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Coordinated access tomulti-domain health data can facilitate the development and implementation of
artificial intelligence-augmented clinical decision support (AI-CDS). However, scalable institutional
frameworks supporting these activities are lacking. We present the PULSE framework, aimed to
establish an integrative and ethically governed ecosystem for the patient-guided, patient-
contextualized use of multi-domain health data for AI-augmented care. We describe deliverables
related to stakeholder engagement and infrastructure development to support routine engagement of
patients for consent-guided data abstraction, pre-processing, and cloudmigration to support AI-CDS
model development and surveillance. Central focus is placed on the routine collection of social
determinants of health andpatient self-reported health status to contextualize andevaluatemodels for
fair and equitable use. Inaugural feasibility is reported for over 30,000 consecutively engaged patients.
The described framework, conceptually developed to support a multi-site cardiovascular institute, is
translatable to other disease domains, offering a validated architecture for use by large-scale tertiary
care institutions.

Cardiovascular disease (CVD) remains the leading cause of mortality
worldwide, contributing ~19 million deaths in 2020, a 19% increase from
20101. Progressive growth in the prevalence of CVD is leading to an
unsustainable expansion inhealthcare costs,withCVDspending rising from
$212 billion in 1996 to $320 billion in 2016 and projected to exceed $800
billion by 2036 inNorthAmerica2. To address this, institutionsmust pursue
innovative approaches for delivering personalized care, a field increasingly
reliant on AI-based techniques to improve disease detection and predict
clinical outcomes for individual patients3–7. The development, surveillance,
and maintenance of these tools, collectively termed AI-augmented clinical
decision support (AI-CDS), rely on achieving ethical access to high-quality
matched data resources representative of an institution’s local community.
While seminal programs to accomplish this have been implemented by
notable institutions, such as the Mayo Clinic8 and Stanford9,10, or have been
established for sizeablemulti-center research initiatives11–14, there is a rapidly
expanding need for individual institutions to support the development of
AI-CDS using data locally sourced from their community.

In this paper, we describe a centrally governed program developed
by the Libin Cardiovascular Institute (LCI) to address core barriers
surrounding the ethical collection, contextualization, and curation of
digital health data resources to support AI-CDS. Our work was focused
on establishing a comprehensive, scalable, and interoperable platform
for the longitudinal collection and surveillance of matched structured
and unstructured (e.g., diagnostic imaging, ECGs, or dictated text)
electronic health data in “model ready” form. Core requirements for this
program, branded the PULSE program, included the: (i) routine and
transparent engagement of patients for informed consent to engage their
data resources for the evaluation of AI-CDS interventions, (ii) long-
itudinal capture of patient-reported social determinants of health
(SDOH) and patient reported outcome measures (PROMs) for con-
textualization of AI prediction models, (iii) automated transformation
of structured health data into task-relevant data schemas, (iv) automated
pseudonymization and pre-processing of unstructured (or semi-struc-
tured) diagnostic data into model-ready assets, (v) shared governance
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and operational data management services for all platform stakeholders,
inclusive of clinicians, researchers, and data scientists.

Results
Not applicable

Discussion
In this paper, we summarize the cumulative knowledge, experience, and
recommendations gained from developing a scalable institutional frame-
work to support ethical AI-CDS. Our presented framework and metho-
dology addresses core barriers routinely encountered by institutions aiming
to leverage digital health data resources for research, innovation, and AI-
augmented care. Built on foundational principles prioritizing patient
engagement and consent, the PULSEprogramwas designed to complement
established healthcare information technology teams and services to enable
longitudinal access to curated data products meeting rigorous acceptance
standards for use in AI-CDS, including their contextualization to SDOH
and PROMs.

The PULSE framework was conceived for and developed to service
the needs of a cardiovascular institute. However, its core principles and
design have been established to broadly support diverse domains of
healthcare. Its modular infrastructure and patient-centered governance
model was constructed to maximize adaptability to unique clinical
environments and specialties. Furthermore, the PULSE program can be
scaled from small (single site) to large (multi-site) hospital systems
through the consistent use of interoperable cloud-based infrastructure,
centralized data services and transformations, and common operational
workflows. By addressing core barriers to healthcare data usage, PULSE
offers a validated and versatile framework to guide the ethical and
equitable integration of AI-enabled CDS into clinical practice. These
collective processes and recommendations are presented with a desire to
catalyze and support the adoption of similar platform-based approaches
by other healthcare systems.

