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This retrospective study evaluated the efficacy of large language models (LLMs) in improving the
accuracy of Chinese ultrasound reports. Data from three hospitals (January-April 2024) including 400
reports with 243 errors across six categories were analyzed. Three GPT versions and Claude 3.5
Sonnet were tested in zero-shot settings, with the top two models further assessed in few-shot
scenarios. Six radiologists of varying experience levels performed error detection on a randomly
selected test set. In zero-shot setting, Claude 3.5 Sonnet and GPT-40 achieved the highest error
detection rates (52.3% and 41.2%, respectively). In few-shot, Claude 3.5 Sonnet outperformed senior
and resident radiologists, while GPT-40 excelled in spelling error detection. LLMs processed reports
faster than the quickest radiologist (Claude 3.5 Sonnet: 13.2 s, GPT-40: 15.0 s, radiologist: 42.0 s per

report). This study demonstrates the potential of LLMs to enhance ultrasound report accuracy,

outperforming human experts in certain aspects.

Accurate ultrasound reports are essential for effective patient management
and treatment decisions. Mistakes, such as logical inconsistencies, omitted
examination items, and spelling errors can cause misunderstandings and
reduce diagnostic accuracyl’z. For example, in the liver assessment, the
conclusion states, “No abnormalities detected,” while another section
reports, “Multiple hepatic cysts identified.” Similarly, in a female patient, the
conclusion states “right breast nodule” while the ultrasound description
section reports “left breast nodule”. This inconsistency could result in a re-
scan and/or re-assessment of the ultrasound images. Moreover, it can lead to
missed diagnoses or incorrect treatment prescriptions, which could be
potentially fatal for patients. However, the reality of radiologist shortages
and overwork, combined with the high-pressure clinical environments,
makes the occurrence of report errors inevitable’*. Minimizing errors in
reports is essential for maintaining diagnostic accuracy and patient safety, as
well as enhancing healthcare efficiency.

Currently, most Western countries employ a double-reading system,
where a senior physician reviews the reports to ensure certain accuracy
standards are met. This laborious process not only reduces radiologists’
efficiency but also increases their workload’. In countries without a double-
reading system, such as China, the accuracy of reports relies entirely on the
radiologist conducting the ultrasound. This may result in variability in
report quality and potential misdiagnoses®. Therefore, finding an efficient
way to maintain the accuracy of ultrasound reports while maintaining a
reasonable workload for radiologists has become a pressing clinical issue.

Large language models (LLMs), such as OpenAl's ChatGPT and
Anthropic’s Claude, have shown great potential in addressing challenging
clinical problems™™'. In recent years, they have demonstrated significant
capabilities in generating structured reports'”'* and improving report
comprehensibility'>"*. More importantly, a recent experimental study has
confirmed GPT-4’s potential in detecting errors in radiology reports,
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suggesting it could enhance report accuracy'’. However, this study did not
take multi-center data into consideration. And their errors were syntheti-
cally generated, hence not representing the real-world error scenarios.
Moreover, previous research has indicated that GPT’s performance in non-
English environments is not as good as its performance in English settings
for certain tasks™.

To this end, this study set out to evaluate the capabilities of Claude 3.5
Sonnet, GPT-40, GPT-4, and GPT-3.5 in zero-shot learning as well as the
impact of few-shot learning on model performance. Claude 3.5 Sonnet™ and
GPT-40” represent the current state-of-the-art multimodal LLMs,
demonstrating enhanced performance in non-English languages. To
explore the potential of LLMs in improving the accuracy of Chinese ultra-
sound reports, we collected reports from three hospitals in China, which
included both naturally and artificially introduced errors. We also compared
the error detection performance of these models with those of six radi-
ologists with varying levels of experience in ultrasound examinations.

Results

Zero-Shot Error Detection Performance

In the zero-shot error detection task for reports, Claude 3.5 Sonnet achieved
the best results, with a detection rate of 52.3% (127 of 243). For error
detection, the PPV, TPR, and F1 score were 76.5% (95% CI: 69.8%, 83.4%),
52.3% (95% CI: 46.0%, 58.8%), and 62.1% (95% CIL: 56.2%, 68.0%),
respectively. GPT-40 was the second-best performing model, with a
detection rate of 41.2% (100 of 243). For error detection, the PPV, TPR, and
F1 score were 88.5% (95% CI: 82.1%, 94.0%), 40.8% (95% CI: 34.0%, 48.0%),
and 55.9% (95% CI: 48.8%, 62.3%), respectively. In contrast, GPT-3.5 had a
detection rate of only 4.9% (12 out of 243), with PPV, TPR, and F1 scores of
17.9% (95% CL: 8.5%, 28.2%), 5.0% (95% CI: 2.3%, 8.3%), and 7.9% (95% CI:
3.3%, 12.6%), respectively. Additionally, GPT-4 achieved a detection rate of
26.7% (65 of 243), with PPV, TPR, and F1 scores of 84.4% (95% CI: 76.3%,
92.1%), 26.7% (95% CL: 20.9%, 32.8%), and 40.6% (95% CI: 33.6%, 47.4%),
respectively (Table 1).

