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Whole slide image based deep learning
refines prognosis and therapeutic
response evaluation in lung
adenocarcinoma

Check for updates

Tao Chen1,9, Jialiang Wen1,9, Xinchen Shen1,9, Jiaqi Shen2, Jiajun Deng1, Mengmeng Zhao1, Long Xu1,
Chunyan Wu3, Bentong Yu4, Minglei Yang5, Minjie Ma6, Junqi Wu1, Yunlang She 1, Yifan Zhong1 ,
Likun Hou3 , Yanrui Jin 7,8 & Chang Chen 1

Existing prognostic models are useful for estimating the prognosis of lung adenocarcinoma patients,
but there remains room for improvement. In the current study, we developed a deep learning model
based on histopathological images to predict the recurrence risk of lung adenocarcinoma patients.
The efficiency of themodel was then evaluated in independentmulticenter cohorts. Themodel defined
high- and low-risk groups successfully stratified prognosis of the entire cohort. Moreover,
multivariable Cox analysis identified the model defined risk groups as an independent predictor for
disease-free survival. Importantly, combining TNM stage with the established model helped to
distinguish subgroups of patients with high-risk stage II and stage III disease who are highly likely to
benefit from adjuvant chemotherapy. Overall, our study highlights the significant value of the
constructed model to serve as a complementary biomarker for survival stratification and adjuvant
therapy selection for lung adenocarcinoma patients after resection.

Estimating prognosis is essential for adjuvant treatment decision
making and follow-up strategy selection for lung adenocarcinoma
patients after surgery1. Some pathological factors, such as visceral
pleural invasion (VPI)2, spread through the air space (STAS)3, and
lymphovascular invasion (LVI)4, have been reported to be associated
with patient outcomes. Compared to the factors mentioned above, the
International Association for the Study of Lung Cancer (IASLC)-
proposed grading system has been proven to be more efficient and
robust for patient stratification according to refs. 5,6. However, these
factors may affect the prognosis of patients with stage I tumors, but
their effect on those with stage II or III tumors requires further
investigation. Furthermore, the TNM staging system can be used to
categorize patients into several groups with distinct survival
outcomes7. Nevertheless, there is often variation in patient outcomes

even among those at a specific TNM stage. Above all, there remains
room for improvement in precise risk stratification to improve patient
management and disease outcomes.

Recent advances in artificial intelligence (AI) have enabled the use of
quantitative data derived fromwhole slide images (WSIs) to predict patient
outcomes directly8–10. Histopathology images contain prognostically
important information such as tumor-infiltrating lymphocytes11,12, and
proportions of tissue types13, each of which can be quantified by specific
digital pathology approaches. The hidden information in routine haema-
toxylin and eosin (H&E)-stained imagesmayhelp to stratify prognosis from
a different dimension, andmay serve as a complementary biomarker to the
current clinical variables.

In thepresent study,wedeveloped aWSI-baseddeep learningmodel to
predict the recurrence risk of resected lung adenocarcinoma without any
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annotations from pathologists.We then assessed the ability of ourmodel to
stratify patients according to prognosis and investigated whether it could
help refine the populations of patients likely to benefit from adjuvant che-
motherapy. Finally, we obtainedWSI heatmaps to explore the pathological
features that may contribute to the predictive value of the model and the
underlying biological basis of the model was also explored.

Results
Patient characteristics
With the constructed model, a WSI-based score was calculated for each
patient in the two validation sets (Fig. 1). Patients in both validation sets
were divided into low- and high-risk groups according to the medianWSI-
based score. In validation cohort 1,more patients in the high-risk group had
STAS (36.3% vs. 29.3%, p = 0.048), IASLC grade III tumors (61.5% vs.
45.5%, p < 0.001), and adjuvant chemotherapy (39.7% vs. 30.4%, p = 0.010).
In addition, more patients in the high-risk group hadVPI (26.6% vs. 21.3%,
p = 0.098), LVI (15.9% vs. 12.2%, p = 0.163), and TNM stage III tumors
(17.3%vs. 12.8%, p = 0.234), although these differenceswere not statistically
significant (Table 1). In validation cohort 2, the proportions of patients with
VPI (35.6% vs. 23.9%, p = 0.089), STAS (39.1% vs. 34.1%, p = 0.493), LVI
(21.8% vs. 12.5%, p = 0.101), IASLC grade III tumors (57.5% vs. 53.4%,
p = 0.826), TNMstage III tumors (20.7% vs. 14.8%, p = 0.382), and adjuvant
chemotherapy (34.5% vs. 29.5%, p = 0.484) were higher in the high-risk
group, but none of the differences were statistically significant (Table 1).

Survival analysis of DFS
In validation cohort 1, the model successfully stratified patients into high-
and low-risk groups according to prognosis in the entire cohort (hazard
ratio [HR] 1.95, 95% confidence interval [CI] 1.46–2.62, p < 0.001) and in
most of the prespecified subgroups (Fig. 2a). Similar results were found in
the analysis of validation cohort 2 (Fig. 2b).

