feed are among the top predictors, though with a relatively low
variable importance score. For not achieving LDL control, SBP is among the
top predictors as well, while for not achieving LDL improvements, HbAlc s
in the top ranking.

Risk score

In Panels a—c of Fig. 3, we graphed the model-based predicted risk that an
individual will not meet a CVD goal against the actual proportion of indi-
viduals that did not meet the goal in the validation data (the INDEPEN-
DENT sample). Across models and outcomes, the predicted risk was highly
correlated with the observed risk (HbA1c: 0.92, SBP: 0.81, LDL: 0.85). There
were stronger correlations between the predicted and observed risk for
meaningful improvement outcomes (Panels d-f; HbAlc: 0.97, SBP: 0.91,
LDL: 0.98). The Brier score varied around 0.2 for all outcomes except SBP
control (HbA1c control: 0.21, SBP control: 0.16, LDL control: 0.19, HbAlc
improvement: 0.20, SBP improvement: 0.20, LDL improvement: 0.18), with
a Brier score of 0 indicating perfect prediction and a Brier score of 1 the
worst prediction possible. The models predicted only low to medium risk of
failure to achieve SBP and LDL control for the patients in the validation set.
Still, the models overestimated the risk of failure to achieve control for both
outcomes. This is similar to the prediction on the testing set, i.e., the
remaining 20% of the CARRS sample (Supplementary Note 3 and Sup-
plementary Fig. 2). For the time-shifted data (applying the models on
predictors after 12 months to predict outcomes after 24 months), the models
underestimated the risk for failure to achieve HbAlc control and
improvement, but overestimated the risk of failure to achieve control
(Supplementary Note 4 and Supplementary Fig. 4).
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Fig. 2 | Variable importance plots. a Not achieving HbA1c control. b Not achieving HbA1lc improvement. ¢ Not achieving SBP control. d Not achieving SBP improvement.

e Not achieving LDL control. f Not achieving LDL improvement.

Targeting based on ranking

Table 2 presents the precision and sensitivity in the validation data when
classifying individuals as at risk depending on different percentiles of the
predicted risk score (a graphical representation over all percentiles can be

found in Supplementary Note 3 and Supplementary Fig. 3). When classi-
fying those in the top 10% of the predicted risk score as at risk, the actual
prevalence of risk factor control failure among those classified as at risk
(precision) was 73% [95% confidence interval: 59%,89%] for HbAlc, 35%
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[19%,51%)] for SBP, and 35% [19%,49%)] for LDL. This cutoff results in a
sensitivity of 14% [12%,17%] for HbA1c, 19% [11%,26%)] for SBP, and 24%
[13%,32%)] for LDL. When classifying those in the top 25% of the predicted
risk score as at risk, the precision was 73% [64%,82%)] for HbAlc, 30%
[20%,40%)] for SBP, and 24% [15%,32%)] for LDL. At this cutoff, the sen-
sitivity was 37% [32%,41%] for HbAlc, 41% [30%,52%] for SBP, and 40%
[28%, 52%)] for LDL. When classifying those in the top 50% of the predicted
risk score as at risk, the precision was 68% [61%,75%)] for HbAlc, 28%
[22%,35%)] for SBP, and 21% [16%,28%] for LDL. This cutoff resulted in a
sensitivity of 67% [62%,73%] for HbA1c, 75% [68%,86%)] for SBP, and 73%
[62%,84%)] for LDL.

For failure to achieve meaningful risk factor reductions, when
classifying those in the top 10% of the predicted risk score as at risk, the
precision was 92% [81%,100%] for HbAlc, 92% [81%,100%] for SBP,
and 84% [69%,95%] for LDL. At this cutoff, the sensitivity was 15%
[13%,17%] for HbAlc, 15% [13%,17%] for SBP, and 14% [12%,16%] for
LDL. When classifying those in the top 25% of the predicted risk score
as atrisk, the precision was 88% [81%,95%)] for HbA1c, 87% [80%,95%]
for SBP, and 85% [77%,91%] for LDL. This cutoff resulted in a sensi-
tivity of 37% [33%,40%) for HbAlc, 36% [33%,39%)] for SBP, and 37%
[33%,40%] for LDL. When classifying those in the top 50% of the
predicted risk score as at risk, the precision was 77% [70%,83%] for
HbAlc, 75% [69%,82%] for SBP, and 79% [73%,85%] for LDL. This
cutoff resulted in a sensitivity of 64% [59%,68%] for HbAlc, 62%
[58%,67%] for SBP, and 69% [64%,74%)] for LDL. For all three out-
comes, precision decreased only gradually as more individuals were
classified as risk.