Methods
The Libin Cardiovascular Institute and Alberta Health Services
The LCI is located in Calgary, Alberta, Canada and is a joint entity of the
University of Calgary and Alberta Health Services (AHS). Alberta Health
Services (AHS) is a government-funded, publicly administered health
authority. Cardiovascular patients are managed across four adult acute care
hospitals in the Calgary region, supported by EPIC’s centralized electronic
health record (EHR) service. The cardiac sciences clinical department
supports approximately 25 cardiovascular clinics and manages over 40,000
unique patients annually.

Guiding principles of the PULSE program
While the benefits of AI applications in healthcare have been shown
across most clinical domains4, real world adoption has remained slow
relative to other industries. This is related to core barriers inclusive, but
not limited to ethical, technological, regulatory, workforce-related,
social, and patient safety concerns. A comprehensive systematic review
highlighting each of these unique barriers was published by Ahemed,
et al.15. The PULSE Program was designed to maximally address these
barriers by establishing a scalable infrastructure to promote electronic
health data’s transparent and ethical utilization for personalized care
innovation. Program development was driven by a local need to over-
come barriers to the ethical abstraction, transformation, and use of
multi-domain electronic health data to develop and explore AI-CDS. In
this context, four guiding principles were established: (i) the usage of
healthcare data resources to evaluate AI-CDS requires transparent and
informed patient consent, (ii) prediction models should be routinely
contextualized by SDOH and PROMs to mitigate bias, (iii) health data
resources intended for use in AI-CDS should be purposely engineered to
meet task-specific requirements and be longitudinally monitored for
stability, and (iv) AI-CDS models should undergo iterative surveillance

for bias across demographic sub-groups. PULSE was designed to deliver
an appropriate infrastructure, standard operational procedures, and
governance to address these guiding principles.

PULSE program recommendations
Todefine infrastructure needs, extensive consultationwas conductedwith
broadly representative stakeholders, including healthcare executives,
administrators, clinical program leadership, clinical researchers, data
science team leads, hospital information technology specialists, and
institutional privacy and research ethics boards. This collaborative process
established a list of 9 program recommendations aimed at addressing core
barriers surrounding the implementation of AI-augmented decision
support. These core barriers, and corresponding guiding principles are
described inTable 1. These principles have beendevelopedwith a focus on
the local needs of the institution, while ensuring the long-term sustain-
ability and adaptability to evolving technologies and regulatory
landscapes.

Patient engagement and consent for prospective data collection
and usage
Byprioritizing the transparentdeclarationofdata collectionandusage to the
patient community and establishing permissions to evaluate validated
models in clinical care pathways, PULSE adopts a voluntary “opt-in” con-
sent for program participation. Upon arrival at any clinic environment of
the institute, patients are invited to review a recruitment poster describing
the PULSE program, accompanied by a QR code. Tablet devices are also
made available in clinics for those patients without personal devices.
Scanning of the QR code directs the patient to an informed consent
document for the PULSE program, followed by clinic-configured health
questionnaires. Digital copies of the consent and survey responses in the
form of a report are automatically sent to the patient by email. Consent is
provided for the automated abstraction, pseudonymization, and surveil-
lance of multi-domain digital health data with iterative contextualization to
electronic health surveys, as illustrated in Fig. 1. We also obtain permission
for patient contact to participate in future intervention studies leveraging
trained models.

Completion of program enrollment triggers the automated abstraction
and pre-processing of pre-defined structured and unstructured data
resources from institutional archival servers for a retrospective period of 25
years and a prospective period of 10 years under data disclosure agreements
executed with the data custodian and approval of the REB. As a core,
institutionally endorsed program, data management processes adhere to
pre-defined data protection guidelines and common ethical and legal fra-
meworks, avoiding duplicate and/or competing efforts encountered by
project-specific approaches. Pre-processed (i.e., model-ready) data resour-
ces aremaintained for centralized access by institutional investigators using
a commonly agreed-upon set of usage principles, monitored in partnership
with the legal data custodians.

