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In this study, we investigate the performance of computer vision Al algorithms in predicting patient
disposition from the emergency department (ED) using short video clips. Clinicians often use
“eye-balling” or clinical gestalt to aid in triage, based on brief observations. We hypothesize that Al can
similarly use patient appearance for disposition prediction. Data were collected from adult patients atan
academic ED, with mobile phone videos capturing patients performing simple tasks. Our Al algorithm,
using video alone, showed better performance in predicting hospital admissions (AUROC = 0.693 [95%
C10.689, 0.696]) compared to models using triage clinical data (AUROC = 0.678 [95% CI1 0.668, 0.687)).
Combining video and triage data achieved the highest predictive performance (AUROC =0.714 [95%
C10.709, 0.719)). This study demonstrates the potential of video Al algorithms to support ED triage and
alleviate healthcare capacity strains during periods of high demand.

In recent years, computer vision research has made significant strides in
various medical applications™. Leveraging Al algorithms, medical videos
have been utilized for patient monitoring, encompassing clinical
mobilization’®, gait analysisﬁ“S , evaluation of pediatric head injuries resulting
from falls®, assessment of Parkinsonian hand movements and disease
severity”*, and detection of cognitive impairment’. Moreover, medical video
technology shows promise in aiding medical staff with diverse tasks,
including hand hygiene detection '° and surgical assessment through video
analysis'"".

Despite these advancements, one important area that remains largely
unexplored is the use of medical video Al for patient triage. During triage
and ED encounters, physicians determine patient disposition—such as
hospital admission or discharge—based on the presenting problem, vital
signs, expected clinical course, patient resources, and their observations of
the patient’s condition, often referred to as “clinical gestalt”"*""". Notably, a
study has demonstrated that ED physicians can achieve an 80% accuracy

rate in predicting disposition based on a 30-s observation of a patient,
complemented by routinely available triage information such as vital signs,
mode of arrival (e.g., ambulance), and chief complaints”.

While physician judgment is valuable, it can be limited in a busy ED
where physicians may not be available at the time of triage. Existing systems
like the Emergency Severity Index (ESI) offer insights into patient acuity but
are not designed to predict patient disposition at triage. An Al-based pre-
dictive model could provide a more consistent, objective, cost-efficient, and
scalable solution to optimize patient flow and resource allocation in
real-time.

We hypothesize that mobile phone video Al algorithms can similarly
extract valuable insights from patients’ clinical appearances to predict their
disposition, effectively mimicking clinical gestalt. Successful implementa-
tion of such a triage algorithm could mitigate the challenges of overcrowded
emergency rooms, particularly during peak viral seasons and pandemics'’.
Moreover, it could enable healthcare systems to allocate finite resources
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more efficiently and, in the future, prioritize first available appointments for
urgent patient telehealth visits'””. Managing hospital capacity and staffing
effectively is a significant challenge in healthcare systems. Imbalances
between bed availability and patient demand, along with staffing require-
ments, can impact hospital access, wait times, care quality, and overall
satisfaction for both patients and staff'®. When bed supply exceeds
demand, it results in unnecessary costs due to underutilized resources. On
the other hand, when demand surpasses available beds, it leads to longer
wait times—especially for ED patients awaiting admission—lower care
quality, higher risks of errors, and decreased satisfaction for both patients
and staff, and in extreme cases diversion of patients to other hospitals.
Predicting disposition early could help balance these issues, improving
patient flow and resource use.

Studies have shown that machine learning models using data collected
at triage and from electronic health records (EHR) can effectively predict
patient disposition from the ED, including hospitalization and the need for
critical care”™’. Various algorithms, such as logistic regression, random
forests, gradient boosting, and deep neural networks, have been employed,
with gradient boosting and deep neural networks often yielding better
performance'®”.

However, many of these models rely on historical patient data from the
EHR, such as past ED visits or hospitalizations>*, or past
diagnosis'”"*****, This dependence on historical data poses challenges,
particularly for patients new to a health system or those transitioning
between systems with incomplete or limited data. Additionally, the use of
EHR-based models may limit applicability in developing countries where
EHR systems are not yet widely available.