Considering the different prevalence rates, the performance was qua-
litatively similar compared to the testing data (the share of the 20% of the
CARRS data not used for training), as shown in Supplementary Table 6. The
models performed relatively better on lower parts of the risk score dis-
tribution for failure to achieve HbAlc control, and relatively poorer on top
percentiles for failure to achieve SBP control, LDL control, SBP improve-
ment, and LDL improvement. Compared to the time-shifted data, the
performance was relatively poorer for the top percentiles for failure to
achieve SBP or LDL control, but better for the top percentiles for failure to
achieve HbAlc or SBP improvements (Supplementary Table 7 and Sup-
plementary Fig. 5).

Targeting based on an absolute cutoff of 50%

Alternatively, the model risk score can be used to target patients based on a
fixed cutoff, e.g., targeting all patients with an absolute risk score above 50%.
Table 3 displays the performance of the selected models for the validation
data when using a cutoff of 50% (respectively the decision boundary for
SVM algorithms). For most outcomes, the performance measures were
comparable to targeting the top 50% of the sample.

For failure to achieve HbAlc control, the model classified 36%
[31%,41%] of individuals as at risk (detection prevalence), and among
these 36%, 75% [67%,82%] were correctly identified as at risk (precision).
Overall, the model correctly classified 53% [46%,60%)] of those failing to
achieve control as at risk (sensitivity). For failure to achieve SBP control,
the model classified 16% [12%,20%] of individuals as at risk, and among
these, 30% [19%,41%] were correctly identified as at risk. Overall, 26%
[16%,37%)] of those failing to achieve were correctly classified. For failure
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Table 1 | Sample characteristics at baseline and clinical
outcomes after 12 months

CARRS (1115 INDEPENDENT (387
patients) patients)
Mean sd Mean sd
Demographics
Female, % 54.1 59.7
Age, years 53.6 9.2 52.5 8.5
Education, %
Professional 71 9.0
Graduate 19.7 14.0
Secondary 43.7 50.9
Primary 1.7 16.8
Literate 5.6 2.3
lliterate 12.3 7.0
Occupation, %
Professional 6.4 7.2
Trained 15.3 9.6
Skilled 7.9 121
Semi-skilled 5.0 7.2
Unskilled 4.8 4.4
Homemaker 40.8 50.4
Retired 14.0 8.0
Unemployed 4.1 1.0
Other 1.6 0.0
Biomarkers
HbA1c, percentage 9.9 1.6 9.1 1.9
points
Systolic blood 143.3 19.5 132.3 15.9
pressure, mmHg
Diastolic blood 81.7 10.9 80.3 9.9
pressure, mmHg
Total cholesterol, mg/dl 195.4 44.8 173.5 43.7
HDL, mg/dl 441 8.9 41.8 11.5
LDL, mg/dI 122.6 371 101.5 37.5
Outcomes at baseline
HbA1c>8%, % 100.0 714
SBP > 140 mmHg, % 69.3 429
LDL > 130 mg/dL, % 47.6 24.6
Outcomes after 12 months
HbA1c>8%, % 60.4 50.1
SBP > 140 mmHg, % 25.0 18.3
LDL > 130 mg/dL, % 21.0 14.7
HbA1c¢ reduction < 1 46.4 60.0
percentage point, %
SBP reduction < 44.2 59.8
10 mmHg, %
LDL reduction < 10 mg/ 43.6 57.8
dL, %

Due to missing information on specific outcomes after 12 months for about 7% patients (HbA1c:
103, SBP: 101, LDL: 108), the sample size slightly differs for these outcomes.

to achieve LDL control, the model classified 27% [23%,32%] of individuals
as at risk, and among these, 23% [15%,30%)] were correctly identified as at
risk. The model correctly classified 42% [29%,55%] of those failing to
achieve control.