Social Determinants of Health (SDOH) and Patient Reported
Outcome Measures (PROMs)
While broadly recognized to provide strong contextual value for predicting
cardiovascular outcomes16–18 and of critical importance for the fair and
equitable delivery of AI models19–21, SDOH and PROMs remain the least
consistently captured variables by electronic health records. This primarily
reflects a lack of configurable and patient-facing tools that provide con-
textualized adjustment to patient described health features. PULSE
emphasizes patient involvement for routinely including SDOHandPROMs
in personalized prediction models, permitting iterative assessments and
calibration of model performance across diverse populations. To achieve
this, standardized instruments were engineered to deliver relevant content
across clinical domains, including gender, ethnicity, employment, and
access to healthcare resources, while obtaining periodic assessments of
patient-reported health status and quality of life. As shown in Figs. 1, 2,
instruments are deployed upon program enrollment, followed by periodic
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updating of health features at minimum time intervals by automated e-link
surveys or at the time of repeat clinic visits.

An inherent benefit of establishing pre-defined data schemas inclu-
sive of SDOH and PROMs is the capacity to monitor for population drift
and to conduct iterative surveillance of model calibration within

demographic sub-groups. Temporal shifts in local population demo-
graphics should prompt targeted re-assessment of model performance to
identify emerging bias and, as required retrain or refinemodels to balance
performance across sub-cohorts, this being a pre-defined role of the Data
Advisory Group in their mandate to maximize fairness and equity. It is,

Table 1 | PULSE program recommendations for addressing core barriers surrounding the development and implementation of
AI-augmented Clinical Decision Support (AI-CDS)

Identified barrier PULSE program recommendations

The secondary use of health data resources for purposes that may
influence future patient care decisions requires appropriate justification
and informed patient consent

Transparently develop and disclose a justifiable need to patients for the secondary use of
their health data to support AI-CDS, inclusive of informed patient consent and research
ethics board (REB) oversight.

Inconsistent data access practices can lead to non-compliant data usage
and inappropriate data migration

Centralize data access under common legal data sharing agreements (DSA) establishedwith
the data custodian. Establish custodian approved environments for investigator and/or
partner access to curated data resources with appropriate compute resources.

Lack of clear governance for data protection, usage, and monitoring Establish objective governance structures for establishing and maintaining policies for data
protection, acceptable usage, access security, and use monitoring.

Inconsistent or unreliable de-identification and data migration processes
can threaten patient privacy

Develop and validate scalable, privacy-compliant, and auditable data de-identification and
migration pathways for structured and unstructured data to destination servers, inclusive of
data lineage and provenance logs.

Lack of structured data stewardship and oversight processes for post-
access data monitoring

Establish data stewardship processes for the monitoring and reporting of data resource
usage across academic, clinical and external partner activities.

Poorly validated or inconsistent data transformations limits real-world
implementation of trained AI-CDS

Establish, validate and version-lock data transformations, quality assurance processes, and
pre-processing pipelines for the generation of reproducible data products appropriate for
model training and clinical inference. Execute longitudinal surveillance for concept drift.

Lack of data interoperability prevents the adoption and external validation
of trained AI-CDS

Develop and maintain common data models as versioned data schemas that are compliant
or contextualized by validated data ontologies, ensuring interoperability with international
and National Institute of Standards and Technology (NIST) data standards.

Poor and bureaucracy-ladened access processes to health data prolongs
innovation cycles and prevents appropriate model surveillance

Provide hierarchical, administratively controlled, and auditable access to regularly refreshed
and curated de-identified data products for approved investigators or strategic partners
within intuitive and cloud-accessible environments.

Lack of systematic documentation and tracking of program outputs limits
support for ongoing investment

Implement tracking and reporting of program outputs to assess impact on scientific
productivity, intellectual property development, technology transfer, and healthcare
outcomes.

Fig. 1 | Multi-Domain Data Growth for AI Augmented Clinical Decision Sup-
port. Illustration of patient level data resource growth initiated by informed consent
for data abstraction, capture of SDOH and longitudinal collection of PROMs.

Automated data abstraction performed by pre-defined data schemas. Clinical
decision support (CDS) interventions deployed based on iterative surveillance of
combined data resources.
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however, recognized that participation bias remains uniquely challenging
in the context of consent required programs, limiting access to potentially
beneficial AI-CDS in those not comfortable having their data used for
such purposes.

