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Identifying and forecasting importation
and asymptomatic spreaders of multi-
drug resistant organisms in hospital
settings
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B. Aditya Prakash1

Healthcare-associated infections (HAIs) from multi-drug resistant organisms (MDROs) pose a
significant challenge for healthcare systems. Patients can arrive at hospitals already infected
("importation”) or acquire infections during their stay ("nosocomial infection”). Many cases, often
asymptomatic, complicate rapid identification due to testing limitations and delays. Although recent
advancements inmathematicalmodeling andmachine learning have aimed to identify at-risk patients,
thesemethods face challenges: transmissionmodels often overlook valuable electronic health record
(EHR) data, while machine learning approaches typically lack mechanistic insights into underlying
processes. To address these issues, we propose NeurABM, a novel framework that integrates neural
networks and agent-based models (ABM) to leverage the strengths of both methods. NeurABM
simultaneously learns a neural network for patient-level importation predictions and an ABM for
infection identification. Our findings show that NeurABM significantly outperforms existing methods,
marking a breakthrough in accurately identifying importation cases and forecasting future nosocomial
infections in clinical practice.

Healthcare-associated infections (HAIs), especially those caused by multi-
drug resistant organisms (MDROs), pose a significant threat to patient
safety and burden the healthcare system with increased costs due to longer
hospital stays and more expensive therapies1–6. Approximately 3% of hos-
pitalized patients in the United States acquire an HAI during their stay,
resulting in more than 35,000 deaths annually7–10. In many occasions,
patients may have already been colonized (pathogens present on patients
without causing disease11) or infected but may be asymptomatic at admis-
sion (i.e., importation cases)12. For instance, the European Center for Dis-
ease Prevention and Control (ECDC) estimates that importation cases
contribute to 13% of HAI cases in Germany and 18.9% in Spain13. These
importation cases can spread HAI-causing pathogens either directly via
patient-patient contacts or indirectly via healthcare workers (HCWs) and
contaminated physical surfaces14–16 and lead to nosocomial infection cases,

which can also be asymptomatic but further spread pathogens to additional
healthy patients17.

Despite the critical concerns associated with importation and noso-
comial infection cases, identifying these cases rapidly and accurately still
remains a challenging problem. Current methods to identify them include
surveillance tests18,19, machine learning-based methods20,21, and transmis-
sion modeling-based methods22–28. However, each of these methods suffers
from unavoidable drawbacks. For example, surveillance tests, such as cul-
ture or PCR tests, are common in hospitals; however, they are costly, require
time to process, and are not 100% accurate29. Additionally, they are not
applicable for all MDROs; typically, they can be used for only a subset of
MDROs30. Machine learning and statistical techniques use patients’ elec-
tronic health record (EHR) data to predict the probability of importation
and nosocomial infection cases20,21 (see Fig. 1a). However, the performance
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of machine learning methods has not proven to be sufficiently robust for
clinical practice due tomany reasons, including imbalance (sinceHAI cases
form a very small fraction of the entire patient population) and bias in the
data (since testing is generally not done in a systematicmanner).Moreover,
explicitly incorporating physical epidemiologicalmechanisms intomachine
learning frameworks remains an open problem. ML frameworks tend to
focus on data-driven correlations rather than understanding and using
complex causal relationships and dynamics of disease transmission31.
Finally, modeling-basedmethods are based on detailedmechanisticmodels
(e.g., compartmental mixing models26,27 and agent-based models
(ABMs)22–24) to capture the transmission dynamics of HAIs within a
healthcare facility. They are calibrated to infections in the hospital and use
projections from such models for prediction. Although ABMs have used
information about contact networks between patients and providers within
healthcare facilities to model the infection status of an individual patient,
they still cannot directly incorporate the risk factor of each patient from the
EHRdata, such asmedications, lab results, vital signs, and device use history
into modeling. Besides, they rely on contact networks to run simulations,
which makes their forecasts for future nosocomial infections less reliable
since people have to make assumptions on future contact networks to run
themodel (see Fig. 1b). Aswewill also show in the later results section, these
limitations lead to suboptimal performance in identifying importation and
forecasting future nosocomial infection cases.

From a broader perspective, improved identification of importation
cases and forecasts of future nosocomial infections could also improve
hospital management. Practices to prevent the spread of MDROs within
hospitals, such as testing, quarantine, and isolation, consume limited

healthcare resources and could only be implemented on a small group of
patients. Meanwhile, decisions about prioritizing limited resources are cri-
tical to ensure effective and efficient delivery of healthcare services32, where
agent-based models33–36 and machine learning37 have proven to be invalu-
able tools for optimizing these decisions.