Some existing models also incorporate the ESI, a 5-point triage scoring
system commonly used in EDs***’, as a predictor’>***”. While ESI scores are
useful, they still require manual input from triage staff based on a patient’s
presenting symptoms, vital signs, and clinical judgment regarding severity
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Fig. 1 | Patient video recording and processing. a Video recording was conducted
using secured mobile devices and lasted ~5 min, with the camera at the base of the
patient’s bed, and the patient as upright as tolerated. Video recording did not

interfere with patient care, and was paused if the clinical team needed to interact with
the patient. Videos were spot-checked regularly to ensure adherence to study pro-
tocol. The figure was created with BioRender.com. b The video recording (did not

and resource needs. This reliance on human input limits the potential of
algorithms to ease the triage burden.

The aim of this study is to assess the predictive performance of a
multimodal Al algorithm for patient disposition from the ED, using only a
short mobile phone video clip capturing the patient’s clinical appearance
(Fig. 1) and a limited set of clinical data (age, sex, vital signs, pain level, and
chief complaint), without relying on historical patient data from the EHR.
We compare the performance of our multimodal model (Fig. 2) to a
reference model based on logistic regression using ESI triage scores, as well
as to ablated versions of our model that utilize only video data or only triage
data. This is the first step towards our long-term goal of developing a video-
based Al triage tool in pre-hospital settings that could be adopted without
the need for EHR integration.

Results

Patient characteristics

We approached a total of 843 adult patients and enrolled 723 of them at the
Stanford Health Care ED between August 2021 and September 2022. In the
enrolled patients, the median age was 52 years (interquartile range [IQR]
33-76), and 51% were female (Table 1). Nearly all patients (over 95%)
received a triage ESI score of 2 or 3, and 40.9% were subsequently admitted
to the hospital (inpatient or hospital observation). Pain level data were
missing for 97 patients, temperature was missing for two patients, and one
patient was missing all vital signs. The most frequently reported chief
complaints during triage were abdominal pain (16.5%), followed by chest
pain (8.0%), shortness of breath (5.5%), and dizziness (3.9%) (Table 1).

Model performance

The model utilizing video data alone yielded better performance in hospi-
talization prediction compared to the one utilizing triage clinical data alone,
across multiple metrics including AUROC (0.693 vs 0.678), PPV (0.563 vs

include audio) was then processed via the ImageBind video processing pipeline,
which involves uniformly sampling up to five 2-s clips at 1 frame per second and
taking three spatial crops (left, middle, right) per clip. Then, these fifteen spatially
cropped clips are passed into the vision encoder and the resulting output is the mean
of the clips’ 1024-dimensional representations. (Subject in the figure is a co-author,
not patient).
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Fig. 2 | Schematic representation of the predictive model. We illustrate our multi-
modal late fusion method. 1) Collect triage data and a short video of the patient. 2)
Pre-process the tabular data and encode the chief complaint and video with Ima-
geBind pre-trained text and vision encoders, to obtain embeddings for each data

Admission
or Discharge

Late Fusion

1]

modality (tabular, text, video). 3) Independently train random forest classifiers for
each data modality. 4) Fuse the predictions of each of the trained Random Forests to
get the final model prediction for patient disposition.

0.529), and specificity (0.658 vs 0.587). The video-data-only model and the
triage-data-only model were comparable for AUPRC (0.608 vs 0.603), NPV
(0.721 vs 0.716), while sensitivity (0.632 vs 0.658) is better in the triage-data
only model.

Combining both video and triage data resulted in the highest perfor-
mance, achieving an AUROC of 0.714 (95% CI: 0.709-0.719) and an
AUPRC 0f 0.642 (95% CI: 0.636-0.649). Additional performance details are
illustrated in Fig. 3, Fig. 4 and Supplementary Table 1. Notably, all models
demonstrated improved performance with the exception of specificity when
compared to the reference ESI model.

Furthermore, we conduct a Shapley™ value analysis (Supplementary
Fig. 1) to determine the contribution of adding triage data and video to the
overall model performance. These values quantify contribution by taking
the average marginal contribution of each of these data types over all pos-
sible subsets. We find that video data contributes +0.111 and triage data
contributes +0.096 points increase in average model AUROC.

Discussion

Physicians instinctively use visual cues from their interactions with patients
to assess the severity of illness. This is commonly referred to as “the eye-ball
test” or “the foot of the bed test”, which involves observing a patient from the
foot of their hospital bed. Similarly, using visual AL hospital admissions can
be predicted from the video signal alone when a patient is asked to perform
simple tasks. Our findings suggest that mobile phone video data contains
valuable information for hospitalization prediction, with an AUROC of
0.693. Interestingly, triage data alone, which included an assessment by a
medical professional using medical equipment (such as pulse oximetry and
sphygmomanometer) has an AUROC of 0.678. When video Al is combined
with triage data, the AUROC increases to 0.714. Our results suggest that the
short video clips may capture “clinical gestalt” detected and leveraged by the
AT algorithm.