The incremental prognostic value of the WSI-based score
Univariable analysis of the validation cohort 1 revealed that patient
outcomes were strongly associated with pathological-related factors,
including VPI (p < 0.001), STAS (p < 0.001), and LVI status (p < 0.001),
IASLC grade (p < 0.001), TNM stage (p < 0.001), and WSI-based score
(p < 0.001) (Table 2). Before incorporating theWSI-based score into the
multivariable Cox model, the IASLC grade (grade II vs. grade I, HR
13.17, 95% CI 3.16–54.96, p < 0.001; grade III vs. grade I, HR 26.99, 95%
CI 6.50–112.13, p < 0.001) and TNM stage (stage II vs. stage I, HR 1.59,
95% CI 0.98–2.57, p = 0.061; stage III vs. stage I, HR 4.04, 95% CI
2.83–5.76, p < 0.001) were identified as independent predictors of DFS.
After incorporating the WSI-based score into the multivariable Cox
model, it is suggested that the IASLC grade (grade II vs. grade I, HR
13.54, 95% CI 3.24–56.52, p < 0.001; grade III vs. grade I, HR 25.69, 95%
CI 6.19–106.63, p < 0.001), TNM stage (stage II vs. stage I, HR 1.67, 95%
CI 1.03–2.71, p = 0.037; stage III vs. stage I, HR 4.22, 95% CI 2.95–6.05,
p < 0.001), and the constructed model (HR, 1.82, 95% CI, 1.35–2.44,
p < 0.001) were all independent predictors of DFS (Table 2). Similar
results were found in the analysis of validation cohort 2 (Table 3).

We thenused theC-index to compare theperformanceof eachvariable
for predicting DFS. For variables significantly associated with DFS
according to univariable Cox regression analysis, the WSI-based
score did not outperform several pathological factors in either validation
cohort 1 (C-index [WSI-based score] = 0.586; C-index [IASLC grade] = 0.674;
C-index [TNMstage] = 0.665)orvalidationcohort 2 (C-index [WSI-based score] = 0.643;
C-index [VPI] = 0.654; C-index [STAS] = 0.651; C-index [IASLC grade] = 0.718;
C-index [TNM stage] = 0.699) (SupplementaryTable 1; Supplementary Fig. 1).
Regarding the 3-year and 5-year AUCs for predicting DFS, our
model did not show an advantage over some other pathological factors
(Supplementary Table 1; Supplementary Fig. 1).

For variables independently predicting DFS in the multivariable Cox
regression analysis, we compared the predictive performance of their combi-
nations. The results showed that the combination of IASLC grade, TNMstage

andWSI-based score (C-index [WSI-based score & IASLC grade & TNM stage] = 0.753)
outperformed any combination of two variables in validation cohort 1
(C-index [IASLC grade & TNM stage] = 0.737, p < 0.001; C-index [WSI-based

score & IASLC grade] = 0.708, p < 0.001; C-index [WSI-based score & TNM

stage] = 0.706, p < 0.001; Fig. 3a; Table 4). In validation cohort 2, the
combination of three variables (C-index [WSI-based score & IASLC grade & TNM

stage] = 0.811) also outperformed any combination of two variables (C-index
[IASLC grade & TNM stage] = 0.777, p < 0.001; C-index [WSI-based score & IASLC

grade] = 0.786, p < 0.001; C-index [WSI-based score & TNM stage] = 0.763, p < 0.001;
Fig. 3d; Table 4). The combinedmodel also showed advantages with respect
to the 3-year and 5-year AUCs for predicting DFS (Fig. 3b, c, e, f; Table 4).
These results collectively demonstrated the added value of the constructed
model to the existing clinical models.

The WSI-based score refines patient selection for adjuvant
chemotherapy
We then investigated whether our model could help refine subgroups
of patients who could mostly benefit from adjuvant chemotherapy. In
validation cohort 1, neither stage IB (p = 0.551), stage II (p = 0.116), nor
stage III patients (p = 0.068) significantly benefited from adjuvant che-
motherapy (Supplementary Fig. 2). Further analysis with combination of
the constructedmodel revealed no survival benefit for patients in the low-
risk groups of patients with stage IB (p = 0.974, Fig. 4a), stage II (p = 0.800,
Fig. 4b), or stage III (p = 0.464, Fig. 4c) disease. For patients in the high-
risk groups, a survival advantage was acquired for patients in stage III
(p = 0.030, Fig. 4f) and potentially acquired for patients in stage II
(p = 0.077, Fig. 4e), but no survival benefit was observed for patients in
stage IB (p = 0.367, Fig. 4d). Similar results were obtained for validation
cohort 2 (Supplementary Fig. 2; Fig. 4g–l).

Interpretation of the deep learning model
To better understand the pathological mechanism underlying this predic-
tion, we used heatmap visualization to explore the pathomorphological
features of our model. As illustrated in Fig. 1d, micropapillary components
were identified in the ‘high-risk’ region of the patient with stage IA tumor.
Moreover, acinar patterns with tertiary lymphoid structures were char-
acterized in the ‘low-risk’ region of the patient with stage III tumor. This
reflects the substantial associationsof the constructedmodelwith the current
pathological factors and its ability to serve as a complementary biomarker.