In this work, we propose a new framework,NeurABM, to identifyHAI
importation and forecast future nosocomial infection cases by coupling a
neural network and an ABM and training simultaneously. We use
methicillin-resistant Staphylococcus aureus (MRSA) as an example HAI in
later sections. Figure 1 shows an overview of our framework. As shown in
Fig. 1c, the neural network ϕ estimates the importation probability for each
patient using EHR data, while the ABM incorporates MRSA dynamics and
is used to estimate the MRSA infection probability. After training, Neur-
ABM runs as a discrete time process; at each time step t, the following two
steps are performed: (1) the neural network estimates the importation
probability (i.e., identifies importation cases) for each new patient who
enters thehospital, (2) theABM(which keeps track of thedisease states of all
patients inhospital till time t−1) runs thenext stepof thedisease simulation
to estimate all disease states (i.e., identify nosocomial infection cases,
including those which are asymptomatic) at time t. When forecasting for
future, we assume that the contact networks will be the same as on day T,
and use another adapter network ϕ0 to learn andmitigate the bias caused by
this assumption. The parameters of NeurABMconsist of two parts: those of
the neural network and those of the ABM (e.g., general parameters such as
transmission and recovery rates, and patient-specific parameters such as
importation probabilities in this paper); these parameters are learned by
minimizing a loss function that considers the errors in theABMprojections

Fig. 1 | NeurABM framework. a Traditional machine learning and statistical
methods use patients’ risk factors to predict the probability of being importation
and/or future nosocomial infection cases. It is hard to explicitly incorporate epi-
demiological mechanisms. bModeling based methods are built on mechanistic
models to capture the HAI spread in healthcare facilities. Here, observed cases are
used to train an ABM to (1) learn underlying ABMparameters and (2) pin the ABM
states to the spread dynamics until today, which allows people to run ABM simu-
lations for T 0 more days for forecasting. However, they cannot leverage the risk
factor of each patient from the EHR and have to make assumptions for future
contact networks. c To address this issue, we propose NeurABM framework to
couple both neural networks and ABM simultaneously. Specifically, it is composed
of two main components: the neural network component and the agent-based
model (ABM) simulator component. The neural network component takes patient-
specific risk factors data collected from EHR as input and outputs both the ABM

parameters (applicable to every patient) and patient-specific parameters (impor-
tation probabilities in this paper). The ABM simulator component takes daily
contact networks collected from EHR and the parameters as input, runs simulations
for T days, and outputs the probability that each patient is in the Carriage state for
each day. We then compare them with the ground-truth observations (via lab
testing) and compute the first loss. To forecast future nosocomial infections, we start
from predictions on day T and run simulations for T 0 more days. Note that these T 0

more days are for future, we assume that the contact networks will be the same as on
day T, and use another adapter network to correct the potential bias caused by this
assumption and get the final forecast. We also compute the loss of this forecast with
ground-truth observations. With both losses, we backpropagate the total loss to
adjust neural network parameters. This design allows us to train both the neural
network and the ABM simultaneously in an end-to-end manner, mitigating the
issues encountered when using either component individually.
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and ground truth incidence data from EHR. Since the dynamics of MRSA
transmission depend on the importation model (and conversely, through
this kind of training process), this approach couples the neural network and
ABMand is trained end-to-end, whichmitigates the issues in using either of
them individually. NeurABM significantly extends the work of Chopra and
Rodriguez et al.38, which was the first method to consider such a joint deep
learning and ABM approach, by introducing approximation techniques to
scale the diseasemodel, incorporating rich patient-level EHR data, and new
techniques to train the pipeline robustly.

We demonstrate the performance of NeurABM using EHR data for
patients at the University of Virginia (UVA) hospital intensive care units
(ICUs). Our results show that NeurABM not only identifies importation
cases but also forecasts future nosocomial infection cases better than other
machine learning ormodeling-based baselines. Note that theNeurABM is a
general framework that integrates both neural networks and mechanistic
models in an end-to-end way, one which can be easily extended to other
ABMs or EHR data and study other clinical problems.

