Table 2 Performance comparison (average ± std) between our model and SOTA methods on unseen drugs, unseen targets, and completely unseen scenarios across the KIBA dataset

From: Dual modality feature fused neural network integrating binding site information for drug target affinity prediction

Scenario

Method

MSE

CI

\({r}_{m}^{2}\uparrow\)

Unseen drug

GraphDTA

0.471(0.047)

0.713(0.002)

0.342(0.007)

FusionDTA

0.429(0.031)

0.748(0.005)

0.364(0.012)

MgraphDTA

0.425(0.047)

0.746(0.002)

0.366(0.016)

MSGNN-DTA

0.426(0.043)

0.747(0.003)

0.358(0.022)

DMFF(Ours)

0.408(0.036)

0.753(0.006)

0.397(0.020)

Unseen target

GraphDTA

0.469(0.089)

0.610(0.035)

0.368(0.057)

FusionDTA

0.439(0.062)

0.685(0.032)

0.390(0.067)

MgraphDTA

0.435(0.055)

0.674(0.028)

0.382(0.047)

MSGNN-DTA

0.438(0.061)

0.683(0.025)

0.399(0.054)

DMFF(Ours)

0.410(0.063)

0.748(0.053)

0.446(0.064)

All unseen

GraphDTA

0.676(0.113)

0.601(0.030)

0.149(0.067)

FusionDTA

0.587(0.086)

0.641(0.023)

0.193(0.053)

MgraphDTA

0.590(0.094)

0.626(0.028)

0.182(0.012)

MSGNN-DTA

0.581(0.079)

0.648(0.038)

0.180(0.021)

DMFF(Ours)

0.567(0.082)

0.667(0.035)

0.236(0.037)

  1. / indicates that the larger/smaller the metrics, the better the model performance. Bold indicates the best performance, and underline indicates the second best for each metric. DMFF-DTA achieves superior performance over other methods in all scenarios, demonstrating its strong generalization capabilities.