Regarding the negative impact, the false positives generated by GPT-40
and GPT-4 were comparable. For example, the FPRR for GPT-40 was 3.3%
(95% CI: 1.5%, 5.3%), compared to 3.0% (95% CI: 1.5%, 4.8%) for GPT-4 but
with no statistically significant difference. In contrast, GPT-3.5 generated
significantly more false positives, with an FPRR of 13.8% (95% CI: 10.0%,
17.5%). Claude 3.5 Sonnet had an intermediate FPRR 0f 9.8% (95% CI: 6.8%,
13.3%), which was higher than GPT-40 and GPT-4 but lower than GPT-3.5
(Table 1).

To further elucidate the models’ performance, we conducted a detailed
analysis of their behavior across different error types (with 0 representing no
error and 1-6 representing six different error types), as illustrated in Fig. 1.
Claude 3.5 Sonnet demonstrated superior performance across all error
categories. The model was particularly good at identifying contradictory
conclusions (error type 2), correctly detecting 40 of 51 such errors, sig-
nificantly outperforming the other models. It also performed well in
detecting item omission errors (error type 1), identifying 23 out of 51 errors.
However, this high sensitivity came at the expense of increased false posi-
tives, with the model misclassifying 30 non-error reports as contradictory
conclusion errors. GPT-4o0 identified 24 of 51 item omission errors (error
type 1), while also producing eight false positives for this error type. It
performed well in detecting spelling errors (error type 5), identifying 23 out
of 62 cases. GPT-4 correctly identified 18 of 51 contradictory conclusions
errors (error type 2) and detected 19 of 46 descriptive errors (error type 3). It
also showed moderate performance in identifying spelling errors, detecting
11 out of 62 errors. Compared to the other models, GPT-3.5 had lower
detection rates across error types. It only detected 4 out of 51 contradictory
conclusion errors (error type 2) and 5 out of 51 item omission errors (error
type 1), and failed to identify any spelling errors. When detecting spelling
errors (error type 5), Claude 3.5 Sonnet and GPT-4o performed similarly,
identifying 22 and 23 out of 62 errors, respectively. This performance was
notably better than that of GPT-4 and GPT-3.5 in this category. Regarding
other error types, all models showed varying degrees of performance. For

Table 1 | Performance of different models in error detection in zero-shot setting

P Value
1.00
0.38
0.46

FPRR

P Value
0.00

F1 Score

P Value
0.

TPR

P Value
0.00
0.87
0.16

P Value PPV

0.00

Detection rate

Model

13.8 (10.0, 17.5)
3.0 (1.5, 4.8)
3.3(1.5,5.3)
9.8 (6.8, 13.3)

7.9(3.3,12.6)

00

5.0(2.3,8,3)

17.9 (8.5, 28.2)
84.4 (76.3, 92.1)

4.9% (12/243)
26.7% (65/243)
41.2% (100/243)

52.3% (127/243)
Data in parentheses are 95% Cls. Bonferroni correction was used to correct P values for multiple comparisons with Claude 3.5 Sonnet. Higher values of Detection rate, PPV, TPR, and F1 Score indicate better detection performance of the model, while a higher FPRR value

suggests poorer detection performance. PPV Positive Predictive Value, TPR True Positive Rate, FPRR False Positive Report Rate.

GPT-35
GPT-4

0.002 40.6 (33.6, 47.4) 0.02
1.00

0.55

26.7 (20.9, 32,8)

0.002
0.61

40.8 (34.0, 48.0) 55.9 (48.8, 62.3)

88.5 (82.1, 94.0)

GPT-40

52.3 (46.0, 58.8) 62.1 (56.2, 68.0)

76.5 (69.8, 83.4)
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Fig. 1 | Summary of the confusion matrices for the four types of large language

models in detecting seven subtypes of reporting errors. Specifically, the confusion
matrices show the performance of GPT-3.5, GPT-4, GPT-40 and Claude 3.5 Sonnet
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in detecting specific error types in 400 reports. 0 = Error-free; 1 = Item omission;

2 = Contradictory conclusion; 3 = Descriptive error; 4 = Content repetition;
5 = Spelling error; 6 = Other error.

content repetitions (error type 4), Claude 3.5 Sonnet detected 10 out of 17
cases, outperforming other models. Other errors (error type 6) were gen-
erally less frequently detected across all models.