Patients in different risk groups present significant heterogeneity in
gene expressionpatterns (Fig. 5a). InGOanalyses (Fig. 5b), patientswith the
model defined high-risk group were associated with pathways representing
tumor metabolism and proliferation such as cellular metabolic process,
protein metabolic process, cellular component organization, and cellular
component organization or biogenesis. Furthermore, as shown in Fig. 5c,
tumors in two groups were characterized by diverse immune infiltration
patterns. According to results of ssGSEA (Fig. 5d), patients with the model
defined high-risk group yielded significantly less infiltrations of activated
CD4 T cell, activated dendritic cell, central memory CD4 T cell, central
memory CD8 T cell, effector memeory CD4 T cell, immature B cell,
immature dendritic cell, macrophage, MDSC, natural killer T cell, and T
follicular helper cell.

Discussion
Recently, the development of digital pathology has provided important
information for precise risk stratification and treatment planning.However,
predicting prognosis (time-to-event) is considered a more sophisticated
problem than a conventional regression task, mainly due to the fact that
some patients have not experienced the expected outcomes (death, recur-
rence, etc.). For this reason, the number of studies usingWSIs for predicting
prognosis is relatively small9,10,14–17. From the perspective of technology,
these studies have mostly used convolution neural network9,10,15–17 to auto-
matically extract features. However,WSIs have many pixels containing lots
of invalid information, which seriously affects the accuracy and efficiency of
the convolutional neural network. Lee et al.14 used the aggregation algorithm
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to obtain the superpatch graph before using GNN, which bring a great
impact on the working efficiency of the prediction system. Further,
Mobadersany et al.16 used region of interest fromWSI as input information,
which increased the workload of clinicians. Compared with the methods
mentioned above, the proposedmodel convertsWSI into graph-based data

and introduces the attention mechanism to assign different weights to dif-
ferent nodes, which effectively reduces the computational complexity and
improves the prediction accuracy. Moreover, the proposed model was
establishedwithout the facility of pathologists, overcoming the shortcoming
that deep learning algorithms rely onmanual annotations and the expertise

Fig. 1 | Schematic illustration of the overall study design. a, bModel construction; c efficiency validation; d heatmap visualization. WSI whole slide image, ROC receiver
operating characteristic, ACT adjuvant chemotherapy, TLS tertiary lymphoid structure.
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Table 1 | Baseline characteristics of patients in validation cohort 1 and validation cohort 2

Validation cohort 1 (n = 705) Validation cohort 2 (n = 175)

Variables Entire cohort Low-risk
group (n = 352)

High-risk
group (n = 353)

p Entire cohort Low-risk
group (n = 88)

High-risk
group (n = 87)

p

Age, year, median (IQR) 61 (56–67) 62 (52–67) 61 (55–67) 0.122 61 (54–67) 61 (55–69) 59 (53–66) 0.547

>65 205 (29.1) 110 (31.3) 95 (26.9) 0.205 53 (30.3) 29 (33.0) 24 (27.6) 0.440

≤65 500 (70.9) 242 (68.8) 258 (73.1) 122 (69.7) 59 (67.0) 63 (72.4)

Sex, n (%) 0.853 0.001

Male 298 (42.3) 150 (42.6) 148 (41.9) 84 (48.0) 53 (60.2) 31 (35.6)

Female 407 (57.7) 202 (57.4) 205 (58.1) 91 (52.0) 35 (39.8) 56 (64.4)

Smoking history, n (%) 0.083 0.154

Never 567 (80.4) 274 (77.8) 293 (83.0) 137 (78.3) 65 (73.7) 72 (82.8)

Current or ever 138 (19.6) 78 (22.2) 60 (17.0) 38 (21.7) 23 (26.1) 15 (17.2)

Tumor location, n (%) 0.329 0.954

Left lung 273 (38.7) 130 (36.9) 143 (40.5) 64 (36.6) 32 (36.4) 32 (36.8)

Right lung 432 (61.3) 222 (63.1) 210 (59.5) 111 (63.4) 56 (63.6) 55 (63.2)

Surgery type, n (%) 0.147 0.583

Sublobar resection 95 (13.5) 54 (15.3) 41 (11.6) 16 (9.1) 7 (8.0) 9 (10.3)

Lobectomy or above 610 (86.5) 298 (84.7) 312 (88.4) 159 (90.9) 81 (92.0) 78 (89.7)

EGFR mutation, n (%) 0.087 0.271

Positive 459 (65.1) 240 (68.2) 219 (62.0) 122 (69.7) 58 (65.9) 64 (73.6)

Negative 246 (34.9) 112 (31.8) 134 (38.0) 53 (30.3) 30 (34.1) 23 (26.4)

KRAS mutation, n (%) 0.591 0.107

Positive 58 (8.2) 27 (7.7) 31 (8.8) 10 (5.7) 8 (9.1) 2 (2.3)

