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Holistic AI analysis of hybrid cardiac
perfusion images for mortality prediction
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Low-dose computed tomography attenuation correction (CTAC) scans are used in hybrid myocardial
perfusion imaging (MPI) for attenuation correction and coronary calcium scoring, and contain
additional anatomic andpathologic information not utilized in clinical assessment.We seek to uncover
the full potential of these scans utilizing a holistic artificial intelligence (AI) approach. A multi-structure
model segmented 33 structures and quantified 15 radiomics features in each organ in 10,480 patients
from 4 sites. Coronary calcium and epicardial fat measures were obtained from separate AI models.
The area under the receiver-operating characteristic curves (AUC) for all-causemortality prediction of
the model utilizing MPI, CT, stress test, and clinical features was 0.80 (95% confidence interval
[0.74–0.87]), which was higher than for coronary calcium (0.64 [0.57–0.71]) or perfusion (0.62
[0.55–0.70]), with p < 0.001 for both. A comprehensive multimodality approach can significantly
improve mortality prediction compared to MPI information alone in patients undergoing hybrid MPI.

Myocardial perfusion scintigraphy is widely used for the evaluation of
coronary artery disease (CAD), with over 15–20 million scans per-
formed worldwide1,2. During myocardial perfusion imaging (MPI), a
low-dose non-contrast computed tomography attenuation correction
(CTAC) scan is often used to correct for soft-tissue attenuation, leading
to improved diagnostic accuracy3,4. Attenuation correction by computed
tomography (CT) is recommended by American Society of Nuclear
Cardiology guidelines5. Although the myocardium is the structure of
principal interest during SPECT/CT MPI, its CTAC scan provides a
wealth of additional information about other visible organs. Incidental
findings have been reported in up to 59.5% of SPECT/CTMPI studies, of
which some are clinically important and necessitate further diagnosis
and treatment6,7.

However, due to limitations in the quality of CTAC images (low dose,
no electrocardiographic gating), detection and characterization of abnormal
findings on CTAC can be challenging8. Consequently, the additional
information present in hybrid cardiac scans is often underutilized during
clinical reporting. While some methods have been developed to derive

information about coronary artery calcium (CAC) and epicardial adipose
tissue (EAT) from CTAC scans9,10, many other potentially clinically
important features, like extracardiac structures, are present in these scans,
yet to date their added value to MPI has not been systematically evaluated
(Supplementary Table 1).

The aim of this study is to develop a holistic artificial intelligence (AI)-
based approach for the prediction of all-cause mortality from SPECT/CT
MPIutilizing all possible information contained in the hybrid images and to
separately evaluate the value of CTAC images for this purpose, which have
been previously underutilized.

Results
Patient Characteristics
In total 10,983participants from4 siteswere enrolled in theREFINESPECT
registry, of which 500 CTAC scans from one site were used for EAT-model
training and validation. Of the 10,483 remaining participants, 3 were
excludeddue to incompleteCTACscans. Thefinal study cohort consistedof
10,480 participants (Fig. 1, Supplementary Fig. 1).
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Table 1 represents baseline characteristics stratified by sex. Of all
participants, 5745 (54.8%) were male, and median age was 65 with an
interquartile range (IQR)of (57, 73) years.During themedian2.9-year (IQR
1.6–4.0) follow-up period, 651 (6.2%) patients died. Table 2 shows baseline
characteristics stratifiedbyACM.Normalmyocardial perfusionwaspresent
in 7329 (69.9%) patients, of whom 345 (4.7%) died. Patients with normal
perfusionwere significantly younger (p < 0.001),more often female, and less
often diagnosed with hypertension (p < 0.001), diabetes (p < 0.001), and
dyslipidemia (p < 0.001) (Supplementary Table 2).

Myocardial Imaging Perfusion Quantitative Image Analysis
Parameters
In all patients, the median TPD was 2.6% (0.9–6.0) and was higher in male
than female patients (2.7 vs. 2.5, respectively, p < 0.001) (Table 1). Sig-
nificantly lower stress ejection fractionwas observed inmen comparedwith
women (59% vs. 70%, respectively, p < 0.001). The median TPD in patients
with abnormal perfusion was 8.9 (6.5, 14.2), whereas the median stress
ejection fraction in this group was 57 (46, 67) (Supplementary Table 2).

