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Self supervised artificial intelligence
predicts poor outcome from primary
cutaneous squamous cell carcinoma at
diagnosis
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Primary cutaneous squamous cell carcinoma (cSCC) is responsible for ~10,000 deaths annually in the
United States. Stratification of risk of poor outcome at initial biopsy would significantly impact clinical
decision-making during the initial post operative periodwhere intervention has been shown tobemost
effective. Using whole-slide images (WSI) from 163 patients from 3 institutions, we developed a self
supervised deep-learning model to predict poor outcomes in cSCC patients from histopathological
features at initial diagnosis, and validated it using WSI from 563 patients, collected from two other
academic institutions. For disease-free survival prediction, themodel attained a concordance index of
0.73 in the development cohort and 0.84 in theMayo cohort. Themodel’s interpretability revealed that
features like poor differentiation and deep invasion were strongly associated with poor prognosis.
Furthermore, the model is effective in stratifying risk among BWH T2a and AJCC T2, known for
outcome heterogeneity.

Cutaneous squamous cell carcinoma (cSCC) is the second most common
human cancer, with an estimated incidence of over 1 million cases in the
United States and an increasing worldwide incidence over the past 20
years1–4.Whilemost cSCCsportend a goodprognosis, a subset of tumors are
associated with poor outcomes (PO)5,6 including local recurrence (LR),
nodal metastasis (NM), distant metastasis (DM), and disease-specific death

(DSD). cSCC causes the majority of keratinocyte carcinoma (KC) deaths in
the United States (US); it is estimated that ~10,000 patients die annually
from cSCC, which is similar to DSD rates from other cancers such as
leukemia, non-Hodgkin lymphoma, and melanoma7. Respectively, nodal
metastasis and cSCC-specific death occur in approximately 5% and 2% of
patients8,9.While PO are rare, these values are likely underestimations given
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that there is currently no national cancer registry data for cSCCs that
accurately assess incidence and prevalence. In addition, we must recognize
that relatively small percentages of poor outcomes from extraordinarily
large numbers of patients with cSCC result in significant numbers of
patients with metastases and disease-specific death. This in turns results in
significant morbidity, mortality and public health cost burden that may be
avoidable if highest risk patients are identified early in their course and
receive appropriate adjuvant intervention10. Furthermore, many epide-
miologic studies11,12 often combine data on keratinocytic carcinomas (basal
cell and squamous cell carcinomas) and thus incidence and prevalence rates
are widely variable. With an increasing incidence of cSCC, PO may also be
rising, making this an underrecognized, although significant, public health
entity.

Identifying patients at risk for poor outcome at timeof diagnosis can be
challenging. Commonly used cSCC staging systems include the American
Joint Committee on Cancer Staging Manual 8th edition (AJCC 8)13,14 and
the Brigham and Women’s Hospital (BWH) Staging System. The AJCC 8
system utilizes the following factors for cSCC tumor (T) staging: tumor size,
deep invasion, perineural invasion (PNI) or evidence of bone invasion. The
BWH staging model includes tumor size, poor differentiation, PNI, exten-
sion beyond subcutaneous fat and assigns a T stage based on the number of
high risk features present. While most POs occur in high stage tumors
(BWHT2b and AJCC 8 T3 and above), 25% of POs still occur in low stage
tumors, particularly T2a/T2, highlighting the heterogeneity in outcomes,
and concomitant difficulties with risk stratification, in this particular
subset15. Thus, prediction of patients at risk for poor outcome, even in lower
stage tumors, is imperative as itmayaffectmanagement in termsofworkup,
treatment, postoperative surveillance and early implementation of adjuvant
therapy16,17. Importantly, identification of which patients may be at risk for
POs in this low stage subgroup is ill-defined in the literature and remains
under urgent investigation.

While gene expression has predictive power18,19, such technology may
not be accessible to all patients and is associated with high cost. Visual
inspection of the distinct histopathological features found in cSCC, on the
other hand, remains important in predicting risk of progression and its role
in predicting risk of PO in low staged tumors requires further elucidation20.
Microscopic analysis using hematoxylin and eosin (H&E) stained tissue is
the gold standard for diagnosing cSCC and is useful in identifying high risk
features such as depth of invasion, PNI, and degree of differentiation.
However, lightmicroscopyhas a limited role indeterminingprognosis itself,
given potential for sampling error as well as inherent inter-reader variability
in histopathologic features. Recently, supervised machine learning algo-
rithms have been used in the cutaneous melanoma realm to identify
prognostically important features, response to immunotherapy, one-year
disease-free survival and mutation prediction with promising results21–24.
Current studies looking at machine learning for KC, such as squamous cell
carcinoma are, however, limited. Few studies have investigated the use of
artificial intelligence (AI) on whole slide images (WSI) of cSCC: Recently,
Knuutila et al.25 trained a supervised ResNet architecture to show that
artificial intelligence can predict the risk of metastasis from primary tumor
slides of cSCC, but this approach was not amenable to describing which
features were used by the classifier.

Herein, our goal was to investigate the histomorphological features
associated with cSCC outcomes via a self-supervised deep-learning
approach using images fromWSI collected from shave, punch, or excisional
biopsy specimens of primary cSCC tumors. While supervised approaches
are trained to directly learn specific labels (which can often be time-
consuming to obtain, require expertise, and may generate bias)26–28, self-
supervised approaches achieve self-discovery of common patterns across
unlabeled datasets29–32. Supervised approaches are also often described as
black boxes whose decision process is difficult to interpret33,34, which despite
an effort to develop interpretation strategies35, is hindering its acceptance by
humans and regulatory approval organizations34. Investigating an unbiased
and interpretable strategy for prediction of outcome is therefore crucial, and
self-supervised learning paradigms currently offer great opportunities for

the development ofAI in researchandmedicine36. In this study, we used 163
patients from three academic institutions as a development cohort and 563
patients from two other institutions as test cohorts (Supplementary Fig. 1a)
and based the core of our study on a Histological Phenotype Pipeline
(HPL)29. This pipeline (Fig. 1) has recently been developed in a lung cancer
study and has shown to cluster significantWSI features in a self-supervised
manner, leading to promising results in terms of subtype classification and
survival prediction29. Furthermore, HPL provides an additional layer of
interpretability. Supervised approaches were also considered either as a
baseline comparison or as a means to extract further information from the
images (Supplementary Fig. 1b).

Results
Self-supervised learning highlights histomorphological pheno-
types associated with poor and good outcomes
Slides from167patients used as thedevelopment cohortwere collected from
three institutions (Supplementary Table 1, Supplementary Fig. 1a): New
YorkUniversity (NYU),University ofCalifornia San Francisco (UCSF) and
Brigham and Women’s Hospital (BWH), along with clinical information
regarding whether the patient developed a good or poor outcome (see
Method section, and Supplementary Fig. 2). As an external cohort, slides
from 153 patients were received from the Complejo Asistencial Uni-
versitario de Salamanca (CAUSA) and 410 patients from theMayoClinic in
Arizona (Mayo).

Clinical outcome data was notated as a binary label of good vs. poor
outcome, with good outcome indicating no evidence of disease at most
recent follow-up and PO representing local recurrence, nodal metastases,
distant metastases or disease-specific death. Furthermore, disease-free
survival (DFS) data were available for the NYU and UCSF development
datasets (median follow-up, 38.0 and 32.7 months respectively), and for the
CAUSA and Mayo test datasets (median follow-up, 51.5 and 41.9 months
respectively), allowing us to perform Cox regression models with these
cohorts. Further patient information regarding age, tumor stage, size, was
not available for the UCSF and BWH cohorts. To objectively identify
phenotypes which could potentially be predictive of PO, we used a pipeline
based on the Barlow-Twins self-supervised approach37 as described in Fig. 1
(see Method for details). This pipeline has been shown to successfully
identify clusters of meaningful phenotypes on lung adenocarcinoma (such
as different histological subtypes and types of tissues), and link them to
overall and recurrence-free survival29. The Barlow-Twins model runs into
two identical encoders, batches of samples originating from similar tiles but
distorted in different ways. In trying to minimize the empirical cross-
correlation between the embeddings on those two networks and the target
cross-correlation, images projected into that network will eventually lead to
tile vector representations that are more similar to each other if the corre-
sponding images carry similar features. To simplify the analysis of the vector
representations, tiles sharing similar phenotypes are clustered into groups
called HPC (Histomorphological Phenotype Clusters) using the Leiden
algorithm, which has the advantage of being a community detection algo-
rithmwithhierarchical clustering and can identify groups of nodes aswell as
connections between the entities.

Following the strategy explained in the method section to reduce
overfitting, we froze a Leiden cluster configuration corresponding to a
resolution r = 0.75, leading to splitting the dataset into 26 HPCs
(Fig. 2a). A PAGA (PArtition-based GraphAbstraction) representation
(Fig. 2b) illustrates how the clusters at the top of the graph and of the
corresponding UMAP (Fig. 2c) appearmore enriched in tiles associated
with risk of poor outcome. As expected, at the selected resolution,
phenotypes are present in different proportions and the relative size of
HPCs vary considerably (Supplementary Figs. 3a, 4a, 5a). However,
we can see that patients are well represented, and many of those
phenotypes are present to various degrees in most of the patients
(Supplementary Figs. 3b, 4b, 5b), with the exception of HPC 25. Similar
observation is made regarding the representativity of the different
institutions (Supplementary Figs. 3c, 4b, 5b, 6b).
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Using the HPL pipeline, each patient can be described by the per-
centage of tiles contained in eachHPC,which in turn canbeused as an input
into regression models to estimate the HPC outcome prediction power. To
assess the variability and impact of Leiden clustering on prediction of out-
come, we also ran three-fold cross-validation log regression for binary

classification of poor versus good outcome (Supplementary Fig. 6d) and a
Cox regressions for survival prediction analysis (Supplementary Fig. 6e) at
various resolutions.Weobserve that the resolutionof r = 0.75 selected above
also allows for successful predictions in both approaches while preventing
overfitting.
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Self-supervised learning identifies histomorphological pheno-
type clusters associated with survival
As mentioned, each patient can be described by the proportion of tiles
assigned to each HPC, and this simplified phenotype description can in
turn be used to study outcome predictability. Computing a univariate
c-index analysis on eachHPC independently, we observe someHPCs are
either correlated with poor or good outcome (Fig. 2d), and for 10 of these
HPCs, the trends are confirmed in the two external cohorts (Fig. 2e,
Supplementary Fig. 7). Projected on the PAGA representation (Fig. 2f),
we notice those related to poor outcomes are located on the upper part of
the graph and those related to better outcomes are located on the lower
part of the graph.

Using amultivariate log regression approach on thewholeHPC vector
describing theHPC distribution, we investigated the potential to predict the
binary outcome from those HPCs. The good versus poor outcome binary
classification run on the 3 development datasets available resulted in an
average 3-fold cross-validationAUCof 0.724 (validation set) and 0.689 (test
set; Supplementary Fig. 8a). While the performances were lower for the
CAUSA cohort (AUC-0.554), they were very good on the Mayo external
cohort which contains a mix of Mohs excisions, shave and punch biopsies
(AUC ~ 0.844; Supplementary Fig. 8a). This result, as based on a self-
supervised approach, allows for an unbiased selection of clusters of tiles
which are identified as themost relevant to achieve the classification. It also
provides an easy way to identify phenotypes important for such prediction,
such as a forest plot analysis which shows the contribution of the main
clusters to this prediction (Supplementary Fig. 8b).

As a comparison, we trained the supervised network inception v3,
which relies on selected labeled regions.Manual free-text annotations based
on consensus agreement were performed by three board certified Mohs
micrographic surgeons (M.C., S.R.J, R.W.) and a senior dermatology resi-
dent (M.J.) using Aperio’s Imagescope interface. Consensus was achieved if
all reviewers agreed with the annotation features. We followed the pipeline
similarly used by Johannet et al.22 in their study of melanoma. Here, we first
trained the algorithm (Supplementary Fig. 8c, e, Supplementary Tables 2, 3)
to identify the regions manually annotated (normal skin, squamous cell
carcinoma in situ, invasive squamous cell carcinoma, other, and artifact).
Annotations in the ‘other’ group included dermis, fat, glandular tissue,
smooth muscle, cartilage, inflammatory infiltrates, and the presence of
ortho and hyperkeratosis. The artifact annotation included negative white
space, bubbles or pen markings. Second, we checked whether a selected
region (invasive cSCC) or a set of regions of interest (normal, in situ,
invasive) could be used to predict a binary outcome (Supplementary Fig.
8d, f). Such a supervised approach achieved performances of AUC = 0.675
on invasive cSCC and 0.671 on the set of regions of interest (normal, in situ
and invasive combined) for the development cohort. On the CAUSA and
Mayo test cohorts, it achieved performances of AUC = 0.576 and 0.711,
respectively, on invasive cSCC, andAUC = 0.598 and 0.726, respectively, on
the set of regions of interest. In addition to performing slightly worse than
the self-supervised approach (Supplementary Fig. 9 and more metrics in
Supplementary Tables 4, 5), this two-step method relies on manual anno-
tations, choices of regions from which the prediction should be made, and
little possibility todirectly interprethow themodelmade its decisionorwhat

subsets of phenotypes were used. These three bottlenecks are all addressed
by the self-supervised approach as described in the next section.

More interestingly, with the two datasets where the DFS data are
available, we performed a Cox Regression and obtain aDFS prediction with
aHarrell’s c-indexof 0.73 (0.72Uno’s c-index), and p-valueof 2.2e−4on the
cross-validation cohort (Fig. 2g), a Harrell’s c-index of 0.84 (0.83 Uno’s
c-index), and p-value < 0.0001 on the Mayo cohort (Fig. 2h), a Harrell’s
c-index of 0.62 (0.62 Uno’s c-index), and p-value of 2.4e−2 on the CAUSA
cohort (Fig. 2i). A forest plot (Supplementary Fig. 10a) and SHAP plot
(Supplementary Fig. 10b) were computed to interpret the contributions of
the different HPCs to this prediction and understand which phenotypes
influence themodel’s prediction. Expectedly,most of theHPCs identifiedby
the univariate approach appear also relevant in this multivariate approach.
This approach is particularly effective at differentiating poor from good
outcome in a subset of BWHT2a and AJCC-8 T2 tumors respectively (Fig.
2g–i), which currently face significant outcome heterogeneity thus render-
ing prognostication challenging. Note that the Kaplan–Meier plots extra-
polated from the poor outcome probabilities generated by supervised
classifiers show overall much lower performances (Supplementary
Figs. 11, 12). This self-supervised approach couldpotentially address the gap
in the current staging systems caused by the relative lack of outcome
homogeneity within AJCC T2 and BWH T2a groups.

Cluster interpretation highlights histomorphological phenotypes
linked with increased risk of local recurrence, metastasis and
increased likelihood of good outcome
The HPL self-supervised approach provides interpretability power that
allows us to identify howHPCs areweighted in terms of lower or higher risk
of overall PO in our Cox regression model (DFS), or in terms of good/poor
outcome in the log regression model. First, 100 random tiles were selected
from each HPC and visually analyzed by three board certified Mohs
micrographic surgeons (M.C., S.R.J, R.W.) and a senior dermatology resi-
dent (M.J.). The details of these observations are shown in Supplementary
Table 6 (see Supplementary Fig. 13 for a subset of randomly selected tiles).
When we project those observations on the Partition-based Graph
Abstraction (PAGA Fig. 3), we observe that HPCs sharing similar pheno-
types are linked and located in specific and coherent regions, confirming the
coherence of the HPL representation. Further validation was done pro-
ceeding similarly on the external cohorts (Supplementary Figs. 14, 15).

In Fig. 4 and in Fig. 5, we show examples of HPCs and tiles associated
with higher and lower risk of PO by our Cox model from Fig. 2g.

In Fig. 4a we show randomly selected tiles from the HPCs having the
highest influence on the c-index for prediction of higher risk of PO, and in
Fig. 4b, c, three heatmaps of patients with PO show the HPCs composition
projected on sections of theWSI. For the patient in Fig. 4b, for example, the
tumor recurred after 10.5months and its associatedWSIdemonstratedhigh
enrichments inHPCs1, 6 and20, the latter twowith ahighSHAP loghazard
ratio value synonymous with higher risk of PO. The HPC 6 shows deep
invasion of poorly differentiated keratinocytes withmitoses. HPC 20 shows
poorly differentiated andpleomorphic keratinocyteswithmitoses, andHPC
1 similarly demonstrates poorly differentiated keratinocytes, which have
been shown in prior studies to correlatewith POs, such as local recurrence38.

Fig. 1 | Adaptation of the self-supervised Histological Phenotype Learning
pipeline to study cutaneous squamous cell cancer. a The slides were first tiled into
smaller images of 224 ×224 pixels at 0.5 um/pixel (equivalent to a magnification of
20×). b A subset of those tiles were used to train the self-supervised Barlow-Twins
architecture. cOnce trained, all the tiles from the three cohorts were then projected
onto the trained network to extract their tile vector representations z, a 128 vector
coding each image. d Those vector representations are then over-clustered using the
Leiden approach in order to get homogeneous clusters (called Histomorphological
Phenotype Clusters, HPC) and visually identify artifacts from tissue representations.
In this UMAP of the tile vector representation z, each dot represents a tile, and each
color a different HPC. e Tiles belonging to HPCs identified as highly enriched in

artifacts are removed from the study. f The cleaned dataset is then subject to more
detailed analysis and subjected to a new round of Leiden clustering. This UMAP of
the cleaned tile vector representations z shows 26 HPCs corresponding to 26 groups
of self-identified phenotypes, and representative tile for the top 5 clusters corre-
sponding to the example slides in panel (c). gThe resultingHPCs can then be used to
generate heatmaps showing simplified slide representations and analyzed to identify
potential correlations between those phenotypes identified by the self-supervised
approach and patients’ outcome. Here, the heat maps corresponding to the example
slide section in panel (a) is shown, with the top 5 clusters numbered and corre-
sponding to the ones in panel (f). All tiles are shown after Reinhard’s color
normalization47.
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TheWSI in Fig. 4c shows a high presence of HPCs 0, 1, 5, 6 and 13, the
latter 2 showing a high SHAP log hazard ratio value. HPC 13 shows some
pleomorphic features as well as deeply infiltrative tumor cells, of which is a
feature associated with POs. Similarly HPC 6 demonstrates deep invasion,
poor differentiation, and significant atypia, factors that are recognized to
contribute toPOs38. The SHAPdecisionplots resulting fromour study show

how the enrichment or depletion of tiles from certain HPCs weigh into the
final decision for a patient whose tumor recurred shortly after surgery (LR,
Fig. 4b) and for a patient recurring 46 months after surgery (NM, Fig. 4c).

In Fig. 5a we show randomly selected tiles for the HPCs having the
highest influence on the c-index for prediction of a lower-risk of PO. In
Fig. 5b, an analysis shows clusters of HPCs which tend to be adjacent on a

https://doi.org/10.1038/s41746-025-01496-3 Article

npj Digital Medicine |           (2025) 8:105 5

www.nature.com/npjdigitalmed


Fig. 2 | Unsupervised approach generates clusters enriched in tiles from patients
with poor outcome, with good representation of the three cohorts, andpredicting
disease-free survival while providing tile clusters important for that prediction.
a UMAP with the 26 Leiden clusters found at resolution 0.75. b PAGA repre-
sentation of the Leiden clusters with node connections. The size of the nodes is
proportional to the number of tiles and their color is proportional to the proportion
of tiles associated with good/poor outcome patients. c UMAP with colors showing
tiles associated with good/poor outcome patients (green/orange). Each dot is a tile.
dUnivariate analysis comparing the c-index (average of a 3-fold cross validation) for
the prediction of the RFS for the development cohort (NYU+UCSF) and on the
external cohorts (CAUSA, Mayo). c-index below 0.5 (green) indicates lower risk of
poor outcome, while c-index above 0.5 (orange) indicates higher risk of poor out-
come. e Details of panel c for two clusters where the development cohort and the

external cohort show the same trend (See Supplementary Fig. 6 for all clusters). Error
bars show the confidence interval. f Projection on the PAGA of the HPCs showing
coherent trends for both the cross-validation on the development cohort, and on the
external cohorts. g Kaplan–Meier curve of predicted high and low risk patients of
having a poor outcome from the unsupervised HPL approach using a Cox regres-
sion, 3-fold cross-validation on the development cohort (NYU+UCSF). First row is
computed using the whole dataset, while second and third show a subset of patient
with stage T2a (BWH staging) and T2 (AJCC staging) only. Error bars show 95%
confidence interval (CI). 95% CI of hazard ratio (logrank) is shown between
brackets. The median value computed on the whole dataset is used to split low from
high risk patients. h Same as g but using the Mayo as a test cohort. i Same as g but
using the CAUSA as a test cohort.

Fig. 3 | PAGA graph shows a coherent organization of features found on cuta-
neous squamous cell carcinoma whole slide images. Annotations provided by a
group of Mohs surgeons, of which included tiles randomly selected from the

development cohort (NYU+UCSF+ BWH) for eachHPC (annotation taken from
Supplementary Table 6) and are projected on the PAGA graph from Fig. 2b.
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slide, by checking, for each tile belonging to a givenHPCs, what HPCs were
associated with its adjacent tiles. Two groups of HPCs identified as lower
risk of PO were seen as having relatively high interactions: HPCs 7, 12 and
16 as one group and HPCs 3, 8 and 24 as the other. A commonality of all
these HPCS was the presence of well-differentiated keratinocytes and the
lack of atypia or pleomorphism, which would be expected for a tumor with
good outcome. In Fig. 5c, d, we show the slides associated with two patients
whowere followedup formore than three years with no evidence of disease.

Those slides show the presence ofHPCs 3, 8 and 24 seen in Fig. 5b, aswell as
HPCs 7, 12 and 16. Similarly, it is likely that the good differentiation, lack of
pleomorphism and relatively non-specific features of hyperkeratosis can be
attributed to these findings.

Because theHPCs that are associatedwith good outcome are those that
have normal appearing keratinocytes, intuitively, the slide selection could
impact the resulting percentage of tiles and therefore final classification. To
explore this, we first generated a dendrogram with the heatmap color

Fig. 4 | Example of tiles fromHPCs associated with higher risk of poor outcome.
a Example of tiles randomly selected from certain HPCs leading to risk prediction of
poor outcome. b, c Examples of data from patients with poor outcome shortly after
surgery (10.5 months, local recurrence) and with poor outcome a few years after
surgery (46 months, nodal metastasis). For each case, a small portion of the original
slide is shown as well as the corresponding heatmap and the associated SHAP
decision plot. The color of the heatmap shows theHPC associatedwith each tile, with

the proportion of tile belonging to each HPC shown in the legend (percentages
computed over the whole slide(s) available for each patient). The top of the SHAP
decision plot shows the predicted value which determines the color of the curve.
Reading from bottom to top, the SHAP values for each HPC are cumulatively
summed, and the HPCs are ordered according to the absolute SHAP weight. On the
right, the proportion of tiles associated with each cluster is shown on a Log10 scale.
All tiles are shown after Reinhard’s color normalization47.
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showing theHPC composition per slide for all patients withmultiple slides,
and performed hierarchical clustering (Supplementary Fig. 16a), demon-
stratingthat formost cases, slides belonging to the samepatient are clustered
nearby showing similar overall composition. Then for each patient, we
computed the variance, among their own slides, on the percentage of tiles

associated with each cluster (intra-patient variance), and normalized it by
the variance across patients (inter-patient variance of tile percentages
associated with each cluster). Supplementary Fig. 16b, c shows that the ratio
intra-patient variance versus inter-patient variance is above 1 for most
patients and most HPCs, meaning more homogeneity among slides

Fig. 5 | Example of tiles from HPCs associated with lower risk of poor outcome.
a Example of tiles randomly selected from certain HPCs leading to prediction of
good outcome. bThe interaction analysis between HPCs shows two groups of HPCs
which tend to be adjacent on slides; each column shows the normalized proportion
of interactions each tile associated with a given HPC has with HPCs associated with
its adjacent tiles. The dendrograms correspond to bi-hierarchical clustering of
HPCs. c, d Examples of data from patients who have not recurred and have been
followed formore than three years. For each case, a small portion of the original slide
is shown as well as the corresponding heatmap and the associated SHAP decision

plot. The color of the heatmap shows the HPC associated with each tile, with the
proportion of tile belonging to each HPC shown in the legend (percentages com-
puted over the whole slide(s) available for each patient). The top of the SHAP
decision plot shows the predicted value which determines the color of the curve.
Reading from bottom to top, the SHAP values for each HPC are cumulatively
summed, and the HPCs are ordered according to the absolute SHAP weight. On the
right, the proportion of tiles associated with each cluster is shown on a Log10 scale.
All tiles are shown after Reinhard’s color normalization47.
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belonging to the same patient. Finally, we computed per slide instead of per
patient SHAP decision plots (Supplementary Fig. 16d), showing that the
conclusions differ only slightly among slides from a given patient.

Other differences and potential confounding factors between the
development and the test set are the type of biopsy and the source of the
anatomic site.While theNYUcohort hadnearly asmany slides fromexcision
as from shave biopsies, the CAUSA test cohort is exclusively composed of
wide local excision, and the Mayo cohort, on the other hand, is mostly
dominated by shave biopsy (Supplementary Table 1). We notice that most
HPCscontain tiles fromall typesofpreparations (SupplementaryFigs. 3e, 4d).
In some rare HPCs, the relative proportion of tiles between excision and
biopsies varies more (Supplementary Figs. 3d, 4c): for example, HPCs 1 and
13, located at the top left of the PAGA graph and contain subcutaneous
fat/tissues, are relatively more rare in shave biopsies than excisions, which is
consistent considering that the depth of the shave samples is thinner than
excisionswhichare often full-thickness.While the survival predictionpipeline
seems toperformwell onboth the shaveandexcisionbiopsies specimens from
the Mayo cohort (Supplementary Fig. 17a–c), we cannot rule out that with
larger training set, a biopsy-type specificCoxRegression approachwould lead
to even better performances, specially for wide local excisions specimens like
those used in the CAUSA cohort. Finally, because the anatomic sites are so
diverse compared to the number of patients available, conclusions regarding
potential biases are more difficult to draw but we notice as well that
most HPCs contain at least a few tiles from most sites (Supplementary
Figs. 3f, g, 4e, f, 5c, d). At this stage, we did not identify either impact from the
tissue source on the survival prediction, though larger per source cohorts
would be needed (Supplementary Fig. 17d, e).

Discussion
In this study,wedemonstrate that the self-supervisedapproachofHPLcanbe
successfully applied to analyze sets of cSCCWSIs from initial biopsy samples
from different institutions, grouping in a coherent manner a variety of his-
topathological features linked to good and POs. The ability to obtain prog-
nostic information from biopsy slides alone is significant as it may guide
clinical decisionmaking regarding treatment and surveillanceofpatientswith
potential PO. TheHPCs identified were used to predict the good versus poor
outcome with an area under the curve (AUC) of ~0.7 and the disease-free
survival (DFS) with a c-index of 0.73 (p-value = 2.2e−4) on the cross-
validation of the development cohort, and AUC~ 0.58–0.73 and
c-index~0.62–0.84 on the test cohorts. The performance remains compelling
in a subset of AJCC-8 T2 and BWHT2a tumors (c-indexes of 0.85 and 0.71,
respectively, on the cross-validation cohort; 0.96 and0.75, respectively, on the
Mayo cohort; and 0.56 for the BWH T2a on the CAUSA cohort). The
performance achievedhere canalsobeplaced in the context of othermethods
towhich it could be potentially combined to further refine theprecisionof the
outcome. For example,Zhaoet al.19 showed thatprotein expressionofAXIN2
and SNAIL have a c-index of 0.69 in predicting recurrence-free survival, and
that, although their available clinicopathological data alone had little pre-
diction power (c-index of 0.40), the c-index was increased to 0.75 when
combining clinicopathological with the protein expression. Using supervised
deep-learning architectures, few studies have explored the predictability of
cSCC fromWSIs, all of which were unable to pinpoint which features were
used by the algorithm to make the decision. Focusing on prediction of
metastasis in a cohort of 104 patients harboring cSCC, Knuutila et al.25

achieved AUCs within 0.629–0.689, performing better (AUC= 0.747) when
restricting the study to those that recurred rapidly (within 180 days). This
study was done using either the whole slide or tumor regions manually
annotated by pathologists. On the other hand, using two cohorts of 54
melanoma patients, Comes et al.24 achieved AUCs = 0.667–0.695 in pre-
dicting the one-year disease free survival using regions of interest manually
pre-selected by pathologists. In addition to its performance, the advantages of
the HPL pipeline, initially developed on lung cancer29, is that its training is
self-supervised and does not require any manual pre-annotations. Further-
more, it provides an additional layer of interpretation highlighting which
phenotypes weighed in favor of higher or lower risk prediction.

In our studywe found that enrichment inHPCs3 and8 correlatedwith
a prediction of good outcome from cSCC. Both HPCs demonstrate well-
differentiated keratinocytes, lack of atypia or pleomorphism, and the rela-
tively non-specific presence of hyperkeratosis. Alternatively, enrichment in
HPCs 7 and 16, which feature well-differentiated cells and lacked pleo-
morphism, deep invasion, or significant atypia, also correlated, to a lesser
extent towards a lower risk of PO. Additionally, among theHPCs identified
that correlated with higher risk of PO, the two major phenotypes identified
were severe pleomorphism with poor differentiation and deep invasion.
This result is consistent not only with previous studies but also with the
current BWH and AJCC-8 staging systems38. In a recent meta analysis,
Zakhem et al. revealed that tumors with invasion beyond the subcutaneous
fat were associated with a statistically significant risk of LR and DSD39–41.
Moreover, ulcerated tumors, poorly differentiated tumors, PNI, lympho-
vascular invasion, desmoplastic stroma and immunosuppression are all
significantly associated with POs38,42. These attributes have been defined as
key defining features of aggressive behavior by cSCC and some are con-
sidered in staging. It is for this reason that the ability of ourmachine learning
algorithm to detect these features, at time of biopsy, is significant. Our
systemmay offer a standardizedmethod for feature identification given the
potential for inherent inter-reader variability in identification of high risk
histopathologic features by dermatopathologists. Poor differentiation and
invasion beyond the subcutaneous fat have been associated with an
increased risk of metastasis43. More interestingly, the different clusters
identified in this study and their association with certain types of outcomes
are located in well-defined and coherently connected regions of the UMAP
and of the PAGA graphs (Fig. 6a, b). The two sets of HPCs associated with
good outcome (HPCs 3, 8 and 24 as one group, and 7, 12 and 16 on the
other) and identifiedashavinghighnumbers of interactionson the slides are
each connected in the PAGA and located on the lower right side of the
UMAP.On theotherhand, the top sideof theUMAP isdominatedbyHPCs
associated with POs.

In this study, we uniquely used a self-supervised learning followed by
community-based clustering to predict cSCC-free survival, while describing
the phenotypes of the clusters weighing the most in these findings. Pre-
dictive clusters for PO included thosewith poor differentiationwhereas lack
thereof, enrichment in non-specific hyperkeratosis without atypia tended to
favor prediction of goodprognosis. Importantly, we demonstrate significant
potential to optimize clinical decision-making in that this approach is
particularly efficient at differentiating PO risk in low stage tumors (BWH
T2a and AJCC-8 T2 tumors). This addresses a large gap in the literature
relating to outcomehomogeneity between low stage tumors (BWHT2aand
AJCC T2) given that ~25% of POs occur in low stage tumors15. Gupta et al.
previously evaluated risk factors for poor outcomes in stage T2a cSCC and
identified a predictivemodel for those at risk of poor outcomes usingmajor
and minor criteria with high specificity (97.4%) but low sensitivity (7.7%)
(15). Thus, while thismodel is highly accurate at identifying tumorswithout
poor outcomes, it does not perform as well at identifying tumors that will
develop poor outcomes. Additionally, this study was not externally vali-
dated. While direct comparison of these models is outside the scope of this
study, we hope that our findingsmay add to the literature demonstrating an
adjunctive method for accurately identifying patients at risk for poor out-
come on an externally validated cohort. Overall, we believe incorporation of
these data along with existing clinical information may augment identifi-
cation of highest risk patients and would allow for rationally based, focused
clinical followup thatmay lead to the development of algorithms for further
imaging and work up.

Our results suggest that prognostication of cSSC can benefit from self-
supervised learning to not only assist clinicians in predicting outcomes but
also highlight histomorphological patterns associated with these outcomes.
These findings play a significant role in patient care, as prognostic infor-
mation from initial biopsy slides alone may guide clinical decision making
with regard to diagnostic workup, treatment and surveillance of patients
with high risk for PO. Clinicians may use the information gained from self-
supervised learning as an adjunct in clinical decision making and assigning
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pre-test probabilities for patients that might be at higher risk for PO and
benefit from further workup and management. (Fig. 6c). For example,
patients identified at high-riskmaybedeemed appropriate for pre-operative
imaging, more frequent follow up or removal of a primary tumor with
complete margin control and enhanced pathologic staging provided by
Mohs micrographic surgery44,45.

Development of, and access to, large datasets will be crucial to further
validate and expand the current study. Ultimately, the ability to assess the
risk of PO at time of initial diagnosis could provide the basis to establish and
test diagnostic and therapeutic protocols that could ultimately optimize
clinical outcome.

Methods
Ethics approval
The NYU study number is 20-01740 and is classified as non-human
research, therefore was not subject to IRB review at NYU. UCSF received
approval for expedited IRB review (protocol #21-34087) and BWH (pro-
tocol# 2021P000701). The cohort from the Complejo Asistencial Uni-
versitario de Salamancawas approved by the local IRB. The cohort from the
Mayo Clinic was subject to IRB review (ID #21-012833, from

Clinicopathologic and Multi-Omic Stratification of Cutaneous Squamous
Cell Carcinoma).

Dataset
Datasets of shave or punch biopsy specimens were collected from three
institutions each with separate IRB approval processes (Supplementary
Table 1, Supplementary Fig. 1a): 119 slides from42patientswere collected at
NewYorkUniversity (NYU), 95 slides from95patientswere collected at the
University of California San Francisco (UCSF) and 40 slides from 40
patients were collected at the Brigham andWomen’s Hospital (BWH). For
cases at NYU,multiple slides from a single lesion were analyzed per patient.
For slides fromBWHandUCSF, single slides of the highest yield resolution
were obtained for ease of logistical coordinationbetween sites.Due to lack of
information or poor slide quality (e.g., out of focus), fourteen slides were
removed from the study (Supplementary Fig. 2). We therefore ended up
including slides from 163 patients diagnosed with cSCC on initial biopsy
who developed good or poor outcomes (NYU: 38 patients, n = 31 and 7,
respectively; UCSF: 85 patients, n = 58 and 27, respectively; BWH: 40
patients, n = 20 and 20, respectively). The size of the training cohort was
determined by the samples available in the institutions selected to compose

Fig. 6 | Specific HPCs are correlated with poor outcome. a, b Projection on the
UMAP and PAGA graph of the HPCs associated with high and low risk of poor
outcome. c Ultimately, we anticipate such a deep-learning tool, which identifies
patients at higher risk with poor outcome and provides histomorphological

interpretability, could assist treating physicians in making decisions on an increased
post-operative follow-up and management strategy. Panel (c) created with
biorender.com.
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the training cohort, and due to the limited amount available, it was deter-
mined by sample size calculation approaches. To benefit from the best
resolution available, whole slide images were scanned on an Aperio
AT2 scanner and captured at 0.25 um/pixel at 40 X using JPEG2000
compression and stored as a svs pyramidal file.

De-identified slides from other collaborating institutions were sent to
NYU Langone Health’s Dermatologic Surgery & Cosmetic Associates
Office. The scanned images did not contain any patient information.
De-identified samples were simply classified as good versus POs. All
de-identified physical slides were stored at NYU Langone Health’s
Dermatologic Surgery & Cosmetic Associates Office until the analysis was
complete. Upon completion of analysis, the slides were returned to the
original institution.

Adult patients 18–89 years old with existing slides of biopsy proven
cSCC obtained prior to January 1, 2021 were included. Patients were
excluded if they were outside the specified age range and had no histological
confirmation of cSCC. Patients treated at NYU Langone Health’s Derma-
tologic Surgery & Cosmetic Associates Office were identified for inclusion
by a NYULH study team member based on the above inclusion and
exclusion criteria above. Patients atNYUwere identified using retrospective
chart review of those with poor outcome, and thereon manual review of
slides were performed to select those with the best slide quality. Patients
treated at collaborating institutions were identified by individuals at those
institutions based on the inclusion and exclusion criteria.

Patients were classified as having a PO if the tumor was successfully
treated but the tumor came back at any time in the future, either in the form
of local recurrence (LR), nodalmetastasis (NM), distantmetastasis (DM) or
if the patient had a disease-specific death (DSD).Otherwise, if no tumorwas
detected at subsequent visits, the patients were classified as having a good
outcome. In total, 119 patients were associated with good outcomes and 44
with POs. For UCSF andNYU, the times to LR, NM,DMorDSDwere also
available, giving further granularity into the disease-free survival (DFS)
analysis. However, this data was not available for the BWH cohort.

In addition, two external cohorts were obtained (Supplementary Table
1): 156 slides from153 patients (112 good outcome, 41 poor outcome) from
the Complejo Asistencial Universitario de Salamanca (CAUSA) scanned
with MoticEasyScan One (Motic, Hong Kong) and 411 slides from 410
patients (455 good outcome, 55 poor outcome) from the Mayo Clinic
(Mayo) scanned with a Leica’s GT450 scanner (Leica Biosystems).

Self-supervised-based analysis
The self-supervised-based study was based on the Histomorphological
Phenotype Learning (HPL) through self-supervised learning and commu-
nity detection pipeline developed by Quiros et al.29 and summarized as
follows and in Fig. 1 (and Supplementary Fig. 1). Using the DeepPATH
tools46, images from the 3 datasets were first tiled (removing those where the
background covers more than 75% of the tile, and applying color normal-
izing using the Reinhard’smethod47), and converted to a h5 file such as each
tile fed to the self-supervisedpipelinehas afieldof viewof224×224pixels at a
pixel size of about 0.5 um (corresponding to amagnification of 20×, Fig. 1a).
The 2,069,052 resulting tiles were split such that 40% of the tiles from each
dataset were combined and used to train the self-supervised Barlow-Twins
algorithm based network37 (Fig. 1b). After training (Supplementary Fig. 6a),
all the tileswere projected into the 128 dimension z tile representation vector
of the trained network (Fig. 1c) and are represented by UMAPs48 and
PAGA49 in this manuscript (Fig. 1d). As a filtering step, a first Leiden
clustering50 was achieved using a resolution of 7 in order to obtain a large
(n = 136) number of Histomorphological Phenotype Clusters (HPCs) and
over-cluster and increase the chance of having homogeneous HPCs. Those
HPCs were visually inspected to identify those containing artifacts
(air bubbles, blurring, dust, etc. Fig. 1d),with the goal to remove fromthe rest
of study the tiles from HPCs representing artifacts. We identified 9 clusters
containingartifactswhichwere removed fromthedataset. Those artifacts are
all containedwithin regions protruding from the rest of theUMAP (Fig. 1e),
and were exclusively artifacts without any underlying tissue. The resulting

1,998,932 tileswere thenused for the rest of the study.Next, another roundof
Leiden clustering was applied to the remaining tiles (Fig. 1f), and each HPC
was mapped back to the slide of each patient (Fig. 1g). Each patient is
therefore described by a patient vector representation which is embedded in
the percentage of tiles associated with each HPC.

Considering the small development dataset, the analyses were done
using a 3-fold cross-validation approach to study the variability of the
approach while allowing each set to have enough samples. In each fold, a
different third was used as a test set, while the remaining tiles are split
between training (80%) and validation (20%). To ensure representativity
and proper split, folds were generated randomly with a single constraint on
the RFS to ensure each train and test sets have similar Kaplan–Meier pro-
files. After Leiden clustering, each whole slide image (WSI) can be repre-
sented by a codebar called aWSI vector representation which describes the
distribution of tiles in each HPC. When a patient has more than one slide
available, those can also be aggregated into a “patient vector representation”.
Logistic and/or Cox proportional hazards regressions have been run using
thepatient vector representations fromthe training sets, and evaluatedusing
the validation and test sets left. Similar to the previous study on lung
cancer29, the performancewas analyzed on a set of cluster configurations via
n-fold cross validation to estimate variability at a given Leiden resolution,
theWald test being used tomeasure the significance on each regression and
using Fischer’s method to combine the p-values. Once done, we locked
down a fold for further analysis.

As the resolution parameter r of the Leiden clustering algorithm is
increased, the UMAP appears as split intomoreHPCs (Supplementary Fig.
6c, greencurve).However, as the numberofHPC increases and gets smaller,
in terms of average number of tiles, the risk of obtaining institution or
patient-specific clusters increases (Supplementary Fig. 6c, purple and cyan
curves), which would be a sign of over-fitting. Indeed, increasing the
number of clusters too much increases the risk of detecting features which
are patient or institution specific (whichmay be caused by the fact that the 3
cohorts were stained in 3 different institutions and scanned on 2 different
scanners, or may be related to some other phenotypes specific to natural
variations between individuals). However, we are interested in finding
common patterns across the three institutions, with enoughmeaningful (or
compact) clusters to describe the diversity of commonpatterns found in this
disease. Therefore, to select the best Leiden cluster resolution for the sub-
sequent analysis of theHPCs,we checked, for each resolution: 1- the average
patient and institution presence in HPCs (see details below); 2- the per-
formance of the binary classifier (good versus poor outcome) via the AUC
(Area Under the receiver operating Curve) of the logistic regression
approach; 3- the performance of the Cox Regression for survival prediction.
The average patient presence (Supplementary Fig. 6c) is defined as the
average percentage of patients present in the HPCs at a given resolution,
either counting all patients even if only 1 of their tiles belong to a certain
HPC, or using a 1% threshold. Similarly, the institution presence (Supple-
mentary Fig. 6c) is defined as the average percentage of institutions present
in the HPCs at a given resolution, either counting all institutions, or only
counting those with at least 1% of their tiles associated with a given HPC.
Despite the small size of our cohort and limited number of institutions
involved, it allows us to get a sense of the potential generalization of the
study, and these averages will tend to get smaller as the HPCs becomemore
patient or institution specific. We notice that at resolutions higher than
r = 0.75, these averages decrease, showing that more HPCs become specific
and less generalizable across patients and institutions.

Binary classification between good and poor outcome was done using
all three development samples, while survival analysis data was only avail-
able for the NYU and UCSF datasets. Those analyses were done using a
three-fold cross validation approach (Supplementary Fig. 6d, e), using folds
consistent with those used for Leiden cluster determination to study report
influence on variations between different Leiden clustering runs (Supple-
mentary Fig. 2). The logistic and cox regressions were done following the
approach detailed inQuiros et al.29. Briefly,WSI vector representationswere
built for each patient to describe the percentage of tiles associated with each
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HPC, and center log-ratio transformation was applied to use those in linear
models. A three fold cross-validation analysis was performed such as, for
each fold, one third of the patients is used as a test set, and the rest is used for
the training/validation process. For each fold, the regressions were fit using
the training set and assessed with the validation and test sets.

Elastic-net penalty models were used for regression where we opti-
mized the alpha parameter (final value of 0.25) for the logistic regression
analysis, and the alpha and l1 ratio parameters (to final values of 0.35 and
0.01 respectively) for the Cox regression analysis. After having locked a
cluster configuration, themedium of the hazard predictions on the training
set was used to define the threshold between the low and high risk groups
used on the test set and shown in Fig. 2g. The statistical significance between
the two groups is measured using the log rank test and a p-value thresh-
old of 0.05.

In addition to the cross-validation results on the development cohort,
the generalizability of those trainednetworkswas tested by inferences on the
two external cohorts, CAUSA and Mayo.

Cluster analysis
UMAPs48 (UniformManifoldApproximation and Projection) andPAGA49

(partition-based graph abstraction) were used to visualize the tile vector
representations and resulting Leiden clusters. PAGAprovides an additional
layer of interpretability by preserving the topology where edges between the
nodes denote statistically relevant connectivity between HPCs.

For each HPC, 100 tiles were randomly selected and visually inter-
preted (blinded from the positions of the HPCs on the PAGA) by three
board certified Mohs surgeons and a senior dermatology resident (M.C.,
S.R.J., R.W.) who freely annotated and labeled each of them (no features to
choose from were supplied). Consensus annotations, which arrived if all
reviewers agreed with the annotation features, are shown in Supplementary
Table 6. Annotations were then mapped into the PAGA (Fig. 3 for the
development cohort, and, for the external test cohorts, in Supplementary
Figs. 14, 15), where interesting connections between nodes can be seen
despite the pathologists’ annotations having been done without knowledge
of the PAGA.

Analyses of the correlation between the clusters and external annota-
tions were done following the HPL pipeline29: SHAP (SHapley Additive
exPlanations) and Forest plots were used to evaluate how each HPC affects
the log odds ratio of patients. The SHAP values were calculated across each
test set of 3-fold cross-validation analyses. The Forest plots are based on the
log hazard ratio of Cox proportional hazards model over the train sets of a
3-fold cross-validation. The coefficients were averaged across fold and
combined p-values with Fisher’s combined probability test. Correlations
with pathologic diagnostic and type of recurrence (LR or overallmetastases)
was achieved using Spearman’s rank correlation with a significance
threshold of 0.01 on the p-values (adjusted with the Benjamini/Hochberg51

method for false discovery rate). Overall metastases include both nodal and
distant ones.

Furthermore, Coxproportional hazards regressions univariate analysis
was performed on each cohort using a 3-fold cross validation approach.

Supervised analysis
To explore whether the performance of the outcome prediction in a
supervised manner, we used DeepPATH46 and followed an approach
comparable to the one used to predict response to Melanoma treatment in
Johannet et al.22, training inception v352 twice at amagnification of 20x: first
to automatically segment the slides, second to predict the outcome from
selected segmented regions. For the segmentation, a 3 and 5-class network
were trained. In the 3-class approach explored, the network was trained to
identify the following classes: regions of interest, artifacts and other features
(muscle, bone, cartilage, hair follicles, nerve…). The goal was therefore to
simply be able to sort out the artifacts and other features regions judged
irrelevant by the team to later predict outcome. In the 5-class approach, the
networkwas designed to splitmore precisely the “regions of interest”, and it
was therefore trained to identify the following classes: invasive SCC, in-situ

SCC, normal epidermis, artifacts and other features. Next, we trained a
network to study the predictability of the good versus poor outcome using
the regions of interest only, or using the invasive SCC only.

Data availability
Reasonable requests for cohort datamay be addressed to the corresponding
authors.

Code availability
The codes are written in Python and available on github. The supervised
approach relies on the DeepPATH (https://github.com/ncoudray/
DeepPATH). The un-supervised approach relies on the Histomorpholo-
gical Phenotype Learning pipeline (https://github.com/AdalbertoCq/
Histomorphological-Phenotype-Learning) and more details on the code
and options used in this study are reported in https://github.com/ncoudray/
AI-analysis-of-cutaneous-squamous-cell-carcinoma/.
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