Negative 647 (91.8) 325 (92.3) 322 (91.2) 165 (94.3) 90 (90.9) 85 (97.7)

VPI, n (%) 0.098 0.089

Present 169 (24.0) 75 (21.3) 94 (26.6) 52 (29.7) 21 (23.9) 31 (35.6)

Absent 536 (76.0) 277 (78.7) 258 (73.4) 123 (70.3) 67 (76.1) 56 (64.4)

STAS, n (%) 0.048 0.493

Present 231 (32.8) 103 (29.3) 128 (36.3) 64 (36.6) 30 (34.1) 34 (39.1)

Absent 474 (67.2) 249 (70.7) 225 (63.7) 111 (63.4) 58 (65.9) 53 (60.9)

LVI, n (%) 0.163 0.101

Present 99 (14.0) 43 (12.2) 56 (15.9) 30 (17.1) 11 (12.5) 19 (21.8)

Absent 606 (86.0) 309 (87.8) 297 (84.1) 145 (82.9) 77 (87.5) 68 (78.2)

IASLC grade, n (%) <0.001 0.826

I 129 (18.3) 73 (20.7) 56 (15.9) 33 (18.9) 18 (20.5) 15 (17.2)

II 199 (28.2) 119 (33.8) 80 (22.7) 45 (25.7) 23 (26.1) 22 (25.3)

III 377 (53.5) 160 (45.5) 217 (61.5) 97 (55.4) 47 (53.4) 50 (57.5)

TNM stage, n (%) 0.234 0.382

I 542 (76.9) 279 (79.3) 263 (74.5) 125 (71.4) 67 (76.1) 58 (66.7)

II 57 (8.1) 28 (8.0) 29 (8.2) 19 (10.9) 8 (9.1) 11 (12.6)

III 106 (15.0) 45 (12.8) 61 (17.3) 31 (17.7) 13 (14.8) 18 (20.7)

Adjuvant chemotherapy,n (%) 247 (35.0) 107 (30.4) 140 (39.7) 0.010 56 (32.0) 26 (29.5) 30 (34.5) 0.484

Follow-up time, months,
median (range)

68.0
(1.0–95.0)

65.0 (1.0–87.0) 69.0 (1.0–95.0) 68.0
(1.0–91.0)

61.0 (1.0–77.0) 72.0 (1.0–91.0)

Recurrence, n (%) 200 (28.4) 68 (19.3) 132 (37.4) <0.001 50 (28.6) 13 (14.8) 37 (42.5) <0.001

WSI number per patient,
median (range)

2 (1–4) 2 (1–4) 2 (1–4) 0.919 2 (1–4) 2 (1–4) 2 (1–4) 0.152

WSI number, total 1516 758 758 307 158 149

EGFR epidermal growth factor receptor, KRAS Kirsten rat sarcoma viral oncogene, VPI visceral pleural invasion, STAS spread through air space, LVI lymph-vascular invasion, IASLC International
Association for the Study of Lung Cancer, WSI whole slide image, IQR interquartile range, HR hazard ratio, CI confidence interval.

https://doi.org/10.1038/s41746-025-01470-z Article

npj Digital Medicine |            (2025) 8:69 4

www.nature.com/npjdigitalmed


of pathologists to a certain extent18,19, which may help to improve the gen-
eralization of the model.

On the one hand, although the predictive performance for prognosis of
ourmodel did not outperform some of the pathological factors, it remained
statistically significant in the multivariable analysis when it was combined
with TNM stage and IASLC grade, indicating the added value of the model
and its ability to serve as a complementary biomarker for survival stratifi-
cation. On the other hand, the presence of high-risk pathological factors,
including VPI, STAS, LVI, and high-grade tumors, was more common in
the model-defined high-risk groups, suggesting substantial associations
between the constructed model and the current well-defined pathological
factors.

A largemeta-analysis revealed that adjuvant chemotherapy could yield
an overall survival (OS) benefit of 5% at 5 year, however, the statistically
significance was not reached (HR 0.87, p = 0.08)20. Following this study,
randomized trials evaluating the efficiency of adjuvant chemotherapy were
conducted for a decade. Some of the large trials successfully demonstrated
the OS benefit21,22, while others failed23. Afterwards, the Lung Adjuvant
Cisplatin Evaluation (LACE) study further confirmed the effect of adjuvant
chemotherapy on both OS and DFS24. Nevertheless, we must be clear that
the overall benefit from adjuvant chemotherapy is limited: stage II-III
patients may mostly benefit, stage IB patients may only have trend toward
benefit, while stage IA patients may experience deleterious effect. We need
to identify subgroups of patients who may particularly benefit from adju-
vant chemotherapy. In the current study, no significant survival benefits
fromadjuvant chemotherapywere acquired across the overall population of
patients with stage IB, stage II, or stage III disease. However, combining

TNM stage with our constructed model helps to distinguish a survival
advantage for high-risk stage III patients, and a potential survival advantage
for high-risk stage II patients (statistical significancewas not reached for this
group perhaps for the limitation of the relatively small sample size).
According to our results, we advocate adjuvant chemotherapy for high-risk
stage II-III patients and to avoid unnecessary chemotherapy for other
patients.