Coronary artery calcium and epicardial adipose tissue
CACwas 0 in 3,753 (35.8%) patients, >0–100 in 1982 (18.9%), >100–400 in
1462 (14.0%), and >400 in 3283 (31.3%) subjects. Themedian EAT volume
and density were 130mL (90, 183) and −65 HU (−70, −61), respectively
(Table 1).

In patients with normal perfusion, 2903 (39.6%) subjects had no CAC,
1515 (20.7%) had CAC > 0 and ≤100, 1029 (14.0%) had CAC > 100 and
≤400, and 1882 (25.7%) had CAC > 400. The median EAT volume and
density in patients with normal perfusion were 129mL (89, 181) and −65
HU (−70,−61), respectively (Supplementary Table 2).

Model performance
Figure 2 represents the model performance and feature importance for
mortality in all patients, subjects with normal perfusion, and patients

without calcified lesions in coronary arteries. The lungs were the top feature
in all patients, in patients with normal perfusion as well as in subjects
without coronary calcifications. Supplementary Fig. 2 shows feature
importance plots stratified by different sites and image quality. For all AI
models in all patients included in the study, AUCs with 95% confidence
interval (CI) are shown in Supplementary Table 3. There was a better
performance of theAICTACmodel (AUC0.78, 95%CI0.71–0.85) than the
EATmodel (AUC0.56, 95%CI 0.49–0.63, p < 0.001), and coronary calcium
(AUC 0.64, 95% CI 0.57–0.71, p < 0.001) alone. There was a small but
statistically significant difference in the prediction performance of the AI
hybrid model and the CTAC model (AUC 0.79 vs. 0.78, p < 0.001). Addi-
tionally, the AI CTAC model outperformed the AI SPECT model (AUC
0.78 vs 0.65, p < 0.001).

AUCs with 95% CI for all AI models in patients with normal myo-
cardial perfusion are shown in Supplementary Table 4, whereas in subjects
with no coronary calcium in Supplementary Table 5. In the group with
normal perfusion, the performance of theAICTACmodelwas significantly
better compared to Perfusion (AUC 0.76 vs. 0.53, respectively, p < 0.001).
The AI hybrid model incorporating CTAC and MPI features had similar
prediction performance compared to the AI CTAC-only model (AUC 0.76
vs. 0.76, respectively, p = 0.384).Among the patientswithno calcium, theAI
CTAC model significantly outperformed Perfusion (AUC 0.71 vs. 0.59,
respectively, p < 0.001). The AI hybrid model was significantly better than
AI CTAC-only model (AUC 0.75 vs 0.71, respectively, p < 0.001). Models
were also evaluated across different sites and acquisition protocols, as shown
in Supplementary Table 6. The AI model demonstrated consistent perfor-
mance regardless of the acquisition protocols. However, Columbia and
Ottawa showed significantly lower performance compared to Yale (Sup-
plementary Table 6).

A subgroup analysis was performed using the best model (All model)
across the following categories: white race, black race, female, male, older
( ≥ 65 years), and younger ( < 65 years). Due to limited data for other racial
groups, the race-based subgroup analysis was restricted to black and white
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Fig. 1 | Central illustration. Artificial intelligence (AI) model integrating fully
automated multi-structure computed tomography attenuation correction (CTAC)
segmentation, quantitative image analysis (radiomics), deep learning (DL)-based
coronary artery calcium (CAC), and epicardial adipose tissue (EAT) in all patients
undergoingmyocardial perfusion imaging (MPI) single-photon emission computed
tomography/computed tomography (SPECT/CT). Receiver-operating

characteristics curve for all-cause mortality and area under the receiver-operating
characteristic curve values of Coronary calcium (DL-CAC score), Perfusion (stress
TPD), the AI CTAC model (including DL-CAC, DL-EAT, and radiomics), the AI
hybrid model (combing the CTAC model with stress MPI quantitative image
parameters and stress variables) and the All model (incorporating AI hybrid image
features, and clinical data).
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individuals. Our findings indicate that the All model demonstrates com-
parable performance across both male and female groups (AUC: 0.77 vs
0.79, p = 0.08) in Supplementary Fig. 3. Furthermore, the model exhibited
better performance in individuals aged <65 years compared to those aged
≥65 years (AUC: 0.79 vs 0.74, p = 0.16). Thedifference between for theBlack
group and theWhite groupwhile numerically different (AUC: 0.70 vs. 0.84,
p = 0.74) did not reach statistical significance, with few events in the Black
population. Due to limited data available about patient race, only subset of
the cohort could be studied with limited number of events and the study is
likely underpowered for such comparison.

