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Weakly supervised language models for
automated extraction of critical findings
from radiology reports
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Critical findings in radiology reports are life threatening conditions that need to be communicated
promptly to physicians for timely management of patients. Although challenging, advancements in
natural language processing (NLP), particularly large language models (LLMs), now enable the
automated identification of key findings from verbose reports. Given the scarcity of labeled critical
findings data, we implemented a two-phase, weakly supervised fine-tuning approach on 15,000
unlabeled Mayo Clinic reports. This fine-tuned model then automatically extracted critical terms on
internal (Mayo Clinic, n = 80) and external (MIMIC-III, n = 123) test datasets, validated against expert
annotations. Model performance was further assessed on 5000 MIMIC-IV reports using LLM-aided
metrics, G-eval and Prometheus. Both manual and LLM-based evaluations showed improved task
alignment with weak supervision. The pipeline and model, publicly available under an academic
license, can aid in critical finding extraction for research and clinical use (https://github.com/
dasavisha/CriticalFindings_Extract).

Radiology reports contain substantial information about a patient including
a radiologist’s observations and diagnosis from images as well as critical and
incidental findings1. Critical findings are observations or results that require
immediate communication (typically within hours) with the patient’s
healthcare provider, since a delay in reporting such findings could cause a
serious impact on the patient’s health and well-being2,3. Moreover, these
findings must be communicated to the treating clinicians who must keep
track in order to render necessary medical care in a timely manner4.

The extraction of critical findings from radiology reports presents
opportunities for quality improvement and workflow optimization. Radi-
ology reports are lengthy and suffer from inconsistencies in structure and
format, which can make retrospective analysis and quality assurance
challenging3. Each report can vary significantly in terms of the terminology
used, theorder inwhich theobservations andfindings arepresented, and the
level of detail provided5. This variability complicates systematic review and
analysis of report content for quality assurance, research, and process
improvement purposes4. While acute communication of critical findings
occurs through direct channels like phone or chat, automated extraction
tools can support downstream applications such as quality monitoring,
compliance tracking, and institutional dashboards. These challenges high-
light the need for reliable automated extraction of key findings from radi-
ology reports to support these important secondary use cases.

Previous researchers have shown that artificial intelligence (AI)-based
methods are useful in efficientlymining information from radiology reports
and images6. Lakhani et al.7 and Heilbrun et al.8 propose systems that focus
on a small dataset of chest CT reports. They propose rule-based text-mining
approaches to automatically identify radiology reports containing critical
findings. Mabotuwan et al.9 proposed an automated rule-based framework
to extract critical findings from 1.2M radiology exams with an approxi-
mately 90%accuracy. This work uses a pre-defined list of ten specific critical
finding terms and only reports that contain one or more of these terms are
identified as critical. However, such rule-based models are limited in scope
and approach, and lack generalization towards external data.

In subsequent years, studies have proposed clinical BERT-based
models to identify reports that contain critical findings4,10. But the proposed
models are limited in their scope of application, focusing only on Chest CT
reports. Moreover, these studies can only classify whether a report contains
any critical finding(s) or not, without extracting the specific category or type
of findings.

With the recent advancements in natural language processing (NLP),
large languagemodels (LLMs) can be leveraged to automatically understand
and retrieve answers to queries from related textual content11–14. Further-
more, with domain-specific fine-tuning, LLMs can efficiently detect critical
information, showing state-of-the-art performance15,16 on retrieval tasks like

1Arizona Advanced AI & Innovation (A3I) Hub, Mayo Clinic Arizona, Phoenix, AZ, USA. 2Department of Radiology, Stanford University, Stanford, CA, USA.
3Department of Biomedical Data Science, Stanford University, Stanford, CA, USA. 4Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA. 5School of
Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA. e-mail: Banerjee.Imon@mayo.edu

npj Digital Medicine |           (2025) 8:257 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-025-01522-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-025-01522-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-025-01522-4&domain=pdf
https://github.com/dasavisha/CriticalFindings_Extract
https://github.com/dasavisha/CriticalFindings_Extract
mailto:Banerjee.Imon@mayo.edu
www.nature.com/npjdigitalmed


medical question-answering, biomedical entity recognition, retrieval of
related knowledge and clinical guidelines17–19. LLMs like GPT-4 have been
used in20–22 for identification and interpretation of findings from radiology
reports, largely reducing themanual effort required toparse suchdocuments.

Use of general domain LLMs seem promising. But pre-trained AI-
based systemsmust be aligned to domain-specific and task-specific data for
more efficient performance and increased understanding of underlying
clinical objectives6. Alignment of general domain LLMs relies on such
domain and task specific data; but there exists a dearth of annotated data
when it comes to the identification of critical findings in radiology reports4,9.
Furthermore, although many academic centers maintain databases of tag-
ged critical exams, they often lack detailed definitions and annotations of
these findings. This gap makes it impractical and challenging to collect
training data for extracting critical findings directly.

We propose an end-to-end pipeline to automatically identify and
categorically extract critical findings from radiology reports. The major
contributions of this work are as follows:
• To address the issue of scarce labeled data for model fine-tuning4, we

implement a novel weakly supervised and task-specific instruction-
based training setup to align the Mistral-based LLMs for retrieval of
critical and incidental findings from radiology reports across a wide
variety of modalities and sites.

• We manually curate a list of 210 critical finding-based terms that
denote critical findings across different anatomical sites and reports.
We expand upon an initial list by the Actionable Reporting Work
Group (ACR)23 using ontological term-based expansion to create the
first comprehensive list of terms to identify critical findings from a
report.

• Weperformanovel evaluation, comparing the efficiencyofLLM-aided
evaluation to human-aided metrics to empirically analyze the
usefulness and feasibility of using LLM-based oracle models like
GPT-4, LLaMa, for NLP extraction tasks from radiology reports at
scale. To verify the model’s performance and generalizability, we
evaluate the system on both internalMayoClinic and external publicly
available MIMIC-III24 and MIMIC-IV25 reports.

To the best of our knowledge, this is the first proposed system that can
successfully identify and extract critical findings from radiology reports,
irrespective of type and category.

Results
Dataset
We collected a private dataset of radiology reports of various modalities
(MR, CT, Radiograph, US) and anatomy (chest, abdomen, head, extre-
mities) from four Mayo Clinic sites (Arizona, Rochester, Florida and Mid-
West). For finetuning the model, we randomly selected 15,000 reports
documented between 2015 and 2021 atMayo Clinic and created a held-out
dataset of randomly selected 80 reports for our internal model evaluation
(see Table 1). Tomeasure themodels’ generalizability, we created an expert-
annotated smaller dataset of 123 reports of varying modalities randomly
selected from the publicly available MIMIC-III corpus24. The inter-
annotator agreement for both manually annotated datasets was assessed
using Cohen’s Kappa score (κ). For theMIMIC-III dataset, the Kappa score
was κ = 0.738, while for the Mayo Clinic dataset, it was κ = 0.798. Addi-
tionally, to evaluate the model performance on a large-scale dataset, we
randomly selected 5000 radiology reports from the publicly available
MIMIC-IV25 (see Table 1).

Quantitative performance
Weevaluate theproposedpipeline performanceusing two smallermanually
annotated test datasets - (a) internalhold-out test set of randomly selected80
radiology reports from Mayo Clinic, and (b) external test set of 123 radi-
ology reports from MIMIC-III, and a large-scale test dataset of 5000 ran-
domly selected radiology reports from MIMIC-IV. We compare the
performance of the weakly finetuned models (WFT) with the baseline pre-

trained versions of the model (PT). We provide more details on the task
template and prompts for zero-shot and few-shot-based weak label gen-
eration, as well as the examples used in few-shot prompting in the Sup-
plementary Sections A and B respectively. Figure 1 demonstrates themodel
performance for two human-based metrics (ROUGE-2, BLEU) and two
LLM-based metrics (G-Eval, Prometheus). Model performance on the
large-scale dataset is evaluated using LLM-basedmetrics, as shown in Fig. 2.
The performance of the models are also evaluated using the classification-
based metrics like F1-score, precision and recall, calculated on the Mayo
Clinic and MIMIC-III datasets as shown in Table 2. For qualitative eva-
luation and further error analysis, we present examples of the extracted
critical finding terms in Table 3. A larger set of human-based and LLM-
based metrics report a detailed overview of the model performance on the
small-scale human annotated internal and external datasets and large-scale
MIMIC dataset respectively in the Supplementary Tables 1 and 2 (Sup-
plementary Section 1).

The quantitative results on the small-scale internal and external vali-
dation datasets (Fig. 1) show that with weakly supervised fine-tuning, the
Mistral and BioMistral models perform consistently better than the pre-
trained baseline. Moreover, the fine-tuned Mistral model performance is
better than the BioMistral LLM. The models that were weakly fine-tuned
with labels generated using few-shot prompting in Phase I, consistently
performed better on the quantitative metrics. On the internal Mayo test set,
the weakly fine-tuned Mistral model achieves a 48% Rouge-2 score, per-
forming better than the pre-trained Mistral and BioMistral models. Simi-
larly, the fine-tuned BioMistral model comes a close second, achieving 41%

Table1 | Statisticsof thedatasets used in thedevelopment and
validation - private Mayo clinic dataset and publicly available
MIMIC-III and MIMIC-IV

Attributes Dataset

Mayo Clinic MIMIC-III MIMIC-IV

Training
dataset size

15,000 – –

Test
dataset size

80 123 5000

Avg. report
length

476.3 53.5 199.3

Modality Frequency (% reports)

CT-Scan 6345 (41.4) 73 (60.9) 1490 (29.8)

XR 4127 (26.9) 35 (28.4) 1296 (25.9)

MR 3278 (21.4) 9 (7.3) 579 (11.6)

Ultrasound 1507 (9.8) 2 (1.7) 599 (12.0)

Other 73 (0.48) 4 (3.2) 1036 (20.7)

Anatomy Frequency (% reports)

Chest 1905 (12.4) 45 (36.6) 1834 (36.7)

Head 4770 (31.1) 30 (24.4) 1278 (25.6)

Neck 2835 (18.5) 15 (1.6) 427 (8.5)

Abdomen 5820 (39.9) 28 (31.7) 634 (12.7)

Other – 4 (3.2) 1024 (20.5)

Result
statistics

Frequency (% reports)

Test reports
with critical
findings

15 of 80 (18.7) 50 of 123 (40.6) –

Top 5
findings

Small bowel
obstruction,
Pulmonary
embolism, Pleural
effusion, Occlusion
of Artery, Lesion in
kidney

Small bowel obstruction,
Ischemic bowel,
Subarachnoid
hemorrhage,
Parenchymal
hemorrhage, Subdural
Hematoma

–
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Rouge-2 score on the internal test data. On the external MIMIC-III test
reports we observe a similar trend, with the weakly fine-tuned Mistral and
BioMistral models performing better than their pre-trained unsupervised
baselines with Rouge-2 scores of 59% and 51% respectively.

This observation is also supported by the F1-score results of
weakly fine-tuned BioMistral (BioMistral-WFT) model, especially

when the fine-tuning was done with labels generated using few-shot
prompting. The weakly fine-tuned model consistently delivers the
best performance across both the internal hold-out dataset from
Mayo Clinic and the external MIMIC-III dataset and achieves the
highest F1-scores, reaching 0.57 on both datasets, suggesting that
combining weak supervision with domain-specific pre-training can

Fig. 1 | Model performance on human-annotated test datasets. a This column
shows the performance on the Internal hold-out (Mayo Clinic) test set; b This
column shows the performance on the External (MIMIC-III) test set. Each row
corresponds to the pre-trained (PT) and weakly fine-tuned (WFT) models. For each
model, we plot the histogram bars for Rouge-1 (blue), BLEU (yellow), G-Eval

(green), and Prometheus (red). For each model, we consider two prompting tech-
niques: Zero-shot (ZS) and Few-shot (FS) for weak label generation. The score for
eachmetric (normalized between 0 and 1) is added to the top of its corresponding bar
plot. Error bars denote standard deviations. The scores for models trained using
weak labels generated by FS-based prompting are shown with .

Fig. 2 | Model performance on large-scale test dataset from MIMIC-IV. LLM-
aided large-scale evaluation on a Pre-trained models and bWeakly Fine-tuned
models. For each model, we plot the histogram bars for G-Eval (blue) and Pro-
metheus (yellow). For each model, we consider two prompting techniques: Zero-

shot (ZS) and Few-shot (FS) for weak label generation. The score for each metric
(normalized between 0 and 1) is added to the top of its corresponding bar plot. Error
bars denote standard deviations. The scores for models trained using weak labels
generated by FS-based prompting are shown with .
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significantly improve performance in clinical language proces-
sing tasks.

We also compared the LLM-aided metrics against the human anno-
tator. Figures 1 and 2 show that though these metrics are not ideal for
scoring overall LLM performance, the LLM-aided metrics consistently
evaluated human annotation with higher score (referred as ‘Human’ in
Supplementary Table D1) than neural model extraction, an observation
consistent with human-based evaluation metrics. Figure 2 (and Supple-
mentary Table 2) demonstrates the results of themodels for the LLM-aided
metrics on the large-scale dataset from MIMIC-IV. While the models per-
formmoderately on theLLM-based scoringmetrics, the scores are similar to
the overlap-based measures on the human-annotated small-scale test
dataset. This shows that while not completely perfect, with proper domain-
knowledge on critical findings, these automated LLM-based scoring algo-
rithms can be a promising alternative to human-aided metrics for large-
scale validation task. Within the scope of both human-based (Rouge-2,
BLEU, etc.) and LLM-based evaluation (G-eval, Prometheus), we observe
that the weakly supervised models (WFT) perform better than the pre-
trained LLMs (PT) on both internal and external validation datasets. We
also observe that the general domainMistral LLMs perform better than the
biomedical domain BioMistral models.

Error analysis - To understand and visualize the performance and
quality of the extraction by the weakly supervised models, we examine
correctly predicted and falsely predicted examples as shown in Table 3. The
examples show that the model completely and/or partly extracts critical
terms from the reports where they are clearly demarcated or indicated
(Table 3-Examples 1 and 2). These indications could be presence of phrases
that indicate urgency or the need to communicate to physicians for further
follow-ups, like usage of ‘concerning’, ‘new’. However, where the models
clearly fail, are the reports with sentences that indicate the chronic critical
findings along with the mention of the critical term, e.g. ‘No significant
interval change..’ (Table 3-Example 3). The instruction-tuned LLMs are
unsupervised in nature, and therefore have no prior exposure to compli-
cated chronic instances. A chronic finding may not always be critical, it
depends on the textual context of the finding - so themodelmust be trained
to carefully discern between new, known and expected critical findings

before raising a false alarm. Moreover, Table 3-Example 4 presents a report
might only contain a single sentence that reports the absence of the critical
finding(s), i.e. a non-critical report. In such an instance, an extractive LLM
cannot process the negative sentences and extracts the critical findings
terms, thus marking the radiology report as a false positive.

Discussion
We proposed an end-to-end LLM-based pipeline for extracting critical
findings from awide-variety of radiology reports, in terms ofmodalities and
anatomical regions. Given the complexity of the critical finding extraction
task andwide-range of potential categorization, the extraction is formulated
as a weakly supervised problem without the requirement for manually
labeled data for model training. We leverage the task-following generative
properties of the instruction-tuned Mistral-class of models and follow a
systematic prompt engineering process to create task-specific and com-
prehensive instructions for the best generative and extractive performance.
We selected theMistral class of models for this extraction task sinceMistral
models are optimized for inference speed and task performance. Addi-
tionally in Supplementary Section 2, we present the quantitative and qua-
litative results of LLaMa-13B13 models (pre-trained and weakly fine-tuned)
on the human-annotated test datasets in SupplementaryTables 3 and 4. The
performance of LLaMa-13B model is similar to the Mistral-7B model per-
formance. We evaluated both generic Mistral-7B and domain-specific
BioMistral-7B weakly supervised fine-tuned models with zero-shot and
few-shot and compared the performance against baseline pre-trained
models. We also perform an in-depth analysis of model performance using
varying strategies, as shown in examples (A) through (D) in Supplementary
Section 3.

We observe that the weakly supervised models (WFT) perform
better than the pre-trained LLMs (PT) on both internal and external
validation datasets. However, we do observe a difference in performance
between the general domain Mistral and the biomedical BioMistral
models, with the BioMistral models scoring consistently lower on the
evaluation metrics. BioMistral model is trained only on biomedical
literature26 which is different from the textual content and structure of
radiology reports. Therefore, BioMistral model has limited knowledge
about radiology reporting as well as the terms that denote critical or
incidental findings are limited in the model vocabulary, thus limiting
model performance. On the contrary, Mistral models have been trained
on web-scraped textual content and may contain partial knowledge
about the radiology reports available on the web14. Using few-shot
prompting technique for label generation helps guide and align these
instruction-based Mistral models using task-specific examples, leading
to comparatively better extractive performance27.

We see that themodels comparatively have higher performance scores
on the external MIMIC-III dataset, than the internal Mayo Clinic dataset
which is primarily because of the nature of the dataset - the average report
length ofMayoClinic dataset is 476.3 words, which ismuch higher than the
length ofMIMIC-III reports (53.5). Greater textual content is essentially not
always beneficial for aligning an instruction-tuned model, and may cause
the model to hallucinate or generate misinformation12. We have performed
a stratified analysis of the models’ performance across varying report
lengths, as shown in Supplementary Section 4. The quantitative results
supporting this observation are shown in Supplementary Tables 5 (external
MIMIC-III test data) and 6 (internal Mayo test data). Furthermore, the
qualitative examples showing the model performance for short-length,
medium-length, and long-length documents also shown in the Supple-
mentary Tables 7, 8, and 9 respectively. Moreover, the reports from the
MayoClinicdataset, tend tohave ahigher frequencyofnegative sentences or
text that indicate the absence of critical findings, as shown in Table 3-
Example 3. Therefore, the model picks up these sentences as false positive
signals, leading to erroneous predictions.

Compared to the current literature4,7–10 which is primarily focused on
developing supervised machine learning or rule-based model for critical
finding extraction with narrower scope (e.g. single modality or specific

Table 2 | Results on human-annotated small-scale test
datasets - Internal hold-out (Mayo Clinic) and External
(MIMIC-III)

Dataset Models Prompting
setup

Metrics

Precision Recall F1-score

Internal hold-
out test

Mistral-PT Zero-Shot 0.38 0.33 0.35

Few-Shot 0.41 0.56 0.47

Mistral-WFT Zero-Shot 0.57 0.42 0.48

Few-Shot 0.63 0.41 0.49

BioMistral-PT Zero-Shot 0.47 0.23 0.31

Few-Shot 0.53 0.31 0.39

BioMistral-WFT Zero-Shot 0.63 0.51 0.56

Few-Shot 0.68 0.49 0.57

External test Mistral-PT Zero-Shot 0.41 0.37 0.39

Few-Shot 0.53 0.41 0.46

Mistral-WFT Zero-Shot 0.42 0.47 0.44

Few-Shot 0.45 0.51 0.48

BioMistral-PT Zero-Shot 0.38 0.29 0.33

Few-Shot 0.41 0.37 0.39

BioMistral-WFT Zero-Shot 0.57 0.45 0.50

Few-Shot 0.65 0.51 0.57

PT Pre-trained,WFT Weakly Fine-tuned.
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anatomical region), we propose a weakly supervised pipeline for automated
extraction of critical findings irrespective of the report type and category of
thefindings. In Supplementary Section 5,weperforma subgroup analysis of
the models’ performance under varying anatomical sites to demonstrate
difference in their critical term extraction capabilities. The quantitative
results and qualitative examples are included in Supplementary Tables
10 and 11 respectively. The proposed pipeline was weakly-supervised with
LLM generated labels and able to extract a wide variety of critical findings
from both internal and external test sets withoutmanual curation of labeled
data. Due to the wide and unknown/rare category for potential critical
findings, we can only present string overlapping metrics for performance
which evaluates exact string matching, often without evaluating semantic
context. Evenwithweakly supervised training, the proposed frameworkwas
able to achieve moderate overlap with human annotation. Such automated
extraction of critical findings from radiology reports may reduce risk of
human error regarding flagging and allows for timely communication of

serious conditions such as tumors, fractures, or internal bleeding, leading to
prompt and appropriate treatment4,9. Furthermore, our system holds pro-
mise for retrospective data analysis, ensuring that significant health issues
are not overlooked in radiology reports. An additional future direction
involves adapting the system to facilitate timely communication of critical
findings to referring physicians. This could lead to more effective follow-up
based on current guidelines, better management of conditions, and ulti-
mately improved patient outcomes.

The study has several limitations. We view this work primarily as a
proof-of-concept demonstrating that weakly supervised approaches can
improve performance in scenarios where labeled data is scarce. We are
aware that despite showing an improved performance, the approach when
compared to existing technology, still remains mediocre and cannot be
adopted as an immediately deployable clinical solution. The performance
metrics, while showing clear improvement over baselines, indicate that
additional refinement is needed before these models would be suitable for

Table 3 | Examples of extracted critical terms from de-identified MIMIC-III radiology reports

Example 1. A positive example from a Chest CT report showing critical findings in Chest and Musculoskeletal regions.

Radiology report 1. Multifocal bilateral pneumonia with right lung cavitary lesions, right calcified granulomas, and right pleural plaques are very concerning for
reactivation tuberculosis with a component of right upper lobe necrotizing pneumonia. 2. Enlarged pulmonary artery suggesting underlying
pulmonaryhypertension. 3.Hard andsoft plaque throughout theaortawith narrowingof theorigin of the celiac artery. Finding#1wasdiscussedwith
Dr. First Name8 (NamePattern2) Last Name (NamePattern1) 92986 by phone at 3 : 40 p.m. on 2192-9 -11 immediately after discovery and attending
review.

Critical findings in the report

Groundtruth ‘reactivation tuberculosis’, ‘necrotizing pneumonia’

Mistral-PT-FS ‘necrotizing pneumonia’

Mistral-WFT-FS ‘reactivation tuberculosis’

BioMistral-PT-FS NONE

BioMistral-WFT-FS ‘reactivation tuberculosis’, ‘necrotizing pneumonia’

Example 2. A positive example from a Head CT report showing critical findings in Head and Neck regions.

Radiology report 1) New right parietal intraparenchymal hemorrhage with extensive edema. 2) Stable cerebellar hemorrhage, increased infratentorial edema. 3)
Increase in subarachnoid hemorrhage. Findings were discussed with clinical team.

Critical findings in the report

Groundtruth ‘intraparenchymal hemorrhage’, ‘subarachnoid hemorrhage’

Mistral-PT-FS ‘subarachnoid hemorrhage’

Mistral-WFT-FS ‘subarachnoid hemorrhage’, ‘parenchymal hemorrhage’

BioMistral-PT-FS ‘parenchymal hemorrhage’

BioMistral-WFT-FS ‘parenchymal hemorrhage’

Example 3. A false negative example from a report showing critical findings in Head and Neck regions.

Radiology Report 1) No significant interval change in the appearance of the comminuted C2 fracture, with components bilaterally involving the body/pedicle, or a
hangman’s type fracture, and displaced fracture fragment of the anterior inferior aspect of the C2 body, an extensive teardrop-type fracture.
Persisting mild rotary subluxation without significant encroachment upon the cervical cord. Fracture lines remain apparent without significant
interval callus information. 2) Healing first and second right rib and sternal fractures.

Critical findings in the report

Groundtruth ‘teardrop-type fracture’, ‘hangman’s type fracture’

Mistral-PT-FS NONE

Mistral-WFT-FS NONE

BioMistral-PT-FS NONE

BioMistral-WFT-FS NONE

Example 4. A false positive example from a report showing critical findings in Gastrointestinal regions.

Radiology Report No evidence for intestinal obstruction or free intraperitoneal gas.

Critical findings in the report

Groundtruth NONE

Mistral-PT-FS ‘bowel obstruction’

Mistral-WFT-FS ‘intestinal obstruction’, ‘free air’

BioMistral-PT-FS ‘bowel obstruction’, ‘hematoma’

BioMistral-WFT-FS ‘intestinal obstruction’

PT Pretrained,WFTWeakly Fine-tuned, FS Few-Shot weak label generation.
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routine clinical use. Even after additional curation of criticalfinding term list
frompriorpublications,ACR lists andontology-basedexpansion, theremay
exist rare critical findings that are not captured by our curated list and thus
lead to missed critical findings. In the absence of critical terms, the weakly
supervised LLMs do not retrieve any findings, thus flagging an otherwise
critical radiology report as non-threatening. Another reason for moderate
performance in the term matching metrics is not considering partial term
matching, e.g. ‘spinal injury’ vs. ‘injury of spine’. We also plan on extending
our model to add the ability to extract critical findings with an increased
granularity, where the model can be trained to identify new, known or
expected and uncertain or unexpected findings. Finally, we plan to include a
vision languagemodel to directly analyze images to identify critical findings
with currently trained LLM model as language encoding backbone.

The results of our study demonstrate that the proposed weakly
supervised pipeline not only performs better than baseline pre-trained
models but also has the potential to improve patient outcomes. By auto-
mating the extraction of critical findings from radiology reports, the
pipeline reduces the risk of human oversight, ensuring that critical find-
ings such as intracranial haemorrhage, spinal injury, pulmonary embo-
lism, etc. are identified and communicated promptly. This can improve
long-term treatment outcomes, and ultimately enhance overall patient
care. This underscores the practical utility of our approach in clinical
settings, where timely and accurate information can make a significant
difference in patient outcomes.

In summary, we highlight the importance of promptly commu-
nicating critical findings from radiology reports to physicians for timely
patient management. We leverage instruction-tuned Mistral-based large
language models (LLMs) to identify and extract these critical findings
from radiology reports. To address the lack of labeled datasets due to the
rarity of such events, we propose a two-phase weakly supervised fine-
tuning approach on Mistral models using unlabeled radiology reports.
The weakly fine-tunedmodel was tested on internal and external datasets
and evaluated with both human annotated-based and LLM-based
metrics, showing that weakly supervised fine-tuning improves model
performance significantly.

Methods
Given the complexity of critical finding extraction and wide-range of
potential categorization, we formulated this as a weakly-supervised model
learning problem where we leverage weak labels generated by LLM. We
leverage the task-following generative properties of the instruction-tuned
Mistral-class of models14,26. We also follow a systematic prompt engi-
neering process to create task-specific and comprehensive instructions for
the best generative and extractive performance15,16. Figure 3 demonstrates
the overall pipeline of the proposed two-phase pipeline - (a) Phase I: The
unsupervised instruction-tuned weak label generation; and (b) Phase II:
Weakly supervised training framework for automated critical finding
extraction. We further validate pipeline performance on small-scale
manually annotated held-out internal and external datasets, along with a
large-scale external dataset. The internal dataset was extracted from radi-
ology reports from fourMayoClinic sites (Arizona, Rochester, Florida, and
Mid-West) after ethical review by the Mayo Clinic Institutional Review
Board (IRB 21-009503) The external datasets came from MIMIC-III
(small-scale annotated test) and MIMIC-IV (large-scale test). In the fol-
lowing sections, we provide a detailed description of our framework and
evaluation methods.

Weakly supervised training pipeline
To tackle the challenge regarding lack of annotated database for critical
findings, we propose a two-phase weakly supervised training approach to
align generic Large LanguageModels (LLMs) for extracting critical findings
efficiently from radiology reports which are documented in a domain-
specific clinical language.

In Phase I (Generating Weak Labels) of the pipeline, we leverage the
instruction-tuned pre-trainedMistral-based large languagemodels (LLMs),
Mistral-7B and BioMistral-7B14,26 to extract the critical findings in the input
reports in an unsupervisedmanner.We rely on theMistral class ofmodels14

since Mistral model architecture is an efficient version of Meta’s LLaMa
model13 that leverages grouped-query attention to significantly accelerate
model inference, thus reducing computational complexity while keeping
model performance consistent. For understanding the effect of clinical

Unlabeled
Radiology
Reports

Pre-trained Mistral
LLM
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Curated

Radiology
Literature

Ontology-based

Expansion
Critical Findings
Keywords

Extract Critical Finding
Terms from Findings

(c) Critical Findings Term Expansion

Instruction
Tuning

Extracted Findings
from Reports

Pre-trained
Mistral LLM

Added Critical Terms as Weak Labels

Weakly Labeled
Clinical Reports

Weak SFT
Weakly
Fine-tuned
Mistral LLM

(b) PHASE II: Weak Supervised Fine-tuning

(a) PHASE I: Unsupervised Weak Label Generation

Extracted Critical
Findings

Weakly Fine-tuned
Mistral LLM

Extract
Critical Terms

Model
Performance
Evaluation

Instructionnnn
Tuning

Test Set of
Radiology Reports (d) Model Performance Validation

Weakly Labeled
Radiology
Reports

Fig. 3 |Overall weakly supervised training pipeline for criticalfindings extraction
and performance validation. The complete pipeline is composed of the following
modules:aPhase I :Thismodulegenerates theweak labelsusingunsupervised instruction-
tunedMistral class of LLMs; b Phase II: Thismodule demonstrates the weakly supervised

fine-tuning of the Mistral LLMs using the weak labels generated in Phase I; c This is
module shows the expansion of criticalfindings terms and keywords. This expanded list is
used for the key-based critical finding extraction; d This final pipeline demonstrates the
model performance validation using internal and external datasets.
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domain-specific training,we leverage twopre-trainedversions of theMistral
model in parallel - (a) Mistral-7B-Instruct28, a general domain model with
7B parameter size; and (b) BioMistral-7B29, a version of the Mistral model
trained on 1.47M biomedical literature documents (about 3B tokens) from
PubMedCentral26.Weuse these instruction-tunedLLMsas an initial step to
retrieve the critical findings from radiology reports as weak labels.

Using task-based prompt engineering, the instruction-tuned LLM can
be aligned and guided to follow well-defined rules while generating or
retrieving textual content12. Quality and usability of the model output is
largely dependent on the nature of specific input prompt used to align the
model during inference15. The prompt definitions and task instruction are
shown inTable 4. For the task of extracting criticalfindings, the prompts are
engineered to instruct the model to identify and retrieve the findings that
appear as critical from the given reports based on linguistic style of
reporting, order of documentation as well as definition of the findings30. In
Phase I, the experimental setup is unsupervised and involves prompt-
specific generation. We consider two prompting techniques - zero-shot (no
task-specific examples) and few-shot (five task-specific examples). Given the
fact that extraction of critical finding is a highly complex task and needs
proper understanding of the severity of thefindings, eachprompt consists of
the definitions of ‘critical’ and ‘incidental’ findings in a report, followed by
the description of the task to be performed. While zero-shot method of
prompting just includes the task definitions and instructions in the query
body, few-shot prompting strategy includes examples showing the task
input and desired output, to specifically align for in-context task-based
learning16. The prompt templates and the few-shot examples used in
prompting are shown in Supplementary Sections 6 and 7 respectively.

Mistral-based LLMs are generative transformer models and during
inference outputs are descriptive textual content. Hence, the proposed
pipeline incorporates amodule for the automated extraction of key terms or
phrases that represent the critical findings in the radiology reports, using a
list-based termmatching algorithm. Tomap the extractedfindings from the
reports to the actual terms, we first curate a manually verified and com-
prehensive list of critical findings keywords and phrases. The list of termswas
collected from different academic institutions (Stanford, UCLA, Yale,
Emory), to which we appended additional terms and phrases from a list
developed by American College of Radiology’s Actionable ReportingWork
Group (ACR)23. But radiologists often use abbreviations to refer to findings,
for example ‘PE’ instead of ‘Pulmonary Embolism’, or there are spelling
errors due todictation (e.g., ‘hemorrhage’or ‘haemorrhage’). To incorporate
additional keywords that share the same ontological relations with the

curatedmanual list of critical key terms and phrases, we follow an ontology-
based expansion of critical findings keywords. We used the ‘PyMedTer-
mino2’Python library31 to parseNCBO32 ontologies suchas SNOMED_CT,
ICD10, and UMLS, and include synonym-based searches. We specifically
used the SNOMED_CT ontology for our approach and starting with a
reference list of 102 terms, expanded the list to 210 terms. Table 5 has a list of
some sample terms and their corresponding expansions.We have included
the complete list of terms in the Supplementary Section 8 (Supplementary
Tables 12 and 13).

In our pipeline, we check for the mentions of the terms/phrases, from
the curated list, in the output text containing the extracted findings gener-
ated by the Mistral LLMs. We use the Python library “fuzzywuzzy”33 to
extract the keywords from the text using exact term-matching algorithms.
We do not consider partial or relaxed term-matching to avoid incorrect
flagging if part of a critical finding term appears in an otherwise non-critical
radiology report. For a given unlabeled radiology report, the output of the
proposed Phase I pipeline, is a set of terms and/or phrases that represent the
critical findings in the radiology report and if there is no mention of any
critical findings the extracted term is null. These are then augmented to the
report as weak labels for fine-tuning the weakly supervised model during
Phase II of the pipeline.

The main objective for Phase II (Weakly Supervised Fine-tuning) is to
fine-tune the Mistral-based models using weakly supervised labels for an
improved automated extraction of specific critical findings from radiology
reports. Fine-tuning thepretrainedLLMinaweakly supervised settinghelps
to refine themodel’s understanding and enhance its ability to discern critical
information in the required format12,34.

We first combine the ‘weak labels’ generated in Phase I with the
unlabeled reports. For each report that has one or more key terms repre-
senting criticalfindings, the label is represented by those extracted keywords
as a list. For a non-critical report, the label is an empty list. During training,
we further append the task-specific instruction to the report text and its
weak label list to emulate the instruction-tuning setup used to train the
Mistral class of models. The main goal is to train an instruction-tuned
generative LLM that can automatically identify and retrieve critical findings
terms from radiology reports.

We use the standard fine-tuning configurations along with LoRA-
specific hyperparameters35 for faster and computationally efficient training
of theMistral andBioMistralmodels. TheLoRAparametervaluesusedwere
- attention dimension = 16, scaling rate α = 4, dropout rate = 0.1. We also
usedweightedAdamoptimizerwith a constant learning rate scheduler,with
an initial learning rate of 0.0002 andweight decay of 0.001.We ran the fine-
tuning on four NVIDIA RTX A5000 GPUs for 20 epochs for a total of
3 hours.

Evaluation strategy
We describe the setup for the manual and automated metrics used to
evaluate the performance of the models during both unsupervised Phase I
and weakly supervised Phase II. To measure overall performance of the
models and validate the quality and correctness of the extracted critical
findings, we evaluate on both internal (held-out reports fromMayo Clinic)
and external (reports from publicly available MIMIC-III) datasets. We
evaluate the performance of two types of Mistral-based models - Mistral-
7B14 and BioMistral-7B26. The instruction-tuned versions of these models

Table 5 | Examples of critical finding term expansions

Original term Expanded term list

Spine injury SI; Spinal Injury; Traumatic injury of spinal cord and
vertebral column; Traumatic injury of spine; Traumatic
injury of vertebral column

Foreign body FB; Exogenous material; Foreign material

Pulmonary embolism PE

Pneumoperitoneum PP; Peritoneal cavity free air

Cord compression SCC; Spinal cord compression; Compression of
spinal cord

Table 4 | Prompt instructions for extraction of critical findings

Instruction type Prompt text

Definition of CRITICAL and INCIDENTAL
Findings

CRITICAL findings are life threatening imaging findings that need to be communicated immediately.

INCIDENTAL findings are non-life-threatening findings, but significant enough that they need to be communicated
within a short period of time.

Instruction of Retrieval Task Based on these definitions of theCritical and Incidental findings, find theCRITICAL findings and INCIDENTAL findings
mentioned in the report.
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(referredasPT) are considered the baselinemodels, for comparisonwith the
weakly fine-tuned LLMs (referred as WFT). Two separate prompting
methods (zero-shot and few-shot) were used to generate the weak labels
(Phase I). We evaluate the models using two strategies - Human-based
(small-scale) and automated LLM-based (large-scale).

Human-based evaluation. compares the critical findings automatically
extracted by the LLMs with the manually extracted critical findings
mentions in the radiology reports. This is the preferred method of
evaluating generative models and consists of assessing the quality and
correctness of the generated content by comparing with human anno-
tated labels as the ground truth. Given the large variety of potential
findings, standard accuracy-based metrics are not suitable for this eva-
luation. Therefore, we report the models’ performance score using the
lexical-similarity metrics like BLEU36, ROUGE37 (-1 and -2), and
METEOR38. These metrics quantify the overlap between the human-
generated and LLM-generated mentions of critical findings. Addition-
ally, we also look at the semantic similarity between the model generated
labels and the manual labels using RadBERTScore. This metric uses
BERTScore-based39 evaluation algorithm but replaces the vanilla BERT
model with RadBERT40, a pre-trained RoBERTa-basedmodel specifically
fine-tuned on 4M radiology reports41. However, manual evaluation can
be time-consuming and costly, and can only be performed on a smaller
scale due to required effort.

LLM-based evaluation. leverage the causal reasoning and extensive
knowledge of pre-trained LLMs, like GPT-411 and LLaMa13, to auto-
matically rate quality of the extracted textual content, while achieving
results comparable to a human annotator17,42. The main usefulness of
LLM-based metrics lies in evaluating the performance of the proposed
models on large-scale datasets of radiology reports, where manual
annotation is challenging and time-consuming. So in addition to evalu-
ating the smaller human-annotated internal (Mayo Clinic) and external
(MIMIC-III) datasets with LLM-based scorers, we additionally use these
metrics to evaluate the extracted critical findings from a large-scale
dataset of 5000 random radiology reports from MIMIC-IV.

We report the model performance using two LLM-aided evaluation
metrics - G-Eval42 and Prometheus43. G-Eval44 uses task-specific chain-of-
thought prompting45 to instruct OpenAI’s GPT-411 model to evaluate the
text. Prometheus46 also follows an approach similar toG-Eval, but instead of
GPT-4, uses a pre-trained LLaMa-13B model as the scoring algorithm.
These LLM-based scoring algorithms are instruction-tuned and require an
evaluation metric definition and task-based prompt to rate model perfor-
mance. We use the correctness metric to score the quality of the generated
output from themodels. The score is a continuous value between 0 to 1,with
a higher value denoting an output closer to the ground-truth or gold-
standard annotations, indicating better model performance. Based on the
nature of the test dataset, we have two separate definitions of the correctness
evaluation task.

For the human-annotated smaller test datasets, we have the human or
ground truth labels. We provide the following task definition to the scoring
LLM - ‘Given the human label, determine if the model output is correct.
Consider partial matches.’ We use the LLM-based scorers to compare the
human annotations with the model-extracted critical findings; we do not
provide additional information like the report metadata, impressions,
findings, etc. However, sincewe do not have human annotated labels for the
large-scale dataset, we slightly change the definition and objective of the
evaluation task. Since MIMIC-IV is a publicly available dataset, we provide
the report text and the extracted critical findings by the models. We also
provide the definition of critical finding, along with the correctness defini-
tion in the evaluation task prompt. The evaluation task definition given to
the scoring algorithm is - ‘Given the report and the definition of critical
findings, determine if themodel output is correct. Consider partialmatches.’
The examples of the prompts used in LLM-aided automated evaluation
have been included in the Supplementary Section 9. In the absence of

human labels, our main objective here is to leverage the prior knowledge of
these LLM-based scoring algorithms for rating the quality of automated
large-scale dataset annotation using weakly supervised LLMs.

Data availability
The Mayo Clinic data supporting the findings of this study are private and
not available publicly. Corresponding author can be reached for data usage
agreement for approving the access for the private data. TheMIMIC-III and
MIMIC IV data sets are publicly available at https://physionet.org/content/
mimiciii/1.4/ and https://physionet.org/content/mimiciv/2.2/ respectively.

Code availability
Our code and trained models are publicly shared under open-source aca-
demic license at https://github.com/dasavisha/CriticalFindings_Extract. In
our implementation, we used Python 3.8.10, and the following open-source
libraries: torch = 1.13.1, tqdm= 4.66.1, pandas = 2.7.1, numpy = 1.21.0,
transformers = 4.35.2, huggingface-hub = 0.19.4, accelerate = 0.25.0, and
fuzzywuzzy = 0.18.0.
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