Retrospective data enrichment
In addition to patient consent for prospective data usage and surveillance,
PULSE endeavours to ethically access foundational institutional data

resources for model development and discovery. While lacking the con-
textual features delivered by prospective enrollment, retrospective data
resources are critical to support the training of foundational models. To
facilitate this, PULSE adopted aREB-approvedwaiver of consentmethod to
access the Institute’s historical data resources in partnership with and under
the supervision of the local health authority. These data resources are
processed using identical de-identification and pre-processing pipelines to
establish a curated core data resource for model training that is then

Fig. 2 | Overview of PULSE program data extraction, transfer, and loading (ETL)
process. Architectural design for automated and iterative extraction, transforma-
tion, and loading of structured and unstructured cardiovascular data resources for
consented program participants using centralized pseudonymization. Following
patient self-guided program enrollment and consent in clinics, pan-institutional and
service-specific patient-reported outcome measures (PROMs) are collected in

addition to social determinants of health (SDOH) using point-of-service and/or
remote (e-link) electronic surveys. Patient consent status is monitored by a Level 4
(PHI identified) server for automated query-retrieve of eligible data resources from
institutional data repositories. Resource-specific pipelines for data pseudonymiza-
tion are then executed prior to their migration to a cloud data lake for authorized
end-user activities.
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iteratively enriched through prospective data collection (accompanied by
SDOH and PROMs).

Compliance with patient privacy regulations
The regulatory landscape of personal data protection and privacy in
healthcare is anticipated to evolve rapidly over the next several
years22,23. Recent landmark announcements from the European
Union24 and the United States25 focus on the imminent introduction of
enforceable boundaries for data usage in AI applications, expanding on
established, regionally enforced legislation surrounding the manage-
ment of protected health information (PHI). While the US Health
Information Portability and Protection Act (HIPAA) delivers core
recommendations surrounding PHI26, regional adherence to PIPEDA
in Canada27 and global compliance with GDPR for members of the EU
(https://eur-lex.europa.eu/eli/reg/2016/679/oj) contribute to complex
requirements that will soon be compounded by AI-specific regulations.
Accordingly, scalable and adaptable architectures for adherence to
migratory regulatory mandates are required. To address this, PULSE
developed bespoke and configurable solutions to permit efficient and
adaptable pseudonymization services, substantially reducing barriers
to migrating data resources to cloud-hosted environments. This ser-
vice, installed on a virtual machine behind the healthcare institution’s
firewall, ingests and processes incoming data assets from archival
servers and applies asset-configurable transformations to remove
HIPAA26 /PIPEDA protected patient identifiers (inclusive of meta-
data fields accompanying unstructured data), replacing all patient level
identifiers with a single 128-bit universally unique identifier (UUID).
Each unique data asset (e.g., lab test, imaging study, ECG, etc.) is
similarly encoded with its ownUUID to permit provenance tracking as
an independent resource.

Diagnostic testing data assets are uniquely managed by dedicated
microservices for pseudonymization, metadata abstraction, and removal of
pixel-encoded private health information (e.g., for ultrasound images), as
required. These processes strictly adhere to validated processes for source
hardware and software versions, mandating core testing and approval for
newly encountered sources. This testing includes confirming appropriate
performance on destination platforms (e.g., DICOM image viewers and
analysis software).

Guidance inHIPAAposits that maintaining dates beyond the year
alone may identify patients when accompanied by contextual data.
However, the absence of dates limits data assets’ capacity to express
temporal associations. PULSE universally shifts record dates at the
unique patient level, including their date of birth, by a fixed but random
number of days, maintaining within-record temporal associations.
This shift (±200 days to ensure a 1-year random period) is generated
using a deterministic algorithm (i.e., one-way-hash) inclusive of the
patient’s randomly generated PUID, allowing for future de-coding by
authorized personnel.

Cloud migration of pseudonymized data assets
Server and compute infrastructures for large-scale institutional data plat-
forms have migrated significantly over the past decade, adopting cloud-
hosted solutions that deliver best-in-class cyber-security, scalable storage
and compute resources, and extensible access to bespoke solutions for
healthcare data management28. The PULSE cloud architecture follows a
“lake-house” design where pseudonymized data assets are migrated to
multiple data storage lakes upon completion of on-premises processing,
with structured data subsequently duplicated to an online analytical pro-
cessing (OLAP) data warehouse. OLAP databases store data in a columnar
format for efficient combinatorial processes, which comprise most of the
analytical workload. Unstructured imaging data resources aremounted to a
web-DICOMservicewith an extensible open-sourceDICOMviewer (Open
Healthcare Imaging Framework, OHIF) to allow for rapid access, visuali-
zation, and data labeling29. An architectural diagram of this cloud envir-
onment is provided in Fig. 3. In addition to using unstructured data for

model training, feature extraction from these resources can be stored in the
relational database to expand structured data resources, as shown in Fig. 4.