Association with outcomes and multivariable model
Kaplan-Meier Curves stratified by TPD (ischemia <10% and ≥10%), and a
matchedproportion of patientswith high and lowAI scores (AI threshold at
0.17, high risk in 4.13%) are shown inFig. 3.AI score led to an improved risk

reclassification of patients who experienced mortality (15.1%, 95% CI
11.4–18.8, p < 0.001) and patients who did not experience mortality (1.0%,
95%CI 0.5–1.5, p < 0.001), with an overall net reclassification improvement
of 16.1% (95%CI 12.4–19.8, p < 0.001). The stability of theAI thresholdwas
assessed by inspecting the hazard ratios (HR) of the AI threshold in high-
risk categorization across different subgroups in Supplementary Table 7.
Notably, the mean adjusted HRs in all subgroups are above 4.

Supplementary Fig. 4 illustrates findings of multivariable analyses.
After adjusting for age, sex (male), hypertension, dyslipidemia, diabetes
mellitus, peripheral vascular disease, past myocardial infarction, and family
history of CAD, patients with abnormal perfusion were at higher risk of
death compared topatientswithnormalmyocardial perfusion (adjustedHR
1.71, 95% CI 1.46–2.01, p < 0.001). Moreover, CAC > 400 (adjusted HR
2.11, 95% CI 1.67–2.65, p < 0.001) was associated with an increased risk
of death.

Table 1 | Baseline characteristics for all participants stratified by sex

All Participants Male Female P-value

N (%) 10480 5745 (54.8) 4735 (45.2)

Age [years] 65 (57, 73) 64 (56, 72) 66 (57, 74) <0.001

BMI [kg/m2] 29 (25, 33) 28 (25, 33) 29 (25, 34) 0.019

Hypertension 6175 (58.9) 3371 (58.7) 2804 (59.2) 0.589

Diabetes mellitus 2684 (25.6) 1539 (26.8) 1145 (24.2) 0.003

Dyslipidemia 5085 (48.5) 2984 (51.9) 2101 (44.4) <0.001

Smoking 1987 (19.0) 1224 (21.3) 763 (16.1) <0.001

Family history of CAD 2771 (26.5) 1393 (24.3) 1378 (29.1) <0.001

Prior CAD

Prior Myocardial Infarction 750 (7.2) 522 (9.1) 228 (4.8) <0.001

Past PCI 1508 (14.4) 1111 (19.3) 397 (8.4) <0.001

Past CABG 636 (6.1) 506 (8.8) 130 (2.7) <0.001

Mortality 651 (6.2) 398 (6.9) 253 (5.3) <0.001

CT Quantitative Image Analysis Parameters

DL CAC score 56 (0, 709) 171 (0, 1,184) 12 (0, 248) <0.001

DL EAT volume [mL] 130 (90, 183) 143 (99, 198) 119 (83, 163) <0.001

DL EAT density [HU] −65 (−70, −61) −65 (−70, −61) −65 (−70, −61) 0.004

MPI Acquisition Parameters

Stress Test Type <0.001

Exercise 4732 (45.2) 2843 (49.5) 1889 (39.9)

Pharmacological 5748 (54.8) 2897 (27.6) 2851(27.2)

Peak Stress Heart Rate 112 (89, 146) 115 (88, 146) 110 (91, 142) 0.547

Peak Stress Systolic Blood Pressure 148 (128, 170) 150 (128, 172) 145 (126, 166) <0.001

Peak Stress Diastolic Blood Pressure 80 (70, 86) 80 (70, 88) 80 (70, 85) <0.001

ECG Response to Stress <0.001

Negative 8010 (77.0) 4295 (75.0) 3715 (79.0)

Positive 1167 (11.1) 708 (12.3) 459 (9.7)

Equivocal 455 (4.3) 219 (3.8) 236 (5.0)