Our study demonstrates the potential of utilizing short video clips of
patients to predict their ED disposition. It is unexpected to see that video-
only model has better performance compared to the triage-date-only model
considering the prominence of biometric data, such as vital signs, in clinical
risk assessment, as indicated by previous studies'>"’. One possible expla-
nation is that video data implicitly encodes certain biometric parameters,
such as respiratory rate and heart rate’*”, and also includes markers of

patient distress and alterations in breathing patterns and uncomfortable
movements.

Other machine learning models have been developed to predict hos-
pitalization from the emergency department'”~”’, but none have leveraged
patient video data. With the widespread availability of smart mobile devices
equipped with cameras, video data may become increasingly accessible to
both patients and providers in healthcare settings. Unlike many models that
rely on historical EHR data, our multimodal AI algorithm uses only rou-
tinely available triage data (age, sex, vital signs, pain level, and chief com-
plaints). As a result, this predictive model does not require integration with
existing EHR systems, making it easier to deploy. It could also be useful in
countries or regions where EHR systems are not available. Unlike studies
such as Raita et al.”’ or Hong et al.**, we did not include the mode of ED
arrival as a covariate, despite it being a known strong predictor of hospital
admission™, because our goal was to develop an algorithm that could
facilitate patient disposition decisions before hospital arrival.

This study has several limitations. Our outcome variable was admis-
sion decisions made by ED physicians for each patient. ED physicians may
vary in their admission decisions based on factors such as patient severity of
illness, patient resources (e.g., availability of a caregiver at home, home-
lessness, or access to transportation), practice style variation, and subjective
risk assessment of likely clinical deterioration™ . Such variability inher-
ently sets an upper bound on how well an Al algorithm can perform in
predicting hospitalization. Additionally, the videos were sourced from a
single academic institution, resulting in a relatively small dataset from an Al
training perspective. We anticipate that predictive performance will
improve with larger and more diverse datasets from various healthcare
settings. Next, the patient population in this study has higher acuity (only
3.6% with ESI 4 or 5), and we limited enrollment to English- or Spanish-
speaking patients as well as those able to provide informed consent, which
may not generalize to other ED populations. The admission rate of our
enrolled cohort was 40.9%, which is slightly higher than the overall
admission rate at the Stanford ED of 33.1%. This discrepancy is likely due to
some low-acuity patients being treated and discharged quickly for simple
issues (e.g., suture removal) before our research assistants could obtain
consent. Apart from this, our cohort remains representative of the overall
Stanford ED population, with a similar ESI distribution, where the majority
of patients were categorized as ESI 2 and 3.
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Table 1 | Characteristics of enrolled patients

Variable Enrolled ED Patients Admission [n (%)]
[n (%)
Total 723 (100%) 296 (40.9%)
Sex
Female 370 (51.2%) 137 (37.0%)
Male 353 (48.8%) 159 (45.0%)
Race and Ethnicity
Asian 113 (15.6%) 43 (38.1%)
Black or African American 45 (6.2%) 14 (31.1%)
Hispanic or Latino 140 (19.4%) 44 (31.4%)
Native American or Pacific 9 (1.2%) 5 (55.6%)
Islander
Non-Hispanic White 362 (50.1%) 169 (46.7%)

Other 54 (7.5%) 21 (38.9%)
Triage ESI score
1 (highest acuity) 1(0.14%) 1(100%)
2 175 (24.2%) 93 (53.1%)
3 521 (72.1%) 198 (38.0%)
4 26 (3.6%) 4 (15.4%)
5 (lowest acuity) 0(0.0%) 0 (0.0%)
Top chief complaints
Abdominal Pain 119 (16.5%) 48 (40.3%)
Chest pain 58 (8.0%) 26 (44.8%)
Shortness of Breath 40 (5.5%) 30 (75.0%)
Dizziness 28 (3.9%) 8 (28.6%)
Abnormal Lab 27 (3.7%) 17 (63.0%)
Back pain 21 (2.9%) 5 (23.8%)
Fever 20 (2.8%) 14 (70.0%)
Fall 19 (2.6%) 5 (26.3%)
Flank pain 18 (2.5%) 3 (16.7%)
Leg pain 13 (1.8%) 3 (23.1%)

Furthermore, our algorithm did not incorporate audio or additional
EHR data elements, such as past medical history, prior hospitalizations, or
other social determinants of health (e.g., health literacy, homelessness),
which may further enhance performance™. Our experiment represents a
scenario where patients are new to the healthcare system, providing a
baseline for algorithm performance using only routinely collected triage
information (i.e., vital signs, pain level, and chief complaints). Lastly, we did
not directly compare physician gestalt with our Al algorithm given the
added study design complexity and coordination with more than 90
attending physicians, but it would be a valuable direction for future research.