Results
EHR data was used from the UVA hospital to construct patient contact
networks (used by the ABM) and collect patient risk factors (used by the
neural network). We use the SIS-ABM model39,40 as the ABM for disease
transmission in NeurABM. Ground-truth MRSA infections are identified
from lab test results for each patient in the EHR. For each week k, contact
networks, patient risk factors, and lab test results until week k− 1were used
to train theNeurABMand identify importation cases beforeweek k− 1.We
then ran the SIS-ABMmodel for 7 more days to infer the infection states of
patients for week k. Two setups were assessed: (1)When identifying current
nosocomial infection cases in hospital, contact networks in week k are used
in this process, similar to the approach discussed in previous work22 for
detection of asymptomatic cases, although their ABM is different. They also
did not consider the importation problem. (2) When forecasting future
nosocomial infection cases, nodata inweek k is used,whichexactly follows a
real-world forecasting setup that no future information is known. For
evaluation, we compare NeurABM with a broad range of baselines in
machine learning categories (feedforward neural network41, decision tree42,
naive bayes43, XGBoost44, and Autoencoder+KNN45,46), modeling cate-
gories (the SIS-ABM model39,40, SILI-ABM model22), and clinical heuristic
categories (length of stay22). Note that since the SILI-ABM model22 is not
designed to identify importation cases, we only compare it for identifying
nosocomial infection cases.

Identifying importation cases
In Fig. 2a, we show the precision-recall curves42 for NeurABM and other
methods. Intuitively, precision measures the accuracy of positive predic-
tions, while recall measures the ability to identify all actual positives. Note
that in clinical practice, very lowprecision is not very useful, since thismeans
toomany tests and treatments do not help to identify and treatMRSA cases.
Therefore, we always expect high recall with not-too-low precision. Fol-
lowing previouswork47, we consider precision smaller than 0.25 as clinically
inapplicable and focus on three important precision levels: 0.25, 0.5, and
0.75 (dashed gray lines). NeurABM consistently achieves the highest recall
at precision levels of 0.25, 0.5, and 0.75, demonstrating the effectiveness of
the NeurABM framework. For example, a precision of 0.25 means that, on
average, one out of four patients identified as importation cases are actually
importation cases. Additionally, when precision is 0.25, NeurABMachieves
0.74 recall, while the best baseline (feedforward neural network) only
achieves a recall of 0.40. This means that NeurABMcould identify 55 out of
74 importation cases in UVA ICU, while the feedforward neural network
could only identify 29 out of 74, missing 26 more patients than NeurABM.
Finally, the area under the precision-recall curve (AUPRC) forNeurABM is
the largest (0.60) among all methods. In Fig. 2b, we show how the negative
predictive value (NPV) changes with threshold changes (when the esti-
mated probability is higher than the threshold, we classify this patient as a
MRSA importation case, and vice versa). The NPV is the fraction of the

number of true negative cases over predicted negative cases. Intuitively, a
higher NPV means that when we predict a patient as negative, he or she is
less likely to be a false negative patient thatwe fail to identify.We can see that
NeurABM’s NPV rate is always higher than 0.9 and other baselines, indi-
cating that NeurABM can identify the importation cases well with fewer
missing/undetected patients. Figure 2c presents the receiver operating
characteristic (ROC) curve42, which illustrates the trade-off between the true
positive rate (the proportion of actual positives correctly identified, which is
recall) and the false positive rate (the proportion of negatives incorrectly
classified as positives, which is 1-specificity) across different classification
thresholds. Here, the area under the curve (AUC-ROC) for our framework
is still the largest (0.86) compared to other baselines. Intuitively, an AUC-
ROC of 0.86 means that, on average, there is an 86% probability that
NeurABM will predict higher importation probabilities for an importation
case compared to a non-importation case. In the table in Fig. 2d, we also list
the recall, F1 score, and false positive rate corresponding to different pre-
cisionvalues.NeurABMconsistently achieves thehighest recall andF1 score
with a given precision, indicating the effectiveness of our framework in
identifying MRSA importation cases.