For failure to achieve meaningful reductions, detection prevalence,
precision, and sensitivity were similar to the failure to achieve control for
HbAIc, but higher for SBP and LDL. For failure to achieve meaningful
reductions in HbAlc levels, the model classified 69% [64%,73%] of the
sample as at risk, among which 71% [66%,77%] actually failed to achieve
meaningful reductions in HbAlc. It correctly classified 82% [76%,86%)] of
those failing to achieve reductions. For failure to achieve meaningful
reductions in SBP levels, the model classified 74% [70%,78%] of the sample
as at risk, among which 71% [66%,76%] actually failed to achieve mean-
ingful reductions in SBP. It correctly classified 88% [83%,92%] of those
failing to achieve reductions. For failure to achieve meaningful reductions in
LDL levels, the model classified 67% [63%,72%)] of the sample as at risk,
among which 74% [68%,79%] actually failed to achieve meaningful
reductions in LDL. It correctly classified 86% [82%,90%)] of those failing to
achieve reductions.

Considering the different performance rates, the precision was similar
to the testing data (Supplementary Table 6), and lower for SBP and LDL
control than in the time-shifted data (Supplementary Table 7). Relatively
fewer patients were classified as at risk for failure to achieve HbA1c control,
SBP control, LDL control, and SBP improvement, compared to the testing
data, but the share was relatively similar to the time-shifted data. Overall,
sensitivity in the validation data was lower for failure to achieve control, and
higher for failure to achieve improvements, compared to the testing data,
and lower for SBP and LDL control but higher for HbA 1c control compared
to the time-shifted data.

Differences by sociodemographic groups

Figure 4 depicts the prevalence and sensitivity across sex, age, and education
level when using a relative or an absolute risk score cutoff. There was
considerable variation in the sensitivity across groups, particularly when
using the relative cutoff and for not achieving CVD care goals. The most
prominent differences occurred for failure to achieve SBP control: the
sensitivity for female patients was about 60% of the sensitivity for male
patients, the sensitivity for patients below age 50 was less than half of the
sensitivity for older patients, and the sensitivity for patients with no or
primary education was less than half of the sensitivity for patients with
secondary education when using relative or absolute targeting. Thus, those
individuals would be under selected relative to other patients if classified
based on the model. For other sociodemographic outcomes and groups,
differences were generally smaller.

Discussion

Using machine learning approaches, we are able to reliably predict the risk of
not meeting CVD risk factor care goals based on minimal and commonly
collected clinical data for individuals receiving care. The resulting models
can be used by clinicians and health administrators to efficiently identify
which individuals would benefit from additional interventions to encourage
risk factor control in circumstances with constrained resources where not all
individuals can feasibly receive additional support. Importantly, since our
models rank individuals in terms of their risk of not meeting goals, clinicians
can flexibly match the share of patients that receive support with their
available resources.

Our analyses show that the ranking of risk scores (relative targeting)
yields more stable results compared to absolute targeting where individuals
are classified based on their absolute risk. When comparing the perfor-
mance across sociodemographic groups, performance differences were
more pronounced for relative targeting, but these differences varied across
outcomes and groups. While all models were restricted to data already
collected or easily retrievable in a CVD care setting, we see that the models
using only regularly collected, basic clinical data performed better or nearly
as good as more comprehensive models. This suggests that these models can
be used in a wide variety of clinical settings without the need to collect large
amounts of data.

Similarly, the variable importance measures show that very basic
patient information drive the predicted risk scores. For HbAlc outcomes,
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Table 2 | Performance of the machine learning predictions when patients are targeted according to top risk percentiles

Outcome definition Not achieving control

Not achieving improvements

CVD risk factor HbA1c SBP LDL HbA1c SBP LDL
Chosen specification Logistic (M) Logistic (S) Logistic (M) Logistic (L) Tree (S) Logistic (M)
Observations 377 378 374 377 378 374
Number of positives 189 69 55 226 226 216
Prevalence 50% 18% 15% 60% 60% 58%

[95% ClI] [45%,56%)] [14%,22%)] [11%,18%)] [65%, 65%] [65%, 65%] [63%,63%)]
Targeted percentile Top 10%

Precision 73% 35% 35% 92% 92% 84%

[95% ClI] [69%,89%)] [19%,51%] [19%,49%] [81%,100%] [81%,100%] [69%,95%]
Sensitivity 14% 19% 24% 15% 15% 14%