Since routine recording of patient clinical appearance is not standard
practice, this study uncovered several logistical and ethical challenges.
Logistically, the research team had to secure approval from the institution’s
information technology office to ensure all recording devices and the
infrastructure for secure video data storage complied with institutional
standards. In addition to obtaining IRB approval, we also sought review
from the hospital’s privacy office to ensure full compliance with institutional
policies. Early in the study, we learned the importance of avoiding the
unintentional recording of hospital staff in the patient’s room to protect
their privacy. To address this, our research assistants received extensive
training not only on how to operate the recording devices but also on
minimizing disruptions to clinical workflows.

Ethically, a key concern is the potential for video recordings to capture
sensitive situations, such as patient distress or unexpected clinical events.
Obtaining informed consent from patients is critical, as they must

understand how their video data will be used and the risks of sharing such
sensitive information. Patients are also given the option to request the
removal of their data from the study after their ED encounter, recognizing
that the stress of the situation may lead to second thoughts. Future studies
should address these challenges by establishing clear protocols that prior-
itize patient privacy and safety, while adhering to institutional and reg-
ulatory standards.

Despite these challenges, advances in video Al research offer promising
opportunities for future triage workflows. In a future scenario, patients
could check in at kiosks equipped with mobile devices, where a brief video
recording, combined with vital signs measurements, could aid in triage.
Alternatively, patients could remotely provide similar information using
their own mobile devices, potentially streamlining the triage process and
diverting low-risk patients to telemedicine encounters for final disposition.
Increasing appropriate healthcare access is particularly critical during per-
iods of overcrowding, disease outbreaks, and in underserved areas both
nationally and internationally. Video AI innovations have the potential to
alleviate healthcare capacity strains—delivering the right care, at the right
time, and in the right place for patients.

Methods

Data acquisition—video and triage data

We enrolled adult patients (aged 18 years and older), who were English
and/or Spanish speaking, undergoing evaluation at the Stanford Health
Care ED between August 2021 and September 2022. Stanford Health
Care ED is a suburban tertiary academic medical center in Palo Alto,
California, with an annual patient volume of over 110,000. The dis-
tribution of patients by ESI is as follows: ESI 1—0.7%, ESI 2—27.6%, ESI
3—60.8%, ESI 4—10.2%, and ESI 5—0.8%. The overall admission rate for
adult patients is 33.1%. The ED is staffed by 93 attending physicians, 60
resident physicians, 15 advanced practice providers, and 190 registered
nurses. Patients were excluded if they presented with psychiatric emer-
gencies, major trauma, altered mental status (e.g., significant delirium),
clinical deterjoration requiring immediate intervention (such as intuba-
tion), or were otherwise unable to provide consent. Due to privacy
concerns related to video recording, we excluded patients who were
placed in the hallway. However, these cases were uncommon, as our
facility, which opened in 2019, has expanded capacity to accommodate a
high volume of patients. Prior to participation, all patients provided
informed consent for video recording and study participation.

Research assistants (RAs) received 10 h of training, which included
observing patient interactions by faculty members to ensure video fidelity
and ethical patient engagement. RAs collaborated with ED attending phy-
sicians and charge nurses to identify eligible patients during morning,
afternoon, and evening shifts on weekdays and weekends throughout the
study period. On average, an RA enrolled 24 eligible patients per shift.

Video recording was conducted using secured mobile devices (iPhone
12, Apple Inc) and lasted ~5 min. The camera was positioned at the base of
the patient’s bed, with the patient in an upright position as tolerated (Fig. 1).
Video recording did not interfere with patient care and was paused if clinical
staff needed to interact with the patient. Videos were regularly spot-checked
to ensure adherence to study protocol.