Identifying current nosocomial infection cases
Next, we assessed the effectiveness of NeurABM to identify current
nosocomial infection cases of MRSA. As shown in Fig. 3a, the x-axis and
y-axis represent precision and recall, respectively. The red curve
represents the results for NeurABM. As shown in the figure, the area
under the precision-recall curve for our framework is the largest (0.69)
compared to other baselines. The dashed gray lines correspond to the
precision of 0.25, 0.5, and 0.75. Again, NeurABM consistently achieves
the highest recall with precision equal to 0.25, 0.5, and 0.75, indicating
that our framework is effective. For example, a precision of 0.5 means
that, on average, one out of two patient days we identified are actual
nosocomial infection patient days. Additionally, when precision is 0.5,
NeurABM achieves 0.81 recall, while the best baseline (XGBoost) only
achieves a recall of 0.60. This means that NeurABM was able to identify
331 out of 408 nosocomial infection patient days in UVA ICU, while
XGBoost could only identify 245 out of 408, missing 86 more patient
days thanNeurABM. In Fig. 3b, we show how the NPV changes with the
threshold for classification. We can see that the NPV rate is always
higher than 0.9 and other baselines, indicating that NeurABM can
identify current nosocomial infection cases well with fewer missing/
undetected patients. The ROC curve in Fig. 3c demonstrates that the
AUC-ROC for the NeurABM framework is the highest (0.88) compared
to other baselines. Intuitively, this means there is an 88%probability that
NeurABM will assign higher probabilities to actual current nosocomial
infection cases compared to non-nosocomial infection cases. In the table
in Fig. 3d, NeurABM always achieves the highest recall and F1 score with
a given precision, demonstrating the effectiveness of our framework in
identifying current nosocomial MRSA infection cases.

Forecasting future nosocomial infection cases
We then directed our attention to examining the ability of NeurABM to
identify current nosocomial infection cases of MRSA. As shown in
Fig. 4a, the x-axis and y-axis represent precision and recall, respectively.
The red curve represents the results for NeurABM. As shown in the
figure, the area under the precision-recall curve for our framework is the
largest (0.85) compared to other baselines. The dashed gray lines corre-
spond to the precision of 0.25, 0.5, and 0.75. Again, NeurABM always
achieves the highest recall with precision equal to 0.25, 0.5, and 0.75,
indicating that our framework is effective. For example, when precision is
0.75,NeurABMachieves 0.88 recall, while the best baseline (Autoencoder
+KNN) only achieves a recall of 0.5. This means that we could forecast
275 out of 312 future nosocomial infection patient days in UVA ICU,
while the Autoencoder+KNNcould only forecast 156 out of 312,missing
119 more patient days than NeurABM. In Fig. 4b, we show how the NPV
changes with the threshold for classification. We can see that the NPV
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rate is always higher than 0.9 and other baselines, indicating that Neur-
ABM can forecast future nosocomial infection cases well with fewer
missing/undetected patients. In Fig. 4c, the AUC-ROC for NeurABM
framework is the largest (0.92) compared to other baselines. Intuitively,
this means there is an 92% probability that NeurABM will assign higher
probabilities to future nosocomial infection cases compared to non-
nosocomial infection cases. In the table in Fig. 4d, NeurABM always
achieves the highest recall and F1 score with a given precision, demon-
strating the effectiveness of our framework in forecasting future noso-
comial MRSA infection cases. We also ran experiments to forecast for
2 weeks ahead (see Supplementary Information), and the results show
that NeurABM still performs better than other baselines.

Forecasting high-risk MRSA cases
Identifying MRSA cases in high-risk patients can help target infection
control interventions that reduce transmission. Following the approach of
Pei et al.22, we consider a strategy of testing patients based on the ranked
carriage probability forecasted by NeurABM and other baselines, and
determined the proportion of MRSA cases that can be identified. This is
shown in Figure 5, where we rank all patients according to the forecasted
infected probability of each method from high to low, and test patients in
this order. For example, if we only test 20% of patients based on the ranked
risk estimatedbyNeurABM,we could identify 88%(86out of 98) of carriage
patients. Meanwhile, the best baseline (XGBoost) could only identify 65%
(64 out of 98) of them (i.e., 22 less patients than NeurABM). Therefore,

Fig. 2 | The performance in identifying importation cases. a The precision-recall
curves (PRC). The x-axis represents precision, and the y-axis represents recall. The
red and other color curves represent NeurABM and other baselines. A larger area
under the precision-recall curve (AUPRC) indicates better performance. AUPRC
values are listed in the legends, and NeurABM has the highest AUPRC value. b The
negative predictive value (NPV)with different thresholds. The x-axis is the threshold
for classification, and the y-axis is the NPV value. Circles, squares, and triangles
correspond to the thresholds and NPV values where precision is 0.25, 0.5, and 0.75,
respectively. A higher NPV value indicates fewer missing importation cases that are

not identified and therefore better performance, andNeurABMhas the highest NPV
values. c The receiver operating characteristic (ROC) curves in identifying MRSA
importation cases. The x-axis is the false positive rate, and the y-axis is the true
positive rate. A larger area under the ROC (AUC-ROC) indicates better perfor-
mance. AUC-ROC values are listed in the legends, and NeurABM has the highest
AUC-ROC value. dThe recall, F1 score, AUPRC, false positive rate, NPV, andAUC-
ROC under different precisions (0.25, 0.5, 0.75). The best AUPRC and AUC-ROC
are in bold.
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NeurABM can always forecast more future nosocomial MRSA infection
cases (y-axis) given the same test budget (x-axis), which suggests that our
framework is effective and practical in real-world clinical settings.