Few-Shot Error Detection Performance
In the test set analysis, both Claude 3.5 Sonnet and GPT-40 demonstrated
higher error detection rates in the few-shot setting compared to the zero-
shot setting, though these improvements were not statistically significant.
Claude 3.5 Sonnet’s detection rate increased from 44.9% (57/127) to 50.4%
(64/127), while GPT-40’s rate rose from 37.0% (47/127) to 40.9% (52/127).
Claude 3.5 Sonnet exhibited significant improvements in the few-shot
setting: PPV increased significantly from 75.0% to 91.4% (P < 0.05), F1 score
improved from 56.2% to 65.0%, and TPR increased from 44.9% to 50.4%,
though the latter two metrics lacked statistical significance. Notably, its
FPRR significantly decreased from 9.5% to 3.0% (P> 0.05). In contrast,
GPT-40 showed mixed results in the few-shot setting: F1 score and TPR
improved marginally without statistical significance, while PPV decreased
significantly from 87.0% to 70.3%. Additionally, FPRR increased from 3.5%
to 11.0%, although this increase was not statistically significant.

These findings indicate that while both models showed increased error
detection rates in the few-shot setting, Claude 3.5 Sonnet demonstrated
more significant and comprehensive performance improvements, particu-
larly in enhancing predictive accuracy and reducing false positives. Con-
versely, GPT-4o, despite slight improvements in detection rate, experienced
a negative impact on overall report quality, showing no substantial advan-
tage over its zero-shot performance. (Table 2; Fig. 2)

Figure 3 shows the results of the subgroup analysis. In the error-type-
specific performance evaluation, Claude 3.5 Sonnet demonstrated superior
performance in few-shot learning compared to zero-shot learning. It
detected significantly more spelling errors (error type 5) (16 vs 8) and
descriptive errors (error type 3) (17 vs 13). Notably, false positives for
contradictory conclusions (error type 2) decreased substantially from 19 to
4. Conversely, the subgroup analysis of GPT-4o revealed mixed results. Few-
shot learning outperformed zero-shot learning in detecting content repe-
tition (error type 4) (6 vs 3) and spelling errors (error type 5) (19 vs 12).
However, it demonstrated reduced efficacy in identifying item omission
errors (error type 1) (1 vs 11) and generated more false positives for con-
tradictory conclusions (error type 2) (12 vs 0).
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1.00
1.00
1.00
1.00
1.00
1.00
0.98
1.00

1.0 (0.0, 2.5)
2.5(0.8, 4.8)
1.5 (0.0, 3.5)
1.5 (0.0, 3.5)
1.5 (0.0, 3.5)

4.5(2.0,7.5)

00

1.

58.2 (49.7, 66.3)

1.00
1.00

0.

41.7 (33.6, 50.4)

1.00
1.

96.4 (90.6, 100.0)

1.00
1.00
0.13
1.00
1.00
0.02
0.25
0.09

41.7% (53/127)

Senior 2

1.00
0.18
1.00
1.00
0.01
0.46

59.5(50.7, 67.7)

00 44.1 (35.7, 52.6)

92.1 (84.8, 97.7)

43.7% (55.5/127)
33.9% (43/127)
54.3% (69/127)
44.1% (56/127)
29.1% (37/127)
36.2% (46/127)

Senior radiologist average

13 49.7 (40.3, 58.7)

33.9 (25.6, 42.5)

1.00
1.00
1.00
0.18
0.25
1.00

93.5 (85.4, 100.0)

Attending 1

69.3 (61.3, 76.2)

1.00
1.00
0.02
0.25
0.09

54.3 (45.6, 62.6)

95.8 (90.8, 100.0)

Attending 2

94.7 (88.1, 100.0) 441 (35.7,52.6) 59.5 (50.8, 67.5)

Attending radiologist average

Resident 1

29.4 (211, 38.5) 43.0(32.6, 52.2)

80.4 (68.4, 90.2)

52.9 (43.5, 61.5) 0.5 (0.0, 2.0)
2.5(1.0, 4.8)

36.2 (27.9, 45.4)

97.9 (92.2, 100.0)

Resident 2

0.09

32.7% (41.5/127) 89.2 (80.3, 95.1) 32.8 (24.5, 41.9) 47.9 (38.0, 56.8)

Resident average

Datain parentheses are 95% Cls. Bonferroni correction was used to correct P values for multiple comparisons. *The performance of Claude 3.5 Sonnet Few in detecting errors was compared with that of other readers using Wald x2 tests. Higher values of Detection rate, PPV,

TPR, and F1 Score indicate better detection performance of the model, while a higher FPRR value suggests poorer detection performance. PPV Positive Predictive Value, TPR True Positive Rate, FPRR False Positive Report Rate.