Semantic and temporally sensitive data schema design
All data assets of PULSE are components of a purposely engineered data
product designed to support AI-CDS in cardiovascular care and are com-
posed of pre-defined schemas. The conceptual design of PULSE was
inspired by a desire to consider the semantic meaning and temporal rela-
tionships of patient interactions with the healthcare system. Defining each
clinical encounter (e.g., hospital or clinic visit), procedure (e.g., surgery or
intervention), or diagnostic test (e.g., imaging test, ECG) by a standardized
data schema enables the institution to deliver data products that can be
certified for use in AI-CDS. In the context of PULSE, we combine these
clinical schemas with patient-reported SDOH and PROMs, establishing a
data model purposely engineered to support fair and equitable health-
care AI.

Data schemas are systematically developed, approved, versioned, and
migrated to production environments for prioritized clinical targets, as
graphically illustrated in Fig. 5. This activity is centrally managed by a Data
Advisory Group charged with prioritizing AI-CDS targets for the Institute
and ensuring each schema is developed inclusive of relevant stakeholders,
inclusive of clinical domain experts (e.g., diagnostic test schemas) and
patient representatives (e.g., to inform clinic-specific health questionnaires
to mitigate bias). This is operationalized as a longitudinal consensus-based
activity inclusive of defined stages of schema development, as shown in
Fig. 5.

Special considerations for structured versus unstructured data
resources
A list of core institutional data resources, structured and unstructured,
routinely abstracted from institutional data archival servers, is presented in
Fig. 2. Structured data are considered any data provided in a format readily
managedby relational databases (i.e., categorical or numerical values).Most
data resource formats held by healthcare institution electronic data ware-
houses (EDWs) are structured, except for free text (e.g., dictated notes). This
includes laboratory, pharmacy, radiology information systems, electronic
health record captured variables, and administratively coded hospital
diagnoses, outcomes, and procedures. The latter are coded by locally
applicable ICD-10 standards (ICD-10-CA and Canadian Classification of
Health Interventions (CCI)).

The abstraction of structured data resources is executed through
automated extract, transformation, and load (ETL) services developed
using programmatic query-retrieve mechanisms (SQL SELECT queries),
followed by the transfer of processed (schema) data resources into the
OLAP data warehouse. Similar ETL andmigration services for non-EDW
data sources are feasible for resources deemed of value for personalized
care discovery (e.g., phenomics, genomics, proteomics, metabolomics,
wearables, etc.).

Data transformations
Before migrating structured or unstructured data resources to produc-
tion environments in model-ready formats, common transformations
must be considered. These transformations are essential to ensure that
matched resources are available for model training and future clinical
deployment (inference). A summary of transformations commonly
applied by PULSE is summarized in Fig. 6, defined during schema
development and approval. For example, structured data must be rou-
tinely cleaned to harmonize data inputs, correct errors, or re-code to
clinically relevant variable definitions. Unstructured data resources
typically require common and task-specific pre-processing before clas-
sification or prediction models are used. These processes, each critical
for appropriate and efficient development and deployment of AI-CDS
tools, extend beyond the operational scope of conventional health data
analytics teams and become core justification for centralized healthcare
AI services.
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Data freshness and lineage
PULSE is designed to deliver an iteratively refreshed, centrally governed
resource forAI-CDS research and innovation. In this context, the achievable
cadence of data freshness varies based on its source and its dependency on
clinically active (i.e., production) servers. Our institution’s adoption of
routine archival services for relevant data resources reduces latency for these
activities, providing a dedicated “source schema” within the institutional
EDW for structured data. Unstructured data resources (e.g., imaging) are
considered sufficiently large in storage requirements to preclude routine

archival duplication to the EDW and are therefore migrated by scheduled
batch processing from PACS production servers.