[95% ClI] [12%,17%)] [11%,26%] [13%,32%)] [13%, 17%)] [13%, 17%] [12%,16%)]
Targeted percentile Top 25%

Precision 73% 30% 24% 88% 87% 85%

[95% ClI] [64%,82%)] [20%,40%)] [15%,32%)] [81%, 95%] [80%, 95%] [77%,91%)]
Sensitivity 37% 1% 40% 37% 36% 37%

[95% ClI] [32%,41%)] [30%,52%)] [28%,52%)] [33%, 40%] [33%, 39%] [33%,40%)]
Targeted percentile Top 50%

Precision 68% 28% 21% 7% 75% 79%

[95% ClI] [61%,75%)] [22%,35%] [16%,28%)] [70%, 83%] [69%, 82%] [73%,85%]
Sensitivity 67% 75% 73% 64% 62% 69%

[95% ClI] [62%,73%)] [68%,86%] [62%,84%] [59%, 68%] [58%, 67 %] [64%,74%)]

This is the performance of the models with the highest median area under the curve over all cross-validation folds applied to the validation data. Number of positives is the number of patients not achieving
the outcome. Precision is the percentage of selected patients not achieving the outcome. Sensitivity is the percentage of patients not achieving the outcome who are selected. Confidence intervals obtained

from bootstrapping with 1000 draws.

Table 3 | Performance of the machine learning predictions when patients are targeted according to the calibration cutoff

Outcome definition Not achieving control

Not achieving improvements

CVD risk factor HbA1c SBP LDL HbA1c SBP LDL
Chosen specification Logistic (M) Logistic (S) Logistic (M) Logistic (L) Tree (S) Logistic (M)
Detection prevalence 36% 16% 27% 69% 74% 67%

[95% ClI] [31%,41%] [12%,20%] [23%,32%] [64%, 73%)] [70%, 78%)] [63%,72%)]
Precision 75% 30% 23% 71% 71% 74%

[95% ClI] [67%,82%] [19%,41%] [15%,30%] [66%, 77%)] [66%, 76%)] [68%,79%)]
Sensitivity 53% 26% 42% 82% 88% 86%

[95% ClI] [46%,60%)] [16%,37%)] [29%,55%)] [76%, 86%] [83%, 92%] [82%,90%)]

This is the performance of the models with the highest median area under the curve over all cross-validation folds applied to the validation data. Detection prevalence is the percentage of patients which will
be selected based on the model. Precision is the percentage of selected patients not achieving the outcome. Sensitivity is the percentage of patients not achieving the outcome who are selected.

Confidence intervals obtained from bootstrapping with 1000 draws.

baseline CVD risk factors, age, and prevalence of neuropathy were among
the most important predictors, for SBP, baseline CVD risk factors and age
were important predictors, and for LDL, baseline CVD risk factors and
prevalence of neuropathy were important predictors. This may indicate that
current health status, together with age, play a role for achieving care goals.
However, the models are not designed to detect causal patterns and this
interpretation should be viewed cautiously as hypothesis generating and not
as clear causal evidence.

Risk scores have become a common approach to select patients into
testing or treatment recommendations. A popular example is the ACC/
AHA ASCVD Risk Score, which predicts the incidence of CVD events in the
upcoming 10 years'’. Subsequent studies recalibrated the risk score or
developed similar scores for other populations'*"’. Our models are similar
to these established risk score calculators in several aspects: the models can

be transformed into a form where practitioners can submit the patient data
and obtain risk scores or a prompt to enroll the patient in a more intensive
care intervention. In the presence of electronic health record (EHR) systems,
the models could be integrated into the EHR systems, such that clinicians
would not need to enter data in an additional tool, but would be provided
with a prompt directly from the system. In this scenario, the models could
also be calibrated to the specific clinic setting and improved further based on
local EHR data. Moreover, as the small models use only basic biomarkers
and sociodemographic information, and perform similarly to more com-
plex models, our models might be integrated in existing EHR systems
without collecting additional patient data. This is especially relevant as
availability of resources and health information systems pose a major barrier
to the adoption of existing risk scores™. Finally, similar to the established risk
scores, our models predict who will require additional care (‘high-risk’), not
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which type of additional care would be most efficient for the patient (‘high-
benefit’). Recent research suggests that assigning interventions based on risk
alone leads to suboptimal outcomes®'. Thus, while our models support an
efficient identification of patients in need, the choice of an optimal care
strategy for these patients requires evidence on individualized effects of care
interventions.