Radiologists study

In the test dataset (1 = 127), we compared the performance of Claude 3.5
Sonnet and GPT-4o in both zero-shot and few-shot settings against radi-
ologists of various experience levels. Among the human readers, only one
attending radiologist (attending radiologist 2) achieved a higher error
detection rate of 54.3% (69/127), slightly surpassing Claude 3.5 Sonnet’s
few-shot performance. Two senior radiologists demonstrated error detec-
tion rates of 45.7% (58/127) and 41.7% (53/127), respectively, both out-
performing GPT-40’s few-shot performance. The other radiologists did not
detect more errors than GPT-40 did, whether in the zero-shot or few-shot
setting. The detection rate of attending radiologist 1 was 33.9% (43/127),
while that of two resident radiologists was 29.1% (37/127) and 36.2% (46/
127), respectively. Detailed performance metrics for both LLMs and radi-
ologists across all experience levels are presented in Table 2. Statistical
analysis revealed no significant differences between Claude 3.5 Sonnet in the
few-shot setting and the average performance of radiologists across
experience levels in terms of error detection and negative impact (all
P >0.05). However, Claude 3.5 Sonnet in the zero-shot setting and GPT-40
in both settings exhibited lower positive predictive values (PPV) compared
to radiologists, and lower F1 scores compared to senior and attending
radiologists. Furthermore, senior and attending radiologists demonstrated
higher average PPV, true positive rates (TPR), and F1 scores compared to
residents. Notably, Resident 2 significantly outperformed Resident 1,
highlighting considerable individual variability in performance.

Analysis of error detection in ultrasound reports across different
physician seniority levels (Senior, Attending, and Resident) revealed com-
plex patterns. All physician groups demonstrated high accuracy in identi-
fying error-free reports (Type 0). However, detection capabilities for specific
error types did not show a clear correlation with experience levels. Ranked
by overall detection frequency across all physician groups, the most com-
monly identified errors were Type 3 (descriptive errors), Type 2 (contra-
dictory conclusions), Type 5 (spelling errors), and Type 1 (item omission).
Types 4 (content repetition) and 6 (other errors) were detected significantly
less frequently than the other four categories. Notably, intra-level individual
variability was observed, particularly in the detection of Type 1 (item
omission) and Type 5 (spelling errors). These findings suggest that error
detection capabilities in ultrasound reporting may be more closely asso-
ciated with specific error characteristics and individual work habits rather
than solely physician experience, highlighting potential areas for targeted
training and quality improvement initiatives (Fig. 4).

Inter-observer variability

Figure 5 displayed the heatmap of Cohen’s Kappa coefficients among dif-
ferent readers, which measured their agreement in detecting various error
types in the reports. The Al models demonstrated high internal consistency,
with a correlation of 0.53 between Claude 3.5 Sonnet Few and Zero and 0.47
between GPT-40 Few and Zero. In contrast, agreement between human
raters was generally low, with Kappa coefficients between radiology resi-
dents, attending radiologists, and senior radiologists all below 0.4, indicating
significant differences between observers in reporting error detections. This
scoring pattern revealed significant differences in judgments between dif-
ferent raters or systems, which may reflect the inherent complexity and
ambiguity of the task of reporting error detection. In particular, the low
agreement between human raters highlights the challenging nature of this
task. In contrast, the Al system showed potential advantages in providing
consistent judgments. Although the intraclass correlation coefficient
between the six radiologists showed a moderate degree of agreement (0.45
[95%CI: 0.37, 0.54]), this level of agreement is still suboptimal given the
criticality of the task, highlighting the importance of establishing uniform
standards in error detection.

Time analysis

In the task of error detection for 200 reports, AI models demonstrated
significant time efficiency advantages. Claude 3.5 Sonnet processed 200
reports in 0.7 and 1.0 hours under zero-shot and few-shot settings,
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Fig. 2 | Comparison of the evaluation indices of the four large language models.
The bar charts show the performance evaluation indices of Claude 3.5 Sonnet, GPT-
40, GPT-4 and GPT-3.5 in terms of error detection. Higher values of Positive

Predictive Value, True Positive Rate and F1 Score indicate better detection perfor-
mance of the model, while a higher False Positive Report Rate value suggests poorer
detection performance. Error bars represent 95% confidence interval.

respectively. For the same task, GPT-40 required 0.8 hours in the zero-shot
setting and 1.1 hours in the few-shot setting. In contrast, human radi-
ologists’ processing times ranged from 2.3 to 7.5 hours (Fig. 6a). For indi-
vidual report processing, Al models exhibited even more pronounced speed:
Claude 3.5 Sonnet required only 13.2 seconds per report in the zero-shot
setting, while GPT-40 needed 15.0 seconds. The fastest human radiologist
required 42.0 seconds per report (Fig. 6b). In the few-shot setting, Al models
showed a slight increase in processing time but remained substantially faster
than human experts.

Discussion

This study represents the first systematic evaluation of LLMs in Chinese
ultrasound report quality assurance, providing innovative perspectives and
methodologies for digital healthcare quality control. Our findings demon-
strate the significant potential of LLMs, particularly Claude 3.5 Sonnet and
GPT-4o, in detecting errors in ultrasound reports, which has important
clinical implications for improving report accuracy and optimizing patient
management.

While previous research by Gertz et al."” explored GPT-4’s potential in
detecting errors in radiology reports using synthetically generated errors
across radiography, CT, and MRI, our study extends this work in several
crucial ways. First, we specifically focus on ultrasound reports, an area that
has not been explored previously in this context. Second, we collected
reports from real clinical settings across three hospitals, covering a variety of
anatomical regions and pathologies, including a variety of error types, to
exclude misdiagnoses from images. This approach enhances the practical

relevance of our findings and better reflects the complexity of real clinical
settings. More importantly, our study is the first to explore the application of
LLMs for error detection in Chinese ultrasound reports, which provides
valuable insights for evaluating the performance of these models in non-
English settings.

In addition, our study introduces a few-shot learning setting, pro-
viding examples for the models to potentially enhance their error
detection capabilities. This approach yields interesting results, with
Claude 3.5 Sonnet showing significant improvements in the few-shot
setting, outperforming most radiologists on multiple metrics. In con-
trast, GPT-40 showed higher error detection rates, but also higher false
positive rates, highlighting the subtle effects of few-shot learning on
different models.

These findings not only confirm the potential of LLMs for medical
report error detection shown in previous studies, but also reveal new
insights into their performance in different learning paradigms and
language environments. The outstanding performance of Claude 3.5
Sonnet in the few-shot setting and the ability of GPT-40 to surpass
human performance in detecting spelling errors highlight the significant
advances in the capabilities of LLMs. However, the increased false
positive rate observed for GPT-4o0 in the few-shot setting also highlights
the need for careful consideration when applying these models in clinical
practice, especially in non-English settings. This exploration in the
Chinese context provides an important reference for the future appli-
cation of LLMs for medical report quality control in diverse language
and cultural contexts.
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200 reports. 0 = Error-free; 1 = Item omission; 2 = Contradictory conclusion;
3 = Descriptive error; 4 = Content repetition; 5 = Spelling error; 6 = Other error.

In comparing the performance of LLMs with human experts, we
observed significant advantages and potential limitations. The primary
strengths of LLMs lie in their efficiency and consistency in processing large
volumes of reports. Specifically, Claude 3.5 Sonnet and GPT-40 completed
analysis in less than 20 seconds per report on average, whereas the best-
performing radiologist required 135.6 seconds. Moreover, LLMs excelled in
detecting spelling and logical errors, sometimes surpassing human experts.
This efficiency position LLMs as potentially powerful tools for preliminary
screening, augmenting the overall workflow efficiency of healthcare pro-
fessionals. However, LLMs also exhibit a few key limitations. Firstly, they
generate higher false-positive rates, possibly due to their inability to accu-
rately interpret the correspondence between ultrasound terminology and
findings. For instance, GPT-4o failed to correctly interpret the relationship
between “anechoic nodule” and “cyst”, and between “fine liver echo” and
“fatty liver” (Supplementary Fig. 1). And the occurrence of false positives
will increase the workload of radiologists, leading to a decrease in efficiency.
Secondly, the models lack the rich clinical experience and contextual
understanding possessed by human experts. This was evident in a case with

a logical error where the ultrasound description stated, “Scattered strong
echoes seen in the right kidney, with the largest diameter about 6 mm; a
10*10 mm anechoic area seen in the left kidney,” while the conclusion read,
“Left kidney stone; right kidney cyst.” All models failed to identify this error,
whereas among the physicians, only one resident missed it.

Crucially, errors undetected by LLMs could lead to severe con-
sequences, such as major localization errors potentially resulting in inap-
propriate treatment decisions™. Given these potential risks, we emphasize
that LLMs should be viewed as auxiliary tools. It is imperative to establish
rigorous quality control mechanisms, regularly evaluate and update LLM
performance, and provide continuous training for healthcare professionals
using these tools.

Although this study is the first to investigate the role of LLMs in
detecting errors in ultrasound reports, it also has shortcomings. First, the
average error detection rate of all six radiologists was 40.3% which appeared
to be lower than that reported by Gerz et al.”’. This could be attributed to
visual fatigue and decreased attention from prolonged reading of extensive
text sections. This challenge in long-term text interpretation can potentially
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affect their efficiency and accuracy. It may also be related to the fact that the
reports came from different hospitals, and there were differences in the
structured standard report templates of each hospital. Additionally, while
LLMs reached levels comparable to radiologists in some cases, its perfor-
mance in Chinese settings was not as outstanding as in English settings,
which is consistent with model’s performance in other non-English
environments™. Furthermore, while our study included state-of-the-art
models like GPT versions and Claude 3.5 Sonnet, it did not encompass the
full range of available large language models. Although no significant dif-
ferences were observed in LLMs’ performance between PDF and plain text
formats, direct text input is recommended for clinical applications to avoid
potential PDF parsing issues. Finally, our study focused on logical and
spelling errors, rather than misdiagnoses and missed diagnoses caused by
misinterpretation of the ultrasound images. Detecting image errors is crucial
for diagnostic accuracy, as both diagnostic conclusion errors and feature
description errors significantly affect report accuracy”’. We tested a sample
image, but the results were unsatisfactory. Therefore, we have reasons to
believe that the current model will require further extension to detect errors
in image interpretation.

This multi-center study provided the first systematic evaluation of
LLMs for error detection in ultrasonography reports. In few-shot
learning settings, LLMs such as Claude 3.5 Sonnet demonstrated
superior error detection capabilities compared to most radiologists,
confirming their potential as adjunctive tools in radiological work-
flows. However, the discrepancy in LLM performance between non-
English and English environments underscores the challenges in cross-
lingual applications. Future research should focus on optimizing the

use of LLMs in multilingual medical contexts, particularly in enhan-
cing their understanding of complex medical concepts, while exploring
their synergistic potential with medical image analysis. These
advancements promise not only to improve the quality of ultra-
sonography reports but also to pioneer new avenues for Al-assisted
quality control in healthcare.

Building on these findings, we have identified several specific strategies
for future research. We hypothesize that a more promising approach might
involve specialized training of one or multiple models to better address
specific challenges. For instance, we are exploring strategies such as 1)
Employing segmentation and classification models for feature extraction,
and 2) Utilizing LLMs for feature analysis and result interpretation. Fur-
thermore, we are actively investigating the potential of LLMs to address the
interpretability challenges inherent in existing deep-learning models.
Additionally, future research should focus on optimizing LLMs for multi-
lingual medical contexts and exploring synergies with medical image ana-
lysis to improve their understanding of complex medical concepts in diverse
linguistic contexts.

Methods

This retrospective study was conducted in accordance with the Declaration
of Helsinki and was approved by the Ethics Review Board of Zhejiang
Cancer Hospital (IRB-2024-494), the Ethics Review Board of Dongyang
People’s Hospital (IRB-2024-097) and the Ethics Review Board of Taizhou
Cancer Hospital (IRB-2024-049). Due to its retrospective design, informed
consent has been waived. None of the patient identification information was
provided to GPT-3.5, GPT-4, GPT-4o, or Claude 3.5 Sonnet.
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Table 3 | Baseline Characteristics of the Study Sample

ZJCH DPH TZCH ALL
(n =200) (n=100) (n=100) (n=400)
Age
Median (IQR) 57.0(45.3,64.00 58.0(49.0,70.0) 55.0(43.3,62.0) 57.0(46.0, 66.0)
Range 17-88 1-88 12-85 1-88
Sex
Male 59 (29.5%) 49 (49.0%) 17 (17.0%) 125 (31.2%)
Female 141 (70.5%) 51 (51.0%) 83 (83.0%) 275 (68.7%)

IQR Interquartile Range, ZJCH Zhejiang Cancer Hospital, DPH Dongyang People’s Hospital, TZZCH
Taizhou Cancer Hospital.

Data Set and Error Categories

To increase the diversity of the dataset, 300 error-free ultrasound diagnostic
reports that passed quality control and 100 erroneous reports that did not
pass quality control were collected from three hospitals: Zhejiang Cancer
Hospital (ZJCH), Dongyang People’s Hospital (DPH), and Taizhou Cancer
Hospital (TZCH). Table 3 shows the baseline characteristics of the study
sample. These reports cover a wide range of pathological abnormalities
across various regions, including superficial, abdominal, and pelvic areas.
Out of the 300 error-free reports in our dataset, an algorithm randomly
selected 100 reports for error insertion, then human experts in ultrasound
diagnostics were then tasked with inserting errors into these 100 selected
reports. The experts randomly determined the types of errors to be
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Fig. 7 | Overall workflow. a Description of the datasets. b Stage one involved
collecting a total of 400 US reports, including both error-free and erroneous reports,
from three hospitals. These reports were used to evaluate the performance of dif-
ferent models in detecting errors in ultrasound reports under a zero-shot setting,
with performance assessed at both the error and report levels. The two best-
performing models were selected to proceed to the next stage. In stage two, a test set
consisting of 200 reports (50% error-free and 50% erroneous) was randomly selected

GPT-3.5 GPT-4 GPT-40 . Claude 3.5 Sonnet

Radiologist

to test the error detection performance of the two best models in a few-shot setting,
thereby assessing the model's rapid learning capability. In stage three, the test set was
used to evaluate the error detection performance of six radiologists with varying
levels of experience, providing a comparison with the model's performance.
ZJCH= Zhejiang Cancer Hospital, DPH= Dongyang People's Hospital,

TZCH= Taizhou Cancer Hospital, PPV = Positive Predictive Value, TPR = True
Positive Rate, FPRR = False Positive Report Rate.

introduced and their locations within each report. Consequently, the dataset
now consists of 200 reports without any errors, 100 reports with real-world
errors, and 100 reports with artificially inserted errors. These reports were
further divided into non-test and testing datasets with 200 cases in each
group. The test dataset comprises of 100 correct reports, 50 with real-world
errors and 50 with artificial errors. Each report included 1 to 3 errors. From
the non-test set reports, seven reports, with six of them representing

each of the six error types and one representing an error-free report,
were randomly selected to serve as few-shot examples for the best model
(Fig. 7a).

The gold standards for error detection were established through a
rigorous three-phase process (Fig. 8). First, true errors were identified based
on the Chinese 2022 Ultrasonography Quality Control Guidelines™, with
reports classified as non-compliant if they lacked required examination
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requested examination content, have discrepancies between descriptions and con-
clusions, or contain clear errors (e.g., missing organs described as normal, orien-
tation errors, incorrect units or data, or unedited template text). Senior radiologists
with over 15 years of experience conducted detailed reviews of ultrasonography
reports to identify errors based on these criteria. Errors were further categorized and
confirmed through collective discussions among an expert panel to ensure

A

Panel of Senior
Radiologists

Experts Randomly Assign

Error Types and Locations
in Each Reports

V:g
%,) >> x__g

Final Decision . )
Final Review

Process

&

o 9 o

Niniaid

@ V) =[]
» @.-E

Final Decision

consistency and accuracy. Creation of Artificially Inserted Errors: Artificial errors
were introduced into 100 reports selected randomly from a pool of 300 high-quality
reports that passed routine quality checks. Reports were randomized using Excel’s
random number generator, and the types and locations of errors were determined by
an expert panel. Artificial errors were distributed based on the observed frequency of
error types in true error samples and adjusted for controllability. Final Review
Process: A total of 400 reports, including true and artificially inserted errors,
underwent a rigorous final review by three senior radiologists with extensive diag-
nostic experience. This review involved in-depth discussions to confirm that each
report contained only the intended errors without additional, unintended ones.

content, had discrepancies between descriptions and conclusions, or con-
tained clear errors such as organ misidentification or orientation mistakes.
Senior physicians with over 15 years of experience reviewed and categorized
these errors, ensuring consistency through expert panel discussions. Second,
artificial errors were introduced into 100 randomly selected reports from a
pool of 300 high-quality, error-free reports. The types and locations of these
errors were determined by the expert panel, with the distribution aligned to
reflect real-world error frequencies while ensuring experimental controll-
ability. Finally, a total of 400 reports—comprising true errors, artificially
inserted errors, and error-free reports—underwent a final review by three
senior radiologists, who verified that each report contained only the
intended errors. This comprehensive process ensured that the gold stan-
dards accurately reflected both real and artificial errors, providing a reliable
benchmark for error detection. The list of the three-member final review
panel and the senior radiologists’ expert panel responsible for routine
ultrasound report quality control, hence establishing the gold-standards for
the real-world errors, along with their years of experience, can be found in
Supplementary Note 1. Furthermore, supplementary Fig. 2 depicts the
distribution of the six error types for both real and artificially errors.
Based on the severity of errors, the categories include: 1. Item omis-
sion: Missing ultrasound descriptions for examination items listed on the
ultrasound prescription form. 2. Contradictory conclusion: Discrepancies
between ultrasound descriptions and the conclusions provided, including
incorrect descriptions of the examined organ, location, and disease orien-
tation (e.g. left/right, up/down, front/back). 3. Descriptive error: Errors in
the units or data associated with the examined organ, location, or disease in
the report, such as excessively high values. 4. Content repetition: Failure to
remove ambiguous template text from the ultrasound report, resulting in

irrelevant or duplicated content. 5. Spelling error: Chinese spelling errors
may occur when radiologists quickly type using pinyin input methods (e.g.,
“EIFE misspelt as “RFF, “BEE“ misspelt as “JLA“). 6. Other error:
errors that did not fit into the above categories, including incorrect use of
punctuation marks. Supplementary Fig. 3¢ shows examples of various

€rrors.

Study Design

This study was conducted in three stages to evaluate the capabilities of
different LLMs and radiologists in detecting errors in ultrasound reports
(Fig. 7b).