Nondiagnostic 824 (7.9) 512 (8.9) 312 (6.6)

Borderline 10 ( < 0.1) 4 ( < 0.1) 6 (0.1)

MPI quantitative image analysis parameters

Stress ejection fraction 64 (55, 72) 59 (51, 66) 70 (63, 77) <0.001

Stress end diastolic volume 84 (64, 111) 102 (82, 127) 66 (54, 82) <0.001

Stress shape index end Diastolic 0.58 (0.54, 0.62) 0.57 (0.53, 0.62) 0.58 (0.54, 0.63) <0.001

Stress total perfusion deficit 2.6 (0.9, 6.0) 2.7 (1.0, 6.6) 2.5 (0.7, 5.5) <0.001

Values are presented as N (%) or median (IQ1, IQ3).
BMI body mass index, CABG coronary artery bypass graft, CAC coronary artery calcium,CAD coronary artery disease,CT computed tomography, DL deep learning, EAT epicardial adipose tissue, ECG
electrocardiogram, HU Hounsfield units, MPImyocardial perfusion imaging, N number of patients, PCI percutaneous coronary intervention.
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Structure specific risk evaluation
Examplesofpatients classified tobeat ahigher riskofdeath (withextracardiac
structures, notably the lungs andaorta, contributing themost tomortality) are
shown in Fig. 4, Supplementary Figs. 5 and 6.

Discussion
In this study, we have demonstrated the potential value of holistic anatomic,
functional, and clinical evaluation of CTAC scans for improving all-cause

mortality prediction in patients undergoing hybrid perfusion MPI. We
developed a fully automated AI model incorporating multi-structure seg-
mentationand radiomic feature extraction inparallel todeep learning-based
CAC and EAT quantification. This model improves mortality prediction
from multimodality myocardial perfusion, with a combined model
improving upon any feature set (SPECT, CTAC, or clinical) in isolation.
Moreover, it providesphysicianswithguidance regardingportionsofCTAC
scans which require further scrutiny to identify potentially important
underlying conditions indicating potentially significant incidental findings,
despite coronary artery disease being the primary indication for the
examination. This fully automated workflow could be leveraged by physi-
cians to unlock the full potential of hybrid SPECT/CT imaging.

Several studies have proven the role of AI in predicting mortality and
cardiovascular events from cardiac imaging (Supplementary Table 1), only
fewof these studieswere utilizing hybridMPI11,12, andCTACdata13,14. None
of the studies of the cardiovascular data considered comprehensively all
organs in thefield-of-view for the analysis.Moreover, only a limitednumber
of CTAC findings, like CAC13 or EAT10 were included in these previous
analyses. More recently we demonstrated that deep learning cardiac
chamber volumes (fromCTAC) provided incremental and complementary
value toCACandSPECTvariables15.Ashrafinia et al. used radiomic features
from SPECT MPI to predict CAC score derived from CT scans16, whereas
Amini et al. applied a quantitative image analysis approach not only to
diagnose CAD, but also for risk classification17. The proposed AI approach
integrates simultaneous assessment of multiple structures on CTAC by
leveraging strengths of deep learning and quantitative image analyses.
Importantly, the model incorporating SPECT, CTAC, and clinical data had
the highest prediction performance suggesting that AI-derived information
encrypted in CTAC is complementary to traditional methods for analysis.

By integrating functional imaging (SPECT) with anatomic character-
istics (CT), hybrid imaging has not only enhanced nuclear medicine by
improving diagnostic accuracy18, but also provides an enormous amount of
data contained in CTACs. This improvement was also observed in the
performance of our model — the model including only perfusion and
functional features performed significantly lower than the hybrid model
(incorporating CTAC and SPECT data) or even the AI CTACmodel alone.
Moreover, the integration of clinical and imaging information improved the
performance of the model in predicting the risk of death, which reflects the
need for a holistic approach in patients’ diagnosis and radiology reporting19.
While the 2024 ESC Guidelines for the Management of Chronic Coronary
Syndromes recommend CAC scoring from CTACs to improve the detec-
tion of nonobstructive and obstructive CAD20, there is significantly more
information in CTAC images beyond CAC that is not currently utilized. As
demonstrated in this study, the highest feature importance score for pre-
dicting mortality was reported for the lungs. Although ischemic heart dis-
ease is the leading cause ofmortalityworldwide, the total number of lives lost
due to respiratory diseases is still higher21,22. Incidental findings are fre-
quently detected also on CTACs6,7, some of which may be clinically sig-
nificant and require further diagnosis and treatment23–25. This underlines the
need for a scrutinized evaluation of exams in patients undergoing diagnostic
imaging for various reasons. For example, some respiratory diseases, like
lung cancer and chronic obstructive pulmonary disease, share the same risk
factors as CAD22 and early detection of potentially significant incidental
findings might be lifesaving. AI-systems like the one proposed in our study
could aid clinicians in these tasks.

This study has some limitations. It was a retrospective study with
non-uniformCTAC acquisition protocols frommultiple sites, however,
this highlights the generalizability of the approach. Some organs (like
the pancreas) were only partially visible or not visualized on all scans,
whereas organs like kidneys and thyroid were excluded from the ana-
lysis because of their high missingness ( > 20%) across the cohort. For a
more holistic approach and more accurate mortality prediction, organs
with missingness <20% were included, however, this could influence
model accuracy since, in some cases, fewer features were included. This
large, multicenter registry does not include information on the reported

Table 2 | Baseline characteristics for all participants stratified
by all-cause mortality (ACM)

ACM No-ACM P-value

N (%) 651 (6.2) 9829 (93.8)

Age [years] 71 (63, 79) 64 (56, 73) <0.001

Male 398 (61.1) 5347 (54.4) <0.001

BMI [kg/m2] 27 (24, 32) 29 (25, 33) <0.001

Hypertension 417 (64.1) 5758 (58.6) 0.007

Diabetes mellitus 230 (35.3) 2454 (25.0) <0.001

Dyslipidemia 329 (50.5) 4756 (48.4) 0.307

Smoking 125 (19.2) 1862 (18.9) 0.913

Family history of CAD 135 (20.7) 2636 (26.8) <0.001

Prior CAD

Prior Myocardial Infarction 69 (10.6) 681 (6.9) <0.001

Past PCI 126 (19.4) 1382 (14.1) <0.001

Past CABG 84 (12.9) 552 (5.6) <0.001

CT Quantitative Image Analysis Parameters

DL CAC score 353 (25, 1718) 48 (0, 652) <0.001

DL EAT volume [mL] 143 (93,198) 130 (90, 182) 0.003

DL EAT density [HU] −65 (−69,−60) −65
(−70, −61)

<0.001

MPI Acquisition Parameters

Stress Test Type <0.001

Exercise 156 (24.0) 4576 (46.6)

Pharmacological 495 (76.0) 5253 (53.4)

Peak Stress Heart Rate 93 (79, 116) 114 (90, 146) <0.001

Peak stress systolic blood
pressure

130 (114, 150) 149 (128, 170) <0.001

Peak stress diastolic
blood pressure

70 (62, 80) 80 (70, 87) <0.001

ECG response to stress <0.001

Negative 518 (79.6) 7492 (76.2)

Positive 52 (8.0) 1115 (11.3)

Equivocal 11 (1.7) 444 (4.5)

Nondiagnostic 69 (10.6) 755 (7.9)

Borderline 1 (0.2) 9 ( < 0.1)

MPI quantitative image analysis parameters

Stress ejection fraction 58 (45, 68) 64 (56, 72) <0.001

Stress end diastolic
volume

93 (70, 130) 83 (64, 110) <0.001

Stress shape index end
diastolic

0.60
(0.56, 0.65)

0.58
(0.53, 0.62)

<0.001

Stress total perfusion
deficit

4.4 (1.7, 9.9) 2.5 (0.8, 5.8) <0.001

Values are presented as N (%) or median (IQ1, IQ3).
BMI body mass index, CABG coronary artery bypass graft, CAC coronary artery calcium, CAD
coronary artery disease, CT computed tomography, DL deep learning, EAT epicardial adipose
tissue; ECG electrocardiogram, HU Hounsfield units,MPI myocardial perfusion imaging, PCI
percutaneous coronary intervention.
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Fig. 2 | Model performance and feature importance scores for all-causemortality. The
performance of the model and feature importance scores were assessed (a) in all
patients, b in patients with normal perfusion, and (c) patients with no coronary artery
calcification. Normal myocardial perfusion was defined as total perfusion deficit
(TPD) < 5%. Receiver operating characteristic curve for the artificial intelligence (AI)
computed tomography attenuation correction (CTAC) model, including deep-
learning (DL) coronary calcium, DL-epicardial adipose tissue (EAT), and radiomics,

the AI hybrid model incorporating CTAC and myocardial perfusion imaging (MPI)
data (stress MPI quantitative image parameters, Coronary Calcium [DL-coronary
artery calcium score], Perfusion [stress TPD]), and a model combining CTAC, MPI,
and clinical data (All). In all patients, the performance of the EATmodel (not shown in
the figure) alone was AUC 0.56, in patients with TPD < 5% AUC 0.54, whereas in
subjects with no coronary calcium AUC 0.59. Feature importance score plot repre-
sents 10 segmented structures with the highest scores for the CTAC model.
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cause of death, limiting our ability to evaluate the associations between
specific extracardiac organ features and cause-specific mortality.
Additionally, while SHAP and XGBoost are widely used for model
explainability, their results can be subtly influenced by feature corre-
lations and training data quality, highlighting the need for careful
interpretation and oversight by clinicians. Another limitation of this
study is the limited racial data, restricting subgroup analysis to Black
and White individuals. Finally, radiological evaluation of CTACs was
performed only with radiomic features, and no information regarding
reported incidental findings is available in this cohort.

We demonstrate a significant, yet underappreciated, role of CTAC in
risk stratification with MPI SPECT/CT. Fully automated AI integration of

quantitative features from multiple organs derived from CTAC, perfusion
and clinical data images significantly improves mortality risk stratification
in patients undergoing SPECT/CT MPI as compared to MPI only.

Material and methods
Study population
In this retrospective study we utilized CTAC scans of patients who under-
went SPECT/CT MPI from 4 sites (University of Calgary, Yale University,
Columbia University, University of Ottawa Heart Institute) participating in
the Registry of Fast Myocardial Perfusion Imaging with Next generation
SPECT (REFINE SPECT)26. The cohort included consecutive patients at
eachcenter referred forSPECT imaging,with scansperformedbetween2009
and 2021. The study protocol compliedwith theDeclaration ofHelsinki and
was approved by the institutional review boards (IRBs) at each participating
institution, including the University of Calgary (Conjoint Health Research
Ethics Board), Yale University School of Medicine (Human Research Pro-
tection Program, Institutional Review Boards), University of Ottawa Heart
Institute (Ottawa Health Science Network Research Ethics Board), and
Columbia University Irving Medical Center (Human Research Protection
Program, Institutional Review Boards). The investigators ensured that the
institutional ethics committee at each center evaluated and approved the
study protocol before data collection and transfer. The overall study was
approved by the institutional review board at Cedars-Sinai Medical Center
(Office of Research Compliance and Quality Improvement). Sites either
obtainedwritten informed consent orwaiver of consent for the use of the de-
identified data. To the extent allowed by data sharing agreements and
institutional review board protocols, the data and code from thismanuscript
will be shared upon written request. Baseline demographic and clinical
characteristics were obtained from the REFINE SPECT registry26. CTAC
image acquisition at each participating site is shown in SupplementaryTable
8. The outcome was all-cause mortality (referred to subsequently simply as
“mortality”), which was determined using the national death index for sites
in the United States and administrative databases in Canada.

Myocardial perfusion image analysis
Total perfusion deficit (TPD), end-diastolic stress shape index (ratio
between the maximum left ventricular (LV) diameter in short axis and the

Fig. 3 | Kaplan-Meier (KM) curves stratified by total perfusion deficit (TPD).The
KMCurves arematched tomachine learning (ML) scores (All model). Ischemia was
defined as TPD ≥ 10%. Abbreviations: CI – confidence interval, NRI – Net Reclas-
sification Improvement.

Fig. 4 | Example of a patient undergoing single-
photon emission computed tomography/com-
puted tomography (SPECT/CT) myocardial per-
fusion imaging with an extracardiac structure
increasing the highest risk of all-cause mortality.
Waterfall plot shows top 10 structures influencing
mortality risk in the computed tomography
attenuation correction (CTAC) model, highlighting
Shapley Additive Explanations values (X-axis) and
key structures. A 66-year-old male patient was
classified to be at higher risk of death with the lungs
(right lower lobe) contributing the most to the ele-
vated risk (red arrow on the waterfall plot). aCTAC,
axial view, with a corresponding deep learning
structures segmentation (b) revealed a 39×39mm
solid mass with irregular margins in the right lower
lobe. cCTACwith an overlayed SPECT scan showed
no uptake of the radiotracer. d, e 3D reconstruction
of all segmented and ranked structures. The patient
had abnormal myocardial perfusion (total perfusion
deficit of 7.65) and died 48 days after the exam.
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length of the LV in end-diastole at stress), stress ejection fraction, and end-
diastolic volume were quantified automatically from non-attenuation-
corrected MPI scans at the core laboratory (Cedars-Sinai Medical Center,
Los Angeles) with the use of dedicated software (Quantitative Perfusion
SPECT [QPS] software, Cedars-Sinai Medical Center, Los Angeles)27.
Normal myocardial perfusion was defined as stress TPD < 5%28, whereas
moderate-to-severe ischemia was defined as TPD ≥ 10% of the
myocardium29.

Multi-structure deep learning feature extraction from CTAC
The study design is shown in Fig. 1. TotalSegmentator, a multi-structure
segmentation deep learning (DL) model, was used to segment structures
visible on CTAC30. Out of all segmented structures, we selected thirty-three
structureswith a frequencyof >80%on all scans (Supplementary Fig. 7).The
automatic extraction of imaging features for all selected structures was
performed with PyRadiomics package (version 3.0.1)31. In per-organ ana-
lysis, we included elevenfirst-order and four 3D featureswhich are clinically
relevant and have straightforward clinical interpretation (Supplementary
Tables 9-10).

One primary goal of this study was to create a simple, explainable
model with high predictive power. We selected 15 radiomic features (11
first-order statistical and 4 3D shape-based) defined by PyRadiomics for
their strong signal specificity and clinical relevance32–35. Grey-level features
were excludedas theyare deprecated innewer radiomics versions36. Further,
we conducted a comparison between the performance of themodels created
with all calculated 32 radiomic features and the subset of clinically inter-
pretable 15 radiomic features (for the names of these selected features please
see Supplementary Table 9). There were no statistically significant differ-
ences in performance between themodels using all 32 radiomic features and
those using 15 features for the All and AI CTAC models (p = 0.09 and
p = 0.40, respectively, Supplementary Table 10). Additionally, for the AI
hybrid model, the 15-feature subset performed significantly better than the
full 32-feature set (see Supplementary Table 10 for AUCs, confidence
intervals, and p-values). This supports our decision to use the clinically
interpretable 15-feature subset, as it simplifies the model without compro-
mising performance and, in some cases, enhances it.

Automated coronary artery calcium scoring
Our formerly validated deep learning model was used for CAC segmenta-
tion and scoring37,38. To segment heart mask and CAC on CTAC images,
two convolutional long short-term memory (convLSTM) networks were
tested externally on data (10,480 CTAC scans) from 4 different sites. To
automatically obtain CAC scores from the deep learning segmentation,
established methods were used39.

Automated epicardial adipose tissue scoring
A previously developed deep learning model was used to estimate EAT
volume and density (−190 and −30 Hounsfield units [HU]) from CTAC
scans10. For EAT model training and validation purposes, we used 500
CTAC scans from one site (Yale University). Patients who were used for
EAT model training and validation were not included in this analysis.

Classification models
Extreme Gradient Boosting (XGBoost) models (version 1.7.3), a cur-
rently leading machine learning method, were used for mortality
classification33. These models generate all-cause mortality risk scores by
applying 10-fold cross-validation regimen across the entire dataset.
Within each fold, 90% of the data was first set aside for model training
and validation. This 90% was further divided, with 80% used for training
and 20% for validation. The remaining 10% of the data in each fold was
used for testing and kept separate from training and validation to ensure
each patient was tested exactly once across all folds. 10 separate models
were built, and each was tested independently. Testing results were
concatenated from all models for the overall performance evaluation.
Hyper-parameter tuning to optimize the model parameters was

conducted during training and validation, separately in each fold using
the grid-search method.

Keybenefits of employing 10-fold cross-validation include: 1) reducing
variability of prediction errors for more accurate evaluation40; 2) max-
imizing data utilization while minimizing overfitting and cross-
contamination of information among data splits41; 3) ensuring each data
point contributes to the test set exactly once, providing independent and
non-overlapping predictions for robust performance evaluation42; 4)
meeting theDeLong test requirements for valid AUC comparisons by using
independent predictions43.

Models
Five models were used for the mortality endpoint: 1 – model incorpor-
ating DL-EAT (EAT), 2 – model combining quantitative CTAC image
analysis of all segmented structures [radiomics], DL-EAT and DL-CAC
(AI CTAC), 3 –model incorporating stress ejection fraction, stress end-
diastolic volume, stress shape index end-diastolic, stress TPD, and other
SPECT imaging features (in total 22 features) [see Supplementary Table
11] (AI SPECT), 4 –model incorporating all variables included in the AI
CTAC model as well features included in the AI SPECT model (AI
hybrid), 5 – model combining CTAC, MPI and clinical data (All),
whereas Coronary calcium (DL-CAC score) and Perfusion (utilizing
stress TPD) were univariate comparisons.

Clinical data include patient demographics such as age, sex, bodymass
index (BMI). Also included is past medical history: hypertension, diabetes,
dyslipidemia, prior CAD (prior myocardial infarction, percutaneous cor-
onary intervention [PCI], and coronary artery bypass graft [CABG]). Fur-
ther, the clinical data encompass variables from stress test such as the type of
test, peak stress heart rate, peak stress blood pressure, and ECG response to
stress.

Model explainability
The predictive power of variables included in model training was evaluated
using XGBoost feature importance, which quantifies the increase in accu-
racy resulting from the addition of each feature. SHapley Additive expla-
nations (SHAP), a game-theoretic feature importance method, was used to
explain how structures contributed to the overall risk inmodel inference for
individual patients44.

Thresholds for comparisons of machine learning
Patientswere classified into lowor high-risk groups based onAI-derived all-
cause mortality risk score. This classification was achieved by setting a
threshold that aligns with the proportion of patients identified by the
established clinical criteria for ischemia ( ≥ 10%)45,46.

Statistical analysis
Continuous variables with a normal distribution are presented as
mean ± standard deviation (SD) and not normally distributed variables
as medians with interquartile range (IQR) [IQ1-IQ3]. Categorical
variables are expressed as count and relative frequencies (percentages).
Differences between categorical variables were compared by the Pear-
son’s χ2 test whereas continuous variables were compared byWilcoxon
Mann-Whitney test, as appropriate. The performance of the models
was evaluated using receiver-operating characteristics analysis, and
area under the receiver-operating characteristic (AUC) analysis values
were compared with the DeLong test47. Kaplan-Meier survival curve,
alongside univariate Cox proportional hazard models, were employed
to evaluate the association with mortality. Log-rank test was used to
ascertain the statistical significance. The improvement in model pre-
dictions was measured using the time-dependent net reclassification
improvement score at 2 years48. Confidence intervals were calculated by
the percentile bootstrap method. A two-tailed p-value of <0.05 was
considered statistically significant. All statistical analyses were per-
formed with Pandas (version 2.1.1) and Numpy (version 1.24.3), Scipy
(version 1.11.4), Lifelines (version 0.28.0) and Scikit-learn (version
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1.3.0) in Python 3.11.5 (Python Software Foundation,Wilmington, DE,
USA), as well as “nricens” package (version 1.6) in R version 4.3.2 (R
Foundation for Statistical Computing, Vienna, Austria).

Data Availability
To the extent allowed by data sharing agreements and IRB protocols, the
data from this manuscript will be shared upon written request.

Code availability
The TotalSegmentator code is publicly available15. cLSTM code is publicly
available under a Creative Commons BY-NC license at https://doi.org/10.
5281/zenodo.10632288. PyRadiomics code is available at https://
pyradiomics.readthedocs.io/en/latest/. The XGBoost Python implementa-
tion is available at https://xgboost.readthedocs.io/en/stable/python/. The
analysis code and the model used in this work will be made available on
GitHub: https://github.com/qimagingAI/HolisticAIforSPECT-CT.
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