The results demonstrated that our established model exhibits sig-
nificant biological relevance. The model outputs are likely associated with
genes andmolecular pathways that promote tumor proliferation, and high-
risk patients show significantly lower levels of immune cell infiltration. This
partly explains the model’s predictive capability for prognosis and adjuvant
chemotherapy decision-making in lung cancer patients.

Despite the promising results obtained in the present study, several
limitations should be declared. Firstly, the retrospectively nature of the
studymay limit the statistical power and hinder the generalization of the
results to other centers and regions, especially the results regarding
adjuvant therapy, prospective validation with larger sample size is
warranted. Second, although our model could be used as a complement
to the existing prognostic models of lung adenocarcinoma, there
remains much room for improvement in its ability to predict prognosis.
Multiomics data integrating radiology, pathology, molecular, and other
modalities are needed to establish more efficient and robust models in
the future.

In summary, our constructed model can predict the recurrence risk of
resected lung adenocarcinoma without the need for annotations from
pathologists, which can complement the current prognostic models.

Fig. 2 | Analysis of DFS in specified subgroups. aValidation cohort 1; b validation
cohort 2. EGFR epidermal growth factor receptor, KRAS Kirsten rat sarcoma viral
oncogene, VPI visceral pleural invasion, STAS spread through air space, LVI lymph-

vascular invasion, IASLC International Association for the Study of Lung Cancer,
HR hazard ratio, CI confidence interval, DFS disease-free survival.
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Moreover, the model defined high- and low-risk groups may help to guide
adjuvant therapy strategies in clinical practice.

Methods
Participants and study design
This multicenter study was approved by the Ethics Committee and Insti-
tutional Review Board of Shanghai Pulmonary Hospital (No. K23-292), the
First AffiliatedHospital ofNanchangUniversity,NingboHwameiHospital,
the First Affiliated Hospital of Lanzhou University, and followed the
Transparent Reporting of a multivariable prediction model for Individual
Prognosis Or Diagnosis (TRIPOD) statement25 (Supplementary Note 1).
The informed consent was waived as this was a retrospective study.

We used 3712 H&E-stained, formalin-fixed and paraffin-embedded
(FFPE) tumor tissue sections from 1705 patients with surgically resected
lung adenocarcinoma. Patients with stage I-III disease and available clin-
icopathological data and follow-up information were included. Patients
with stage IV disease, a history of neoadjuvant therapy, and no available
follow-up information or tumor tissue sections were excluded. For each
patient in the training and validation sets, digital WSIs were scanned from
the corresponding H&E-stained tumor tissue sections.

To train the model, we used a dataset of 1889 sections from 825
patients who underwent surgery at Shanghai Pulmonary Hospital
between January 2012 and December 2012 (Supplementary Table 2). We
applied deep learning techniques to develop a histopathological model,
the patient-level WSI-based score, to predict the disease-free survival
(DFS) of patients with resected lung adenocarcinoma.We then evaluated
the capability of our model for survival stratification and investigated
whether it could help refine the populations of patients likely to benefit
from adjuvant chemotherapy in two separate validation sets. Finally,WSI
heatmaps were obtained to explore the pathological features underlying
thepredictions (see Fig. 1 for the study design). In addition, the underlying

biological basis of the model was also explored to enhance the interpret-
ability of the model. The validation cohort 1 included 1516 sections from
705 patients who underwent surgery at Shanghai Pulmonary Hospital
between January 2015 and June 2015. The validation cohort 2 included
307 sections from175 patients between January 2015 andDecember 2015
from three departments of thoracic surgery: the FirstAffiliatedHospital of
Nanchang University, Ningbo Hwamei Hospital, and the First Affiliated
Hospital of Lanzhou University.

Clinical data, including age, sex, smoking history, tumor location,
surgery type, and TNM stage, were available for both the training and
validation sets. To compare the performance of the constructed model
in prognosis prediction with that of the current clinical models, the
VPI, STAS, and LVI status and IASLC tumor grade26 were re-evaluated
by two of our experienced pathologists (C.W., L.H.) for patients in the
validation sets.

Four 21-day cycles of intravenous chemotherapy of cisplatin 75mg/m2

or carboplatin AUC 5 on day 1 plus pemetrexed 500mg/m2 on day 1 were
administrated after thorough evaluation of the patients’ conditions and
discussion among a group of surgeons and oncologists at our centers.

WSI-based score for recurrence risk prediction
The patient-level survival prediction model in this paper is a multiple-
classification model based on variable length input. Since the number of
WSIs obtained for each patient varied, and the effective area of different
WSIs also varied considerably, we need to utilize a model that can handle
inputs of variable length. In addition, sincehundreds ofmillions of pixels are
contained in WSIs, efficient compression of the input data was also con-
sidered to be crucial. Thus, this paper presents a graph-attention-based
multiple-instance neural network (GAMINN) for processing variableWSIs
for survival prediction. The total analysis system contains the following
modules, whose details are shown below.

Table 2 | Multivariable Cox analysis of disease-free survival in validation cohort 1

Validation cohort 1 (n = 705)

Univariable Multivariablea Multivariableb

Variables HR (95% CI) P HR (95% CI) P HR (95% CI) P

Age (continuous) 1.00 (0.98–1.01) 0.417

Sex (male vs. female) 1.10 (0.82–1.44) 0.551

Smoke (yes vs. no) 1.21 (0.86–1.70) 0.275

Location (left vs. right) 0.92 (0.70–1.23) 0.586

Surgery (lobectomy vs. sublobar
resection)

1.61 (0.99–2.62) 0.054 0.76 (0.46–1.25) 0.279 0.75 (0.46–1.23) 0.258

EGFR mutation (positive vs. negative) 0.81 (0.61–1.08) 0.151

KRAS mutation (positive vs. negative) 1.31 (0.81–2.13) 0.277

VPI (present vs. absent) 2.17 (1.63–2.90) <0.001 1.12 (0.82–1.53) 0.466 1.09 (0.80–1.49) 0.575

STAS (present vs. absent) 2.09 (1.58–2.76) <0.001 0.99 (0.72–1.34) 0.922 1.01 (0.74–1.37) 0.965

LVI (present vs. absent) 1.96 (1.40–2.75) <0.001 0.96 (0.67–1.37) 0.825 0.98 (0.69–1.40) 0.918

IASLC grade

II vs. I 14.13 (3.41–58.65) <0.001 13.17 (3.16–54.96) <0.001 13.54 (3.24–56.52) <0.001

III vs. I 37.77 (9.36–152.50) <0.001 26.99 (6.50–112.13) <0.001 25.69 (6.19–106.63) <0.001

TNM stage

II vs. I 2.25 (1.42–3.57) 0.001 1.59 (0.98–2.57) 0.061 1.67 (1.03–2.71) 0.037

III vs. I 5.83 (4.31–7.90) <0.001 4.04 (2.83–5.76) <0.001 4.22 (2.95–6.05) <0.001

Adjuvant chemotherapy (yes vs. no) 1.91 (1.45–2.52) <0.001 0.82 (0.60-1.13) 0.219 0.77 (0.56–1.07) 0.117

WSI-based score (high risk vs. low risk) 1.95 (1.46–2.62) <0.001 1.82 (1.35–2.44) <0.001

EGFR epidermal growth factor receptor, KRAS Kirsten rat sarcoma viral oncogene, VPI visceral pleural invasion, STAS spread through air space, LVI lymph-vascular invasion, IASLC International
Association for the Study of Lung Cancer, WSI whole slide image, HR hazard ratio, CI confidence interval, DFS disease-free survival.
aMultivariable model without incorporating the model defined low- and high-risk groups.
bMultivariable model with incorporating the model defined low- and high-risk groups.
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Data preprocessing, tissue segmentation and feature
compression
Because eachWSI contains a large number of pixels, it is difficult for a deep
learning model to directly process the WSI and obtain good prediction
results.Moreover, eachWSI contains a large amount of invalid interference
information, which not only affects the subsequent analysis performance
but also consumes computing resources.Therefore, in this paper, theCLAM
model27 was used to classify the tissue regions of pathological images, which
can efficiently and accurately classify the regions with high diagnostic value
based on low computational burden. Figure 1a shows the tissue profile
extracted by the CLAMmodel, whichwas used to segment the tissue region
effectively and eliminate interference from the invalid region. Thereafter, we
partitioned the extracted regions into patch slices, each with a size of
256 × 256pixels.Meanwhile,weused theResNet50model pretrainedon the
ImageNet2012 dataset to process the extracted patch slices and extract the
morphological features of each slice, where the morphological feature
dimension of each slice was 1024.

WSI graph construction
For each patch, we saved the position coordinates of each patch in the
pathological image from the tissue segmentation and built an adjacency
matrix Aj using the fast approximation KNN (k = 8). The adjacency matrix
Aj modeled a 3 × 3 image receptive field in the pathological image. Finally,
we combined the featurematrixXj and adjacencymatrixAj to construct the
subgraphGj = (Xj,Aj), and allWSIs for the samepatientwere constructed as
G = {Gj}j=1. Figure 1a shows the process of WSI graph construction.

Feature process module
We combined a graph convolutional neural network and a self-attention
mechanism to process the feature input of the graph structure, effectively
grasp the implicit relationships between slices, and obtain an effective

representation for prognostic risk assessment. Moreover, according to the
different numbers of patient-level input WSIs, a multi-instance pooling
method was designed to effectively obtain the features of different WSIs of
the same patient, thereby improving the final prognosis prediction
performance.

Graph-attention-based network
To better handle the input data of the graph structure, we use graph neural
network to automatically extract features. Similar to convolutional neural
networks, graph convolutional neural networks (GCNs) have powerful
feature learning capabilities, in which the convolution of a certain point can
be viewed as a weighted sum of the neighbors of the point. However, the
GCN treats all neighboring nodes equally during convolution and cannot
assigndifferentweights according to the importance of thenodes.Assuming
that there areN nodes in a graph, in practical analysis, the contributions of
different adjacent nodes to the target node should also be different. Tobetter
distribute weights among different nodes, we used an attentionmechanism
to uniformly normalize the correlation calculated between the target node
and all its neighbors.

ai;j ¼
expðLeakyReLUðaT ½WXi k WXj�ÞÞP

k2Ni
expðLeakyReLUðaT ½WXi k WXk�ÞÞ

ð1Þ

|| is the concatenationoperation,W is the linear transformationmatrix,a is a
renewablematrix, and ai, j are the connection degrees of node j to node i. By
combining the GCN with then attention mechanism, we constructed a
graph-attention-based (GAT) layer for subsequent analysis.

Learning global features
We build an end-to-end differentiable function FGAT, using a GAT layer
to mine the node features of each neighbor in the space. To further learn

Table 3 | Multivariable Cox analysis of disease-free survival in validation cohort 2

Validation cohort 2 (n = 175)

Univariable Multivariablea Multivariableb

Variables HR (95% CI) P HR (95% CI) P HR (95% CI) P

Age (continuous) 1.01 (0.99–1.05) 0.347

Sex (male vs. female) 0.92 (0.53–1.61) 0.777

Smoke (yes vs. no) 1.55 (0.84–2.88) 0.164

Location (left vs. right) 1.06 (0.60–1.88) 0.833

Surgery (lobectomy vs. sublobar
resection)

1.40 (0.44–4.51) 0.571

EGFR mutation (positive vs. negative) 0.70 (0.39–1.24) 0.218

KRAS mutation (positive vs. negative) 1.75 (0.69–4.41) 0.237

VPI (present vs. absent) 3.91 (2.23–6.84) <0.001 1.59 (0.86–2.95) 0.138 1.44 (0.79–2.62) 0.238

STAS (present vs. absent) 3.79 (2.13–6.75) <0.001 1.30 (0.69–2.45) 0.421 1.15 (0.60–2.21) 0.666

LVI (present vs. absent) 3.90 (2.20–6.93) <0.001 1.66 (0.90–3.05) 0.106 1.48 (0.80–2.74) 0.214

IASLC grade

II vs. I 2.21 (0.23–21.23) 0.493 1.94 (0.20–18.67) 0.568 1.88 (0.19–18.13) 0.587

III vs. I 22.22 (3.06–161.32) 0.002 9.02 (1.13–72.27) 0.038 10.29 (1.28–82.93) 0.028

TNM stage

II vs. I 3.63 (1.64–8.04) 0.002 1.66 (0.71–3.87) 0.244 1.54 (0.67–3.56) 0.314

III vs. I 7.14 (3.80–13.40) <0.001 2.73 (1.36–5.51) 0.005 3.08 (1.53–6.21) 0.002

Adjuvant chemotherapy (yes vs. no) 1.78 (1.01–3.12) 0.046 0.76 (0.42–1.40) 0.385 0.69 (0.38–1.25) 0.217

WSI-based score (high risk vs. low risk) 3.04 (1.62–5.72) 0.001 2.96 (1.55–5.66) 0.001

EGFR epidermal growth factor receptor, KRAS Kirsten rat sarcoma viral oncogene, VPI visceral pleural invasion, STAS spread through air space, LVI lymph-vascular invasion, IASLC International
Association for the Study of Lung Cancer, WSI whole slide image, HR hazard ratio, CI confidence interval, DFS disease-free survival.
aMultivariable model without incorporating the model defined low- and high-risk groups.
bMultivariable model with incorporating the model defined low- and high-risk groups.
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the global morphological features of pathological images and avoid
gradient vanishing in the network, inspired by the idea of residual
learning, we used FGAT (l) as a residual map, which allows the super-
position of multiple layers of FGAT (l) together, where the output of FGAT

(l) is added to the input.

Glþ1 ¼ Fl
GAT ðGl;Φl; ρl; ζ lÞ þ Gl ð2Þ

Fig. 3 | C-index and time-dependent ROC curves at 3 and 5 years for the combination of variables independently predicting DFS according to multivariable Cox
regression analysis. a–c Validation cohort 1; d–f validation cohort 2. ROC receiver operating characteristic, AUC area under the curve, DFS disease-free survival.

Table 4 | Performance of the constructed model combined with existing pathological variables according to multivariable
analysis

C index p 3-y AUC p 5-y AUC p

Validation cohort 1

IASLC grade & TNM stage 0.737 (0.706–0.768) <0.001 0.766 (0.726–0.806) <0.001 0.802 (0.766–0.839) <0.001

WSI-based score & IASLC grade 0.708 (0.677–0.739) <0.001 0.733 (0.692–0.774) <0.001 0.746 (0.707–0.786) <.001

WSI-based score & TNM stage 0.706 (0.671–0.741) <0.001 0.731 (0.684–0.777) <0.001 0.740 (0.696–0.784) <0.001

WSI-based score & IASLC grade &
TNM stage

0.753 (0.720–0.786) – 0.782 (0.742–0.823) – 0.810 (0.772–0.847) –

Validation cohort 2

IASLC grade & TNM stage 0.777 (0.716–0.838) <0.001 0.780 (0.695–0.866) <0.001 0.877 (0.819–0.936) <0.001

WSI-based score & IASLC grade 0.786 (0.729–0.843) <0.001 0.795 (0.719–0.871) <0.001 0.829 (0.762–0.895) <0.001

WSI-based score & TNM stage 0.763 (0.706–0.820) <0.001 0.804 (0.727–0.881) <0.001 0.797 (0.718–0.876) <0.001

WSI-based score & IASLC grade &
TNM stage

0.811 (0.756–0.866) – 0.825 (0.747–0.904) – 0.881 (0.824–0.939) –

The p values refer to the comparison between the combination of two independent predictors and the combination of three independent predictors in the multivariable Cox regression model.
AUC area under the curve, IASLC International Association for the Study of Lung Cancer.
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where φl is a message construction function that calculates the association
characteristics between node u and its neighbor node v, ρl is an aggregation
function that aggregates all the features passed to v, and ζl is an update
function that updates the existing node features at node v with the aggre-
gated features Xl+1

v.

ml
v ¼ ρlðΦlðXl

v;X
l
uÞÞ ð3Þ

Xlþ1
v ¼ ζ lðXl

v;m
l
vÞ ð4Þ

We implemented the main model structure of GAMINN using a 3-layer
residual GAT model. In addition, we output the last GAT layer to the fully
connected layer and aggregated the different WSI features in the same
patient to achieve better patient-level feature expression (Fig. 1b).

Fig. 4 | The combination of TNMstage and the constructedmodel helps to identify patient subgroupswhomay particularly benefit frompostoperative chemotherapy.
a–f Validation cohort 1; g–l validation cohort 2. ACT adjuvant chemotherapy.
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Details on network training
WeuseNVIDIAGeForce 3070GPURTX for training themodel, which has
16 GB of memory. Additionally, we use the PyTorch library version 1.12.1
for training and evaluation. Adam optimizer is selected as the model opti-
mizer, whose initial weight is 0.0002, and each batch contains a multiple
pathological image data of patients. During the training process, the model
is trained through 100 epochs and utilize Cox likelihood function as loss
function, which is listed as follows:

Loss ¼ �
X

i

h
θ ðxiÞ � log

X
j2RðT iÞ

ehθðxjÞ
0
@

1
A ð5Þ

xi represents ith cases, hθ(.) means the risk score from the proposed model,
andR(Ti) is the list of patientswith shorter survival time than the ith patient.

Biological basis of deep learning model
RNA-sequencing was performed in 112 patients in validation cohort 1, the
TruSeq RNA Access Library Prep Kit (Illumina) was utilized to generate
library and the paired-end sequencing based on an Illumina Novaseq™ 6000
was subsequently conducted. Among them, 63 patients were classified as low-
risk and49ashigh-risk.Weused theedgeRpackage todeterminedifferentially
expressed genes between two groups with standard of log fold changes more

than 1 and adjusted p values less than 0.05. Subsequently, Gene Ontology
(GO) pathway analyses was performed to determine pathways related to the
model defined risk groups. Additionally, the single sample gene set enrich-
ment analysis (ssGSEA) was conducted with the GSVA package to quantify
the relative infiltration of immune cell types in the tumormicroenvironment.

Statistical analysis
DFS was defined as the time from surgery to the first-confirmed event of
lung cancer recurrence. The Kaplan–Meier method and log-rank test were
used to compare survival outcomes between groups. Cox regression analysis
wasperformed to identify independentpredictors of survival. Thepredictive
performance of eachmodel was assessed via the Harrell concordance index
(C-index), time-dependent receiver operating characteristic (ROC) curves,
and area under the curve (AUC) values at 3 and 5 years. The missing
information was dealt with using the single imputation method. Statistical
analysis was performedwith R software (version 4.3.1). A two-sided p value
less than 0.05 was considered to indicate statistical significance.

Data availability
The datasets analyzed in the current study are not publicly available due to
patient privacy purposes, but are available upon reasonable request to the
corresponding author. Access to the data will be restricted to non-
commercial research.

Fig. 5 | Biological basis of the deep learningmodel. aRadar charts illustrating top 30
differential genes between low-risk andhigh-risk patients.bDot plots showing the top 20
upregulated molecular pathways in high risk patients; cHeat map illustrating immune

infiltration patterns between low-risk and high-risk patients; d Boxplots comparing
proportions of infiltrated immune cells between low-risk andhigh-risk patients.GOgene
ontology, FDR false discovery rate, MDSC myeloid-derived suppressor cells.
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Code availability
The source codes of this study are available on reasonable request from the
corresponding author. The source codes for visualization canbe accessed via
the following link: https://github.com/Kim12312/WSI-based-Evaluation.
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