PULSE supports data lineage tracking through automated logging of
data ingestion and pre-processing tasks, coded with their versioned trans-
formation operations. Best practices for development operations (DevOps)
are followed such that any changes to ETL codebases (typically imple-
mented in SQL or Python) are version-controlled with traceability of con-
tributions bydevelopers. Schemadesign is parameterized into configuration
files so any changes (e.g., variable renamings) are versioned. Additionally,

Fig. 3 | Overview of PULSE program cloud infrastructure.Coordinatedmigration
of certified and validated data schemas from structured (SQL relational database)
and unstructured (web-DICOM server and non-relational databases) resources by
common, subject-specific PUIDs. Data schemas are made available by their com-
bined attachment to project-specific data packages that are provisioned to virtual

machine (VM) environments on the host server (accessed by secure tokens)
accompanied by appropriate access to GPU and CPU compute resources. Appli-
cation program interface (API) data exchange can be supported for relevant software
applications enabling iterative tabular data visualization (e.g., Tableau, Microsoft
Power BI, etc.) and unstructured data analysis (e.g., image or signal processing).
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ingestion and delivery data pipelines operate in distinct development and
production environments, adhering to rigorous deployment protocols that
facilitate regression testingbefore their release. Software testing is automated
using unit and system-level tests that run before deployment. These best
practices help identify issues early and ensure data products planned for use
inAI-CDSare certified. Finally, time-stamped ingestion, delivery, andusage
logs are maintained across all data pipelines, including structured and
unstructured assets. These facilitate internal audit and quality assurance
processes essential to system compliance with institutional policies.

Data governance, accessibility, and usage
The delivery of large-scale curated digital health data resources presents
numerous opportunities for engaging in research and innovation
activities. However, accompanying these are inherent concerns
regarding the sensitive nature of health data usage in the context of
regional and federal laws governing its use. These concerns were high-
lighted by the recent American Heart Association (AHA) recommen-
dations for health information collection, sharing, and use30. Therefore,
establishing scalable and reproducible approaches to evaluate, approve,
and monitor the appropriate usage of data (e.g., data stewardship) is
essential. PULSE adopts a centralized and standardized intake service for
all data resource requests. Requests are reviewed by a Steering Com-
mittee for compliance with program-defined mandates, and approved
requests are granted cloud access to pre-defined (schema-based)

resources. This access is provided using a “data under glass” approach,
where all data is securely mounted to a provisioned virtual machine to
permit in-cloud processing by research investigators and/or partners.
Cloud hosting permits access to scalable GPU or CPU compute
resources to support model training and inference without data transfer
or relocation.

Delivery of outbound CDS to clinical care teams
Current regulatory pathways for deliveringCDS in clinical settings consider
the intended use, degree of transparency and explainability, and potential
risk to patient safety. These were clarified in the 2022 FDA Guidance
Document for ClinicalDecision Support Software, available at https://www.
fda.gov/regulatory-information/search-fda-guidance-documents/clinical-
decision-support-software. Based on these guidelines, a tool designed to
summarize health information to identify eligibility for guideline-
recommended care may not require regulatory approval. In contrast,
models designed to diagnose disease or predict benefit from therapeutic
interventions are more likely to be considered a regulated medical device
given their intention to alter clinical judgment.

Regulatory exempt CDS commonly use limited tabular variables
routinely available from the EHR and lack need for AI support, making
deployment from EHR-based workflows appropriate. In contrast, AI-
CDS focusses on early diagnosis and/or therapeutic guidance by lever-
agingmulti-domain source data, such as medical images, ECGs, or other

Fig. 4 | Approaches for the combined use of multi-domain data resources to
deliver personalized care. Patient-reported and electronic health record abstracted data
are routinely delivered as structured data resources for model training and inference. Image
and signal data can be modeled directly (as unstructured data resources) or passed through

validated AI-enabled analytics pipelines for feature extraction, then entered as structured
data resources for prediction modeling. Composite data resources from each discrete data
source can then be considered by ensemble-based predictionmodels tomaximize prediction
accuracy from available input models.
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wearable technology data combined with patient-specific health mar-
kers. Supported by the described platform, outbound messages can be
delivered by API-based communications, delivering messages (HL7 or
FIHR) for the posting of descriptive reports (e.g., PDF-based) to the
medical record or for the triggering of configured actionswithin the local
EHR. Establishing these integrations requires close collaboration and
partnership with both administrative and operational teams in addition
to approvals from administrative leaders (e.g., Chief Medical Informa-
tion Officer).

Deployment and program validation
Before institutional approval for the PULSE program launch across
all clinic environments, inaugural feasibility testing of our program
design was performed across four clinic locations at two hospitals,
conducted under REB-approval as the Cardiovascular Imaging
Registry of Calgary (CIROC). This service-focused pilot has suc-
cessfully deployed self-directed electronic patient consent for multi-
domain data abstraction and automated SDOH/PROM deployment
across 36,979 encounters in 28,829 unique patients. Program
enrollment rates of 88% for out-patients and 80% for in-patients have
been achieved. Cumulative matched data resources from this pilot
implementation have delivered objective value for exploring perso-
nalized cardiovascular care. For example, studies focused on
phenomics-based prediction of cardiovascular outcomes, inclusive of
heart failure hospitalization31–33, sudden cardiac death32, atrial
fibrillation recurrence (following ablation)34, and composite major
adverse cardiovascular events35 have been supported. Genotype-
phenotype association36 and phenotype discovery studies have also
been facilitated in patients with active cancer37, genetic

cardiomyopathy38 and infiltrative cardiomyopathy39. The value of
multi-domain data integration to support AI-CDS for ML-based
prediction of heart failure hospitalization40 and new-onset atrial
fibrillation41 have been trained and validated. Finally, unstructured
data resources have been leveraged to support the development of
novel image-processing pipelines38,42–51.

Long-term sustainability
The PULSE program is designed with sustainability and adaptability
in mind, ensuring alignment with evolving technologies and reg-
ulations. Its modular infrastructure allows seamless updates to
components such as AI models, data pipelines, and cloud systems. A
dedicated data governance team actively monitors changes in privacy
laws and institutional policies to maintain compliance, while regular
stakeholder engagement ensures relevance and alignment with
community needs. To address model drift and evaluate equity and
fairness, PULSE is incorporating protocols for periodic review and
revalidation of AI models using updated data and patient feedback.
Institutional investment ensures long-term operational support,
while collaborations with technology vendors and research partners
provide access to emerging tools and innovations. Finally, an
embedded monitoring and evaluation framework continuously
assesses the program’s impact and guides iterative improvements,
ensuring PULSE remains a dynamic and sustainable resource for AI-
CDS development and implementation.

Pulse implementation – overview and timelines
A graphical guide to the implementation of the PULSE program is
provided in Supplementary Figs. 1 and 2. These respective figures

Fig. 5 | Schema development. Phases of schema development leveraging curated
data resources of the PULSE program library. All schema requests are registered and
assigned a unique ID for data lineage tracking and versioning. The PULSE data
analyst works with designated domain expert(s) to define use case(s) prior to
entering the design phase. Design is executed by selection of relevant variables from
the existing library with identification of required transformations (establishing new

variables in the library), followed by sourcing new variables from other sources (also
added to the library). Schema constructed by the data engineer are then passed back
to the data analyst for validation using real-world data and feasibility of use case
deployment. Upon validation schema configuration is locked, versioned, and
scheduled for desired data generation schedule.
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provide milestone completion targets for both a preparatory phase
(inclusive of establishing a leadership team, hiring of core personnel, and
development of core infrastructure and compute capabilities), and
deployment phase (training, integration, shadow testing, and deploy-
ment of AI-CDS). Timelines were based on the achieved completion
dates at our institute, however, will vary based on local resource avail-
ability. Additionally, a summary of core personnel required to support
the PULSE program and estimated costs for implementation and
maintenance are presented in Supplementary Table 1.

While additional resources developed for the PULSE program are
not publicly available at this time, we are dedicated to fostering

collaboration to support similar initiatives. Institutions or individuals
interested in accessing specific PULSE resources, including data schema
templates, data governance documentation, and training materials, are
encouraged to contact us directly to explore potential data-sharing
agreements.

Data availability
Thedata resources generated andanalyzedduring this study arenotpublicly
available but can be shared upon reasonable request. Interested researchers
are encouraged to contact the corresponding author to discuss potential
access and usage conditions.

Fig. 6 | Common data transformations. Common data transformations applied to
meet data product specifications for a publishable schema. All data transformations
are documented and versioned, establishing each schema’s data lineage, provided as
part of each published schema’s data dictionary. For structured data, this includes

methodologies applied formanaging outliers, missing data, and feature engineering.
For unstructured data, this includes transformation applied to prepare raw data,
select target data regions (e.g., segmentation), extract features, and performance of
dimensionality reduction.
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Code availability
The code supporting this study is not publicly available but can be shared
upon reasonable request. Interested parties are encouraged to contact the
corresponding author to discuss potential access and usage conditions.
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