During video recording, patients were verbally instructed to perform
seven tasks (Supplementary Table 2) designed to capture their clinical
appearance and behaviors. The tasks were designed to be simple for patients
to perform and intended to mimic a range of observations typically made
during a clinical encounter. These tasks included assessment of general
appearance (looking into the camera at the beginning and end), respiration
(taking a single deep breath; counting after taking a deep breath), orientation
(answering three simple questions: “What is your name?”, “Where are you
now?”, and “What is today’s date?”), and standardized movements (per-
forming a modified finger-to-nose test and covering the left eye with the right
hand). Although audio was recorded, it was not included in our models.

We extracted 14 clinical data elements from the electronic health
record (EHR): age (in years), sex as recorded in the EHR (female or male),
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modal model is able to achieve performance over the baseline (p < 0.01), with the late
fusion multi-modal model achieving higher performance than the uni-modal ones
(p <0.01). The square bracket indicates 95% confidence intervals.

self-reported racial and ethnicity group (Asian, Black or African American,
Hispanic or Latino, Native American or Pacific Islander, Non-Hispanic
White, Other), and primary reasons for the ED visit (free text). Additionally,
six triage vital signs were collected: body temperature, heart rate (beats per
minute), respiratory rate (respirations per minute), pulse oximetry (per-
ipheral hemoglobin oxygen saturation %), and systolic and diastolic blood
pressure (mmHg). The nurse-generated triage score was recorded using the
ESI™™” where 1 indicates the most urgent and 5 the least urgent. We
also collected the initial pain level reported at triage (on a scale of 0 = no pain
to 10=severe pain) and the final disposition (discharge or hospital
admission).

The primary reasons for ED visits, known as chief complaints (e.g.,
chest pain, shortness of breath, dizziness) were entered as free text by
nursing staff. The ESI is a commonly used triage tool that reflects the triage
nurse’s assessment of the severity of the patient’s presenting illness and
downstream resource utilization™. Hospital admission, our dependent
variable, included patients admitted to the ED observation unit or an
inpatient clinical service (e.g., medicine, cardiology, neurology), as well as
those transferred to another hospital

All patient data was securely stored on encrypted devices, following
security best practices. The study team completed a data risk assessment and
privacy review through Stanford Health Care. The research protocol was
approved by the Stanford University Institutional Review Board (IRB
protocol #61666).

Data processing—video and triage data

Our tabular data include nine elements (patient’s age, sex, triage vital signs
including body temperature, heart rate, respiratory rate, oxygen saturation,
systolic blood pressure, and triage pain level). We use these nine data ele-
ments to create a 9-dimensional vector representation of the data. Missing
feature values were imputed using the mean value from the training set, with
the exception of pain level, which was imputed with zero. Our assumption is
that if the triage nurse did not record pain level, the patient was likely not
experiencing pain.

We used frozen pre-trained ImageBind” text and vision encoders to
encode the patient chief complaint-free text and the patient videos. Ima-
geBind is a method that learns a shared embedding space for six different
data modalities (text, image/video, audio, depth, thermal, inertial mea-
surement unit) through contrastive learning*™'". These multi-modal con-
trastive trained models have been shown to perform well on many modality-

specific downstream tasks, even out-performing their uni-modal trained
counterparts®.

Specifically, the free text is tokenized into a byte-pair encoding and
encoded using a transformer-based architecture to obtain a 1024-
dimensional embedding. The ImageBind video processing pipeline
involves uniformly sampling up to five 2-s clips at 1 frame per second and
taking three spatial crops (left, middle, right) per clip. Then, these fifteen
spatially cropped clips are passed into the vision encoder and the resulting
output is the mean of the clips’ 1024-dimensional representations (Fig. 1).

Modeling

We developed a late fusion model (Fig. 2) to classify whether a patient
should be admitted or discharged from the ED. Late fusion is a technique
that aggregates the predictions of multiple models to make a final classifi-
cation. In contrast, early fusion models concatenate embeddings and train a
single classifier”’. We chose late fusion for its flexibility in handling varying
availability of input data.