We add to the existing risk scores in three ways. First, our study focuses
on a care-centered outcome by predicting the failure to achieve CVD care
goals among patients in care, compared to the incidence of CVD events in
the general population. Although control of CVD risk factors is crucial to
prevent CVD events, worldwide only 67% of individuals with diagnosed
diabetes achieved glycemic control, 54% blood pressure control, and 24%
received statin therapy”’. Our findings can help to narrow these gaps by
targeting the available resources efficiently towards patients at high risk.
Second, our prediction time span is much shorter, 12 months instead of 10
years in common risk scores. This yields a more granular prediction with
immediate relevance. Third, we shed light on patients with diabetes in South
Asia, a population which has been underrepresented in previous studies. At
the same time, evidence for this population is urgently needed: India and
Pakistan alone comprise one fifth of the global population of people with
diabetes™, and the ongoing demographic transition is expected to further
increase the pressure on the already strained health care systems’. One
reason for this underrepresentation is the scarcity of high quality, long-
itudinal clinical data, a gap we fill by using data from two trials which
followed structured, similar protocols.

While the availability of high quality, longitudinal data is a rare
opportunity, the data also comes with some restrictions. The models are
trained with patients in urban clinics, who were selected based on their poor
care outcomes, and were willing to participate in a randomized controlled
trial. Hence, the models might perform differently when applied on a dif-
ferent population. Relatedly, as the achievement of care targets is highly
dependent on the care environment, changes in what constitutes usual care,
both across sites and time, is expected to affect the prediction. Also, with
about 1500 patients, the dataset is comparatively small, and further effi-
ciency gains are to be expected when training the models on a larger data
basis. This is also of relevance for the performance across sociodemographic
groups. Given a further expansion of EHR systems, and a sufficient har-
monization of systems, larger and more heterogeneous datasets will be
available to recalibrate and refine the models in the future.

To conclude, our models can provide practitioners with prompts to
identify patients at risk of not meeting CVD care goals and target additional
efforts towards them. Such prompts could be integrated into existing EHR
systems and adjusted to the available resources. Thus, our models can
support challenged health care systems in South Asia to reach major CVD
care goals.

Methods

Sample

We used data from the CARRS (ClinicalTrials.gov: NCT01212328) and
INDEPENDENT (ClinicalTrials.gov: NCT02022111) trials'"'*. Both studies
were randomized clinical trials that assessed whether quality improvement
interventions could improve achievement of glucose, blood pressure, and
lipid care targets among patients with poorly-controlled diabetes. The
interventions involved training and supplying nonphysician care coordi-
nators to support self-management and decision support prompts linked to
electronic health records for physicians. In the INDEPENDENT trial, the
intervention also included specialist case reviews. In both trials, the control
group received usual care.

Both trials included patients 35 years and older who had diagnosed
type 2 diabetes. The CARRS trial focused on patients with poor cardio-
metabolic profiles, including patients with poor glycemic control
(HbAlc = 8%) and either uncontrolled SBP (SBP =140 mmHg) or cho-
lesterol (LDL > 130 mg/dl) or both*. The primary outcome was the pro-
portion of patients achieving HbAlc < 7% and at least one of SBP < 130/
80 mmHg or LDL < 100 mg/dl. The final sample included 1,146 patients

from ten urban clinics in India and Pakistan, enrolled from January 2011 to
June 2012. The intervention was active for 30 months. All patients were
followed up at 12, 24, and 30 months after randomization, with the last visit
completed in July 2014.

The INDEPENDENT trial focused on patients with diabetes and

moderate to severe depression symptoms (9-item Patient Health Ques-
tionnaire score>10) and at least one of: poor glycemic control (HbAlc >
8%), SBP control (SBP>140mmHg) or cholesterol control
(LDL > 130 mg/dl)". The trial comprised of 404 patients from four clinics in
India, enrolled from March 2015 to May 2016. The intervention was active
for 12 months (the intervention group received usual care thereafter). The
patients were followed-up every six months until the endline after
24 months, with the last visit completed in July 2018.

Both trials were already evaluated with respect to the impact of the
interventions'"'>. We use data from both trials as they provide a rare and
novel source of longitudinal patient data in South Asia, including measured
biomarkers. Both trials followed similar data collection protocols, such that
we could harmonize a large set of the characteristics across both sources.
Combined, this led to a database of 1550 patients. We excluded 48 patients
due to missing data on main predictors, yielding a final sample of 1502
patients, with varying analyses sample sizes due to missing information on
outcomes as described below. The CARRS data served as training and testing
set, as described below, and the INDEPENDENT data as validation set.

Outcomes

We focused our analysis on three main outcomes, each of them indepen-
dently: Failure to achieve glycemic control (HbAlc > 8%), failure to achieve
hypertensive control (SBP > 140 mmHg), and failure to achieve lipid con-
trol (LDL > 130 mg/dl). As secondary outcomes, we considered failure to
achieve clinically meaningful improvements rather than set goals (failure to
reduce HbAlc by 21 percentage point, failure to reduce SBP by 210 mmHg,
and failure to reduce LDL by >10 mg/dl), each of them independently. Both
sets of outcome measures were assessed approximately 12 months after the
baseline. We additionally assess the outcomes at 24 months in a sensitivity
analysis. All outcomes were collected by medical staff within the original
trials, and blood samples analyzed by local laboratories with external quality
assurance. Due to missing information on the outcomes, the analyses
samples slightly differ in their size, with 1399 patients for the HbAlc out-
comes (missings: 103), 1401 patients for the SBP outcomes (missings: 101),
and 1394 patients for the LDL outcomes (missings: 108).

Predictors
The predictors are based on the data collected during the baseline of both
trials, with blood samples analyzed by laboratories with external quality
assurance. From this data, we selected the predictors in several steps: First,
we excluded predictors only available in one of the two datasets. Next, we
excluded predictors that cannot be collected easily or inexpensively in a
routine care setting (e.g., extensive laboratory tests), or that might be more
prone to self-report measurement errors (e.g., family history of diabetes).
Finally, we excluded predictors that were only available for few respondents
(e.g., costs for clinical visits). We did not include a treatment indicator as
predictor, as both trials randomized treatment, and hence it should be
uncorrelated with the selected predictors and should not affect the predic-
tion validity of our models (however, the treatment might impact the
external validity of our models, as discussed above).

We grouped the predictors into three different sets, as depicted in Fig. 1.
The first set consists of patient information (age, gender, years since diabetes
diagnosis) and basic biomarkers. The first set represents predictors that
could be easily and quickly assessed during a health care visit. The second set
additionally includes information about the patient’s disease history. While
this set could improve predictions of who will fail to achieve CVD risk factor
goals, it would also take more time to assess these factors in real world
settings, and they might be more likely to suffer from measurement error.
The third set additionally includes socioeconomic factors which might affect
the patient’s capacity to implement the necessary behavioral steps to achieve
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CVD control. Finally, we screened predictors for high correlations. If two or
more predictors were highly correlated (rtho >0.8), we excluded predictors
with less clinical relevance (based on assessments from the clinician authors
of the paper) and/or the predictor that would be more challenging to collect
as part of routine clinical practice in resource-poor settings. This led to the
omission of total cholesterol as a predictor.

Statistical analyses

We defined four different datasets: First, the training data, a random sub-
sample of 80% of the CARRS data, with the random split done separately for
each outcome and defined such that classes (positive/negative) were balanced
across subsamples. Second, the testing data, the remaining 20% sample of the
CARRS data. Third, the validation data, comprised of the INDEPENDENT
sample. Fourth, the time-shifted data, using the predictors after 12 months
and the outcomes after 24 months (i.e., a shift by 12 months).

We first applied three different machine learning algorithms for each of
the six outcomes on the training data: gradient boosting with trees, gradient
boosting with logistic regression models, and support vector machines, as
implemented in the caret package in R”. We ran each algorithm with three
sets of predictors (the small, medium, and large predictor sets described in
Fig. 1). This resulted in 54 total specifications.

For each specification, we ran a 10-fold cross-validation for hyper-
parameter tuning for each algorithm (boosted trees: number of trees and
interaction depth; boosted logistic models: number of iterations; support
vector machine: cost) such that the AUC was maximized. The predictors
were standardized and the observations weighted such that the classes
(failure to achieve control vs. achieving control, failure to achieve reductions
vs. achieving reductions) were balanced. Within each outcome, cross-
validation folds were kept identical across algorithms and models. For space
constraints, we present only the preferred specification for each outcome in
the main body of the paper, which is the algorithm-predictor set combi-
nation with the largest median AUC across all CV-folds of the training set
(see Supplementary Note 1, Supplementary Table 2, and Supplementary
Fig. 1). The performance of all specifications can be found in the Supple-
mentary Tables 3-5.

After identifying the best-performing specification for each outcome,
we applied the models on the testing, validation, and time-shifted data to
obtain predicted risk scores (ranging from 0% to 100%) that a patient will
not achieve risk factor control/meaningful reductions for each of the CVD
risk factors. We assessed the performance of these predicted risk scores in
three different ways. First, we determined the observed risk of failing to meet
CVD risk factor goals within 10-percentage-points bins of the predicted risk
score (e.g., the observed risk among those with a predicted risk between
0-10%, 10-20%, 20-30%, etc.) and calculated the correlation between the
observed and predicted risks. Second, we calculated the Brier score as the
mean squared difference between the predicted risk score and the observed
outcome. Third, we used the predicted risk scores to classify individuals as
either at risk or not (binary classification) using cutoffs based on both their
relative predicted risk score (top 50%, top 25%, and top 10%) and the
commonly used threshold for classification based on the absolute predicted
risk score (boosted logistic models and boosted trees: predicted risk greater
than 50%, support vector machine: decision boundary). Based on this
classification, we estimated the precision (what proportion of individuals
classified as at risk actually failed to achieve CVD risk factor goals), sensi-
tivity (the proportion of those that actually failed to achieve risk factor goals
that were correctly classified by the model), and, in the case of absolute
targeting, detection prevalence (the proportion of individuals classified as at
risk). In addition, we assessed the performance of the models across
sociodemographic groups. Confidence intervals were calculated using
bootstrapping with 1000 draws.

Data preparation was done in Stata 17, all analyses were done in R.

Reporting guidelines
We followed the Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis (TRIPOD) statement™, except for the

following deviation due to the application of machine learning algorithms:
Instead of presenting the full prediction model, including coefficients (item
15a), we present the variable importance measures in Fig. 2, as the algo-
rithms do not produce traditional coefficient estimates. The TRIPOD
checklist can be found in Supplementary Table 1.

Inclusion and ethics

The studies on which the data is based included local researchers throughout
the research process, which are also coauthors of the current manuscript.
Access to this data has been granted by the initial research teams, including
local researchers. The research is highly relevant to the local context and was
determined in collaboration with the local partners. The roles and
responsibilities were agreed upon ahead of the research. No capacity
building was planned. This research would not have been severely restricted
in the setting of the non-local researchers. The original data collections were
approved by local ethics review committees (Madras Diabetes Research
Foundation, All India Institute of Medical Sciences, Endocrine and Diabetes
Center, Diacon Hospital, Bangalore Endocrinology and Diabetes Research
Centre, St. John’s Medical College & Hospital, Diabetes Research Centre &
MYV Hospital for Diabetes, Public Health Foundation of India, Goa Medical
College, CARE Hospital, Osmania General Hospital, Amrita Institute of
Medical Sciences, Topiwala National Medical College & BYL Nair Ch.
Hospital, The Aga Khan University) and the coordinating centers (Madras
Diabetes Research Foundation, Public Health Foundation of India, and
Emory University). The personal risk to the participants or researchers
beyond the common risks of regular diabetes care were minimal. Partici-
pants gave written informed consent. Local and regional research was cited
where relevant.

Data availability

The data that support the findings of this study are available from the
INDEPENDENT and CARRS trial groups but restrictions apply to the
availability of these data, which were used under license for the current
study, and so are not publicly available. Data are however available from the
authors upon reasonable request and with permission of the INDEPEN-
DENT and CARRS trial groups.

Code availability
The underlying code for this study is available at https://osf.io/289jn/.
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