Stage one, using the full set of reports (400 cases), the capabilities of
Claude 3.5 sonnet, GPT-40, GPT-4, and GPT-3.5 were assessed in a zero-
shot setting to detect errors in ultrasound reports, with the aim of deter-
mining the two best-performing models.

Stage two, a test set (200 cases) was composed by randomly selecting
100 correct reports, 50 real-error subgroup reports, and 50 artificial-error
subgroup reports. This phase explores explored whether the error detection
capabilities of the optimal model improve in a few-shot setting.

Stage three, employing the same test set as Stage Two, the error
detection performance and time taken by radiologists of different experience
levels (senior radiologists, attending radiologists, and residents) were
assessed via a customized online survey platform (https://www.wjx.cn/).

Performance Evaluation

Six radiologists with varying levels of experience in ultrasound examination,
including two senior radiologists (L.Z. with 18 years and K.W. with
15 years), two attending radiologists (Y.D. with ten years and J.Y. with five
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years), and two residents (T.J. with two years and Y.Z. with one year) were
tasked to detect errors in 200 cases. Each radiologist independently eval-
uated each ultrasound report to identify potential errors using the custo-
mized online survey platform. We also measured the total time taken by
each radiologist to review the test set on this platform.

To investigate the ability of four LLMs in a zero-shot setting, we needed
to modify the format of the ultrasound reports based on the model
requirements: text format for GPT-3.5”’ and PDF format for GPT-4%, GPT-
40 and Claude 3.5 sonnet. Readers are referred to the supplementary
materials for Chinese (Supplementary Fig. 3a) and English ultrasound
report templates (Supplementary Fig. 3b).

The prompts for all four releases were the same and are shown as
follows: “In the following content, I will provide you with an ultrasound
report divided into sections: ‘Examination Items,” ‘Ultrasound Description,’
and ‘Ultrasound Indications.’ Please identify any of the following errors if
present:

1. Missing examination items compared to the prescription, which is also

listed at the top of the ultrasound report.

2. Inconsistencies between the ultrasound description and the ultrasound
indications, such as discrepancies in lesion location (left/right, up/
down, front/back).

. Errors in units or texts describing organs and diseases.

. Irrelevant or duplicated template text that has not been removed.
. Spelling error.

. Any other error.”

AN U1 A~ W

To assess the performance of the two best models in few-shot learning
scenarios, the following prompt was provided to the models: Tam going to
provide you with seven example reports: one error-free report and six
reports containing the various categories of errors listed. The sole purpose of
these example reports is to improve your comprehension and to help you
recognize the various error categories mentioned in the subsequent tasks.’
We then entered each report and its corresponding error description and
categorization in order. For example, one example report contained ‘con-
tradictory findings’, specifically, the ultrasound description showed a
hypoechoic nodule in the left breast, whereas the ultrasound impression
described a cyst in the right breast. At the end of the learning phase con-
taining all 7 example reports, we entered ‘provided example reports com-
pleted’ to indicate the end of the examples. We then followed the prompts
mentioned in the zero-shot setting to begin error detection on the test set
reports.

The time required for Claude 3.5 sonnet, GPT-40, GPT-4, and GPT-
3.5 to correct each ultrasound report was evaluated by measuring the
duration from submitting the prompt to receiving the final response. For
each model, this assessment was conducted on a randomly selected sample
of 20 ultrasound reports of varying lengths.

Statistical Analysis

All analyses were performed using R software (version 4.2.3). The perfor-
mance of GPT models and radiologists in error detection was evaluated
using Positive Predictive Value (PPV), True Positive Rate (TPR), and F1
Score. The negative impact of false positives on the overall performance of
GPT models and radiologists in report evaluation was investigated using the
False Positive Report Rate (FPRR). Bootstrap methods were utilized to
generate 95% confidence intervals (Cls).

To compare performance metrics between radiologists and LLMs
under both zero- and few-setting, the Wald x* test was used to analyze
differences in error detection performance (PPV, TPR, F1 Score) and the
impact of false positives (FPRR). Bonferroni correction was applied to adjust
for multiple comparisons, and a two-sided P value of less than 0.05 was
considered statistically significant. Cohen’s kappa coefficient was used to
evaluate the consistency between the model and each individual radiologist,
while the Intraclass Correlation Coefficient was employed to assess the
consistency among radiologists. The definitions of each of the metrics are
provided in Supplementary Note 2.

Data availability

Individual participant data can be made available upon request, directed to
corresponding author (D.X.). Once approved by the Institutional Review
Board/Ethics Committee of all participating hospitals, deidentified data can
be made available through a secured online file transfer system for research
purpose only.

Code availability

All pre- and post-processing code employed in this study were standard
code which can be accessed via Microsoft Excel and statistical software R. No
customized code was written for this work.
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