Case study: explanation of neural network
To better demonstrate the interpretability of the NeurABM framework,
we further investigated which patient risk factors are considered to have
a high risk of being importation cases in the previous results shown in
Fig. 2 by NeurABM. As shown in Fig. 6, each dot represents a patient,
and the color of the dot represents the risk factor value (red means
higher, and blue means lower). Dots with a higher impact value (to the
right of the control line) mean that NeurABM tends to classify this

patient as having a higher probability of being an importation case (and
vice versa). Here, we can see that patients who have had contact with
more MRSA patients in the past 7/14 days prior to ICU admission are
considered as having high risk. In addition, we found that patients with a
device usage history, and who come from or were discharged to other
healthcare facilities last time, are more likely to be considered as
importation cases. This also aligns with real-world observations from
clinicians48. It is important to note that the SHAP values are primarily
used to explain the outputs of a neural network, and the results presented
in Fig. 6 are intended to highlight the interpretability of the NeurABM
framework rather than providing direct clinical recommendations or
supporting causal conclusions.

Fig. 3 | The performance in identifying current nosocomial infection cases. a The
precision-recall curves. The red and other color curves represent NeurABM and
other baselines. Higher AUPRC is better, and NeurABM has the highest AUPRC
value. bThe negative predictive value with different thresholds. Circles, squares, and
triangles correspond to the thresholds and NPV values where precision is 0.25, 0.5,
and 0.75, respectively. Higher NPV value is better, and NeurABM has the highest

NPV values. c The receiver operating characteristic curves in identifying MRSA
nosocomial infection cases. Higher AUC-ROC is better, and NeurABM has the
highest AUC-ROC value. d The recall, F1 score, AUPRC, false positive rate, NPV,
and AUC-ROC under different precisions. The best AUPRC and AUC-ROC are
in bold.
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Discussion
Identifying healthcare-associated infections importation and forecasting
future nosocomial infection cases have long been a challenging problem.
Previous research works relied either solely on machine learning and sta-
tistical techniques, which directly use patients’ risk factors collected from
EHRdata for predictionwhile overlooking the epidemiologicalmechanisms
involved inHAI spread20,21, or solely onmechanisticmodels that capture the
transmission dynamics of HAI within healthcare facilities while ignoring
individual patients’ specific risk factors22. In contrast, NeurABM integrates
both deep learning and ABMs simultaneously in a lock-step to learn
importation probabilities. This framework allows the use of diverse data
sources fromEHRs by deep learningmethods andABMs. Furthermore, the

contact network utilized in the SIS-ABM model within NeurABM plays a
crucial role and underscores the importance of contact representations in
identifying nosocomial infections. Overall, NeurABM is a novel framework
for supporting a diverse class of HAI surveillance and control questions.

Our experiments show that NeurABM not only identifies MRSA
importation cases and current nosocomial cases but also forecasts future
nosocomial infection cases in UVA ICUs, with performance that can be
considered clinically useful (e.g., high recall with not-too-low precision as
shown in Fig. 2a, Fig. 3a, and Fig. 4a); in contrast, as shown in experiments,
prior methods using EHR data haven’t achieved this level of performance.
For example, when ranking the patients based on their probability in the
carriage state and test the top 20%,we could identify 88%of carriagepatients

Fig. 4 | The performance in forecasting future nosocomial infection cases. a The
precision-recall curves. The red and other color curves represent NeurABM and
other baselines. Higher AUPRC is better, and NeurABM has the highest AUPRC
value. bThe negative predictive value with different thresholds. Circles, squares, and
triangles correspond to the thresholds and NPV values where precision is 0.25, 0.5,
and 0.75, respectively. Higher NPV value is better, and NeurABM has the highest

NPV values. c The receiver operating characteristic curves in forecasting future
MRSA nosocomial infection cases. Higher AUC-ROC is better, and NeurABM has
the highest AUC-ROC value. d The recall, F1 score, AUPRC, false positive rate,
NPV, and AUC-ROC under different precisions. The best AUPRC and AUC-ROC
are in bold.
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while the best baseline could only identify 65% of them (86 out of 98 vs. 64
out of 98). Moreover, the NPV for our method is always higher than 0.9,
indicating that NeurABM can identify and forecast these cases well with
fewer missing/undetected patients. Even though importation cases are
identified retrospectively, the results remain practical and valuable. Typi-
cally, MRSA culture tests require a 3-5 day turnaround time, while the
NeurABM framework can provide a rapid estimation during this period,
potentially offering actionable insights before culture results are available.
Our case study also reveals the risk factors that are highly related toMRSA
importations, which confirms clinical observations and allows clinicians to
better respond to potential MRSA importation cases in their hospital.

However, our framework is not without limitations. One limita-
tion is that the SIS-ABM model may oversimplify MRSA carriage by
defining just two states: susceptible and carriage. There are different
forms ofMRSA carriage, including various clinical infection types such
as skin abscess or bloodstream infection, which may confer different
levels of risk for transmission. Similarly, the SIS-ABM model does not
have an explicit “colonization” state. More advanced epidemiological
models like multi-strain SIR models could more closely reflect realistic
scenarios and further improve performance. Another limitation is that
we are currently only using the co-location data to construct the
contact networks and assuming that the entities co-located in the same
room will have interactions with each other. Recent works have shown
that this well-mixed assumption, even for short periods of time or small
spatial locations, can be sub-optimal in terms of prediction, while
better-designed, norm-based spatial formalization can better capture
the interactions between entities in continuous space36,37. Despite the
above disadvantages, NeurABM is quite general and can be extended to
use more complex ABMs that incorporate these properties separately,
depending on the needs in the application and data availability.
Besides, MRSA nares testing is widely used in clinical practice to guide
decision-making on whether contact precautions and MRSA-active
antibiotics should be implemented, and agent-based models (such as
the SIS-ABM model used in this paper) are well established for
studying MRSA transmission39,40. Therefore, extending agent-based
methods to predictMRSA testing outcomes for potential future clinical
application is a natural progression of this work, aligning with their

established utility in modeling transmission dynamics. Additionally,
we are currently evaluatingNeurABMonly in theUVA ICUdue to data
availability; adding more patient risk factors (e.g., chronic diseases
hisotry or Apache II scores) or conducting more experiments in other
settings and healthcare facilities could provide a more comprehensive
assessment of NeurABM.

Nevertheless,NeurABMopens up anewdirectionof research for using
both rich patient risk factors from EHR data as well as agent-based models
designed with epidemiological knowledge and can be used for many other
questions about HAI spread in hospitals. The specific architecture of our
method, which runs the deep learning method and ABM step at each time
allows us to add predictors at different stages within this framework to
address other kinds of questions. For instance, people can also forecast
future contactnetworks insteadofnaively assuming future contactnetworks
may be the same as previous ones to better forecast future nosocomial
infections. The ABM can also be enriched with representations of inter-
ventions implemented in the hospital (e.g., howpatients are selectedandput
under contact precautions with identified withMRSA). For patient-specific
parameters, we focus on importation probabilities in this work. However,
manyother parameters such as recovery rate can also be patient-specific and
our NeurABM framework can be easily extended to it. The performance of
these variations depends on data availability, and is a promising topic for
future research.

In terms of real-world applications, theNeurABMframework is highly
flexible, as it is not tied to any specific agent-basedmodel. Instead, users can
easily replace the SIS-ABM model in NeurABM with their own ABM
designs into NeurABM, allowing people to adapt to other healthcare-
associated infections, such as Clostridioides difficile. Moreover, the datasets
required forNeurABMare straightforward to extract from electronic health
records22 (see the Methods section for more details). Our experiments also
adhere to a real-world setup: when forecasting future nosocomial infections
in week k, the model only requires data up to week k− 1. This ensures that

Fig. 5 | Percentage of identifiedMRSAcases by screening “high-risk" patients. For
each patient in theUVA ICUs, we use eachmethod to estimate theirMRSA infection
probability and rank them according to this probability from high to low. We then
screen different percentages of patients (x-axis) and see how many actual MRSA
cases can be forecasted (y-axis). As seen in the figure, NeurABM can always identify
more MRSA cases than other baselines.

Fig. 6 | The patient risk factors that are considered as having a high risk of being
importation cases by the trained neural network. Color of the dots represent risk
factor values, with red indicating higher values. A higher impact means that
NeurABM is more likely to consider the patient as an importation case.
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NeurABM operates without data leakage and is suitable for real-time
implementation. The fact that NeurABM is amenable to such adaptations
quite easily is an indication of its generality.

Methods
Dataset
Weextract threedifferent types ofpatient databasedon the electronichealth
records (EHR) from the University of Virginia hospital: patient demo-
graphic information and risk factors (e.g., comorbidities, medical history),
lab testing, and contact network data.
• Patient risk factor data: This dataset consists of risk factors for all

patients in ICUs. From the EHR dataset, we collected 19 different risk
factors for eachpatient, all ofwhich are available before ICUadmission.
From July 1, 2019, to December 31, 2019, there were 1117 patients in
UVA ICUs, and 74 of themwereMRSA importation cases (all patients
received anMRSA test within (t− 3, t+ 3) days of being admitted into
one of the ICUs, and patients who tested positive forMRSAwithin this
range are considered as importation cases). A list and description of
each risk factor are provided in the Supplementary Information.

• Lab testing data: This dataset consists of infection data for eachpatient.
There were two different types of tests to diagnoseMRSA: culture tests
and polymerase chain reaction (PCR) tests. However, since a negative
culture test cannot disqualify an individual from MRSA infection, we
focused on only positive culture tests and both positive and negative
PCR tests. For a given patient p on a given day t, yp,t = 1 represents that
the patient was tested positive on day t or if theirmost recent test in the
past was positive. Likewise, yp,t= 0 if this patient was tested negative on
day t or if their most recent test was negative.

• Contact network data: This dataset consists of a series of ward-level co-
location contact networks At comprising three different entities:
patients, healthcareworkers (HCWs), and locations, and each network
is for one specific day. From the EHR dataset, we can collect the
movement information of patients and HCWs (e.g., the ward that a
patient stayed, and when the doctors and nurses visited a specific
ward). Note that these movement information also includes start and
end times; we can infer whether these patients and HCWs were co-
located (i.e., time overlapped) at any specific location. Specifically, if
two patients or HCWs v1, v2 colocated at location l on day t, we would
create edges between v1 and v2, v1 and l, v2 and londay t inAt.However,
because of the nature of this data, individuals such as support staff or
patient guests arenot tracked, and thus arenot included in thenetwork.
Additionally, HCW-HCWcolocations are not tracked in roomswhere
care is not administered, such as break rooms. From July 1, 2019 to
December 31, 2019, there were 1117 patients (and 6445 patient days),
2385 healthcare workers, and 77 locations in the UVA ICU.

Problem setup
We use the trained NeurABM model to identify importation and nosoco-
mial infection cases. For importation cases, thepatient-specific parameterθp
in this work is importation probability for each patient. Specifically, for each
week k, we used the contact networks, patient risk factors, and lab testing
results until week k to train the NeurABM, and our task is to identify the
importation cases from them until week k. Note that NeurABM framework
do not access to the ground-truth importation cases data. Instead, we only
use the ground-truth importation cases data for evaluation.

For identifying current nosocomial infection cases in hospital, we
follow the setup of a previous work22: In this setup, since wewant to identify
current nosocomial infections inweek k, we shouldbe exactly inweekk (e.g.,
at the end of week k). Therefore, for each week k, we used the contact
networks, patient risk factors, and lab testing results until week k− 1 to train
theNeurABM,and then ran theSIS-ABMmodel for 7moredays to infer the
infection states of all patients for week k. Since we are identifying current
nosocomial infection cases in week k, the contact network in week k is
known, while the lab test results are not fully available (because of the delays
in getting the lab test results). For example, if we were at the end of week 40

(beginning ofOctober), wewould trainNeurABMonall the data fromweek
28 (beginning of July) to week 39. As for week 40, we would only use the
contact network in that week and use the ABM simulator to identify the
nosocomial infection cases in week 40. Then, at the end of week 41, we
would train on the data from week 29 to 40 and identify the nosocomial
infection cases in week 41. We repeated this procedure until we were at the
end of week 52.

For forecasting future nosocomial infection cases, we followed a real-
world step-forward scenario that made weekly predictions. In this setup,
since we want to forecast future nosocomial infection cases in week k, we
should be before week k (e.g., at the end of week k− 1). Therefore, for each
week k, we used the contact networks, patient risk factors, and lab testing
results until week k− 1 to train the NeurABM, and then ran the SIS-ABM
model for 7more days to forecast the infection states of all patients for week
k without knowing any information for week k. For example, if we were at
the end of week 39, we would train on the data from week 28 to week 39 to
forecast for week 40 (i.e., no information fromweek 40 is used). Then, at the
end of week 40, we would train on the data fromweek 29 to 40 and forecast
forweek 41.We repeated this procedure until wewere at the end ofweek 52.
Intuitively, the key difference between the setup of identifying current
nosocomial infection cases and forecasting future nosocomial infection
cases is whether the contact network in the targetedweek k is known or not.

Transmission model
In thiswork,we use the SIS-ABMmodel inNeurABMto capture theMRSA
spread dynamics inUVA ICUs39. SIS-ABM is a pathogen load-basedmodel
that keeps track of pathogen load on all people and locations using a load
vector lt. For each patient i, they can either be in the Susceptible (S) or
Carriage (C) state. Specifically, the probability of transitioning from S toC is
proportional to the amount of pathogen on this patient lt(i), which can be
formulated as a linear dose-response function βlt(i) (β is the disease infec-
tivity parameter). Once in the carriage state, the patient keeps shedding
more pathogen loads at each step, which can later be transferred to its
neighbors (including both people and locations). Such a shedding process
continues until the patient recovers with a recovery probability δ.

For the pathogen load transfer, as described in the previous text, the
SIS-ABMmodel uses daily contact networks At to capture the exchange of
pathogens among patients, HCWs, and locations. Specifically, we construct
a transfer matrix Rt for each day t, where Rijt = τijtAijt. Here, At is the
adjacency matrix of contact networks on day t, and τijt is the transfer ratio
parameter (the ratio of pathogen being transferred (or remaining if i = j)
from patient/HCW/location j to patient/HCW/location i on day t). Speci-
fically, based on the kinds of nodes of i and j, we have 8 kinds of transfer
ratios: τPP, τPH, τPL, τHP, τHH, τHL, τLP, τLH. It also uses γP, γH, γL to denote the
natural pathogen reduction rate on patient, HCW, and location nodes.
Using thisRt and lt(i), the SIS-ABMmodel updates the pathogen loads every
day as a linear operation. We also restrict the column-sums of Rt to be less
than or equal to 1, which implies that the total amount of pathogen cannot
increase after transfer (i.e., ∣Rtlt∣ ≤ ∣lt∣). Note that susceptible patients may
still carry a small amount of pathogen loads and spread them to others, and
HCWs and locations are always in the susceptible state, which means that
they can spread the MRSA pathogen loads but are non-infectable. We
provide more details in the Supplementary Information.

NeurABM framework
As shown in Fig. 1, the NeurABM framework is composed of two parts: the
neural network part (green block, parameterized by ϕ) and the agent-based
model simulator part (yellow blocks).

For the neural network component, we take the risk factors f (where fp
is for patient p) as input and then estimate both the patient-specific para-
meters θp (which is a vector and each element θp is for patient p and only
influenced by the patient itself’s risk factors fp, in this work it is importation
probability for each patient) and ABM parameters θM (i.e., the general
parameters that apply to every patient in the SIS-ABM model, including
disease infectivity parameter β, recovery probability δ, pathogen shedding
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rateα, natural pathogenreduction rate forpatients,HCWs, and locationsγP,
γH, γL, transfer ratios from different kinds of nodes τPP, τPH, τPL, τHP, τHH,
τHL, τLP, τLH) together. Theneural network is parameterized byϕ andweuse
θp, θM = NN(f; ϕ) to represent it. We list all ABM parameters in Supple-
mentary Information.

For the ABM simulator, we implement the simulation process of the
SIS-ABM model using matrix operations in a differentiable way. ABM
simulator takes the adjacency matrices of contact networks At and the
parameters learned by neural networks (θp, θM) as input, and simulates
MRSA spread inTdays to estimate patient states on each day ŷ (where ŷp;t is
for patient p on day t). Specifically, the simulation process of the SIS-ABM
model can be decomposed into three substeps: (1) pathogen load trans-
missionwhere the load transfers via contact edges, (2) updating the states for
each patient based on their pathogen loads and recovery probability, and (3)
updating the timestep from day t to day t+ 1. This process can be repeated
for arbitrary steps to simulate the MