Table 1 Patient cohort characteristics for training datasets (n = 593)

From: Establishment of a machine learning model for predicting splenic hilar lymph node metastasis

Characteristics

Values

Age (years, mean [±std])

61.97 ( ± 11.2)

Sex

Male

418 (70.5%)

 

Female

175 (29.5%)

Neoadjuvant chemotherapy

90 (15.2%)

Main location

EGJ/upper

348 (58.7%)

 

Middle/lower/whole

245 (41.3%)

Cross-sectional parts

Anterior wall

56 (9.4%)

 

Greater curvature

82 (13.8%)

 

Lesser curvature

255 (43.0%)

 

Posterior wall

104 (17.5%)

 

Circumferential involvement

96 (16.2%)

Greater curvature invasion

212 (35.8%)

Macroscopic type

Type 0

64 (10.8%)

 

Type 1

33 (5.6%)

 

Type 2

169 (28.5%)

 

Type 3

171 (28.8%)

 

Type 4

131 (22.1%)

 

Type 5

25 (4.2%)

Tumor diameter (mm, mean [±std])

85.9 ( ± 46.8)

Tumor depth

pT2

63 (10.6%)

 

pT3

234 (39.5%)

 

pT4a

269 (45.4%)

 

pT4b

27 (4.6%)

Histology 1

tub1

89 (15.0%)

 

tub2

111 (18.7%)

 

pap

23 (3.9%)

 

por1

70 (11.8%)

 

por2

249 (42.0%)

 

sig

16 (2.7%)

 

muc

19 (3.2%)

 

Special type

16 (2.7%)

Histology 2

tub1

62 (10.5%)

 

tub2

119 (20.1%)

 

pap

21 (3.5%)

 

por1

42 (7.1%)

 

por2

71 (12.0%)

 

sig

150 (25.3%)

 

muc

8 (1.3%)

 

Special type

3 (0.5%)

 

None

117 (19.7%)

Lymph node

#1

186 (31.4%)

 

#2

85 (14.3%)

 

#3

297 (50.1%)

 

#4sa

71 (12.0%)

 

#4sb

71 (12.0%)

 

#4d

135 (22.8%)

 

#5

19 (3.2%)

 

#6

52 (8.8%)

 

#7

127 (21.4%)

 

#8

49 (8.3%)

 

#9

57 (9.6%)

 

#11p

78 (13.2%)

 

#11d

43 (7.3%)

 

#12a

7 (1.2%)

 

#10

48 (8.1%)

  1. EGJ esophageal gastric junction.