Since the individual classifiers are trained independently, this design
allows for flexibility in the training set, as it does not require all data mod-
alities to be present for each patient. At inference time, the model can easily
manage missing data modalities by excluding their contribution in the final
weighted average. In contrast, an early fusion model would require the input
size of the concatenated embeddings to remain consistent during both
training and inference. We also found experimentally that late fusion out-
performed early fusion (Supplementary Tables 3, 4). In our approach, we
trained independent Random Forest™ classifiers for each data modality:
triage tabular data, triage chief complaint text, and patient video. A random
forest classifier is a classical machine-learning algorithm that combines the
outputs of multiple decision trees. Each tree is built by learning the optimal
decision rules to classify the data based on its features. We also experimented
with other classifiers such as XGBoost and AdaBoost, but found that Ran-
dom Forest models outperformed the others (Supplementary Tables 3-5).

For the video data, the model was trained on a single task. At inference
time, we combined the predicted probabilities from the video data with
triage data using the following weighted average:
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video and triage data model is able to achieve the best performance in sensitivity
(p <0.01 compared to ESI and video-only models; p < 0.05 compared to triage data-
only model) and NPV (p < 0.01). The ESI baseline model has the best specificity
(p <0.01 compared to triage data-only and late fusion models; p < 0.02 compared to
video-only model).

Here in Egs. (1) and (2), y represent the multimodal model’s predicted
probability of admission, and .., denotes the modality-specific model’s
prediction, where modality is either video or triage data (tabular or chief
complaint free text) The scalar mixing coefficient « lies between 0 and 1.

Upon examining all single-task models, our sensitivity analysis, which
compared different video segments where patients performed different tasks
(Supplementary Tables 3-5), revealed the Orientation segment to have an
AUROC and an AUPRC significantly greater than most other segments.
Therefore, we selected the orientation video segment for use in the algorithm.

Experimental details
We compared the predictive performance of our multi-modal model to a
reference model that uses logistic regression on the ESI triage severity

scores'’, as well as ablated versions of our model using video-data only and
triage-data only.

The following metrics were used to assess the performance of the
models:

* Area Under the Receiver Operating Characteristic Curve (AUROC):
This metric quantifies the overall ability of the model to discriminate
between positive (i.e., hospitalization) and negative (i.e., discharge)
cases across all possible threshold values. A higher AUROC indicates
better model performance.

e Area Under the Precision-Recall Curve (AUPRC): This metric
emphasizes the model’s performance on the positive class, particularly
useful for imbalanced datasets. A higher AUPRC indicates better
precision and recall trade-off.
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* Sensitivity (Recall): The proportion of actual positives correctly
identified by the model (true positive rate). High sensitivity means the
model effectively identifies positive cases.

* Specificity: The proportion of actual negatives correctly identified by
the model (true negative rate). High specificity indicates the model
effectively identifies negative cases.

 Positive Predictive Value (PPV or Precision): The proportion of
positive predictions that are truly positive. High PPV indicates a low
false positive rate.

* Negative Predictive Value (NPV): The proportion of negative pre-
dictions that are truly negative. High NPV indicates a low false
negative rate.

For all models, we performed nested stratified threefold cross-valida-
tion, repeated over ten random seeds, to conduct our experiments and
hyperparameter tuning. We stratified the folds by the patient to prevent data
leakage between training and testing. Nested cross-validation involves
performing cross-validation on the training set for each outer cross-
validation fold and tuning hyperparameters to maximize the average per-
formance on the nested validation sets. This common technique tunes
hyperparameters to reduce the bias in performance from tuning hyper-
parameters on each fold’s outer validation set.

For the logistic regression baseline, we selected the inverse of reg-
ularization strength from the following values: {0.1, 0.5, 1, 2, 5, 10}. For each
Random Forest classifier in our multi-modal model, we selected the number
of estimators from {10, 50, 100} and the maximum tree depth from {1, 2, 3,
None}. The “None” option allows nodes to be expanded until all leaves are
pure or until all leaves contain fewer than two samples. We stratified our
dataset by the admission rate, ensuring even distribution between the
training and validation sets within each fold.

Given the limited size of our data, we opted for repeated k-fold cross-
validation to obtain a more reliable estimate of model performance,
choosing a lower value of k = 3 for a better estimate of model generalization.

For simplicity, our experiments used a mixing coefficient « = 0.5. We
report the results of our multi-modal late fusion model with a binary clas-
sification threshold of 0.4. This threshold was selected through a grid search
of values between 0.1 and 0.9 (at intervals of 0.1), identifying the value that
maximized the average Youden’s index across all training folds.

Data availability
The video and clinical data used in this study cannot be shared publicly due
to the presence of protected health information of patients.

Code availability

The underlying code for this study is not publicly available but may be made
available to qualified researchers on reasonable request from the corre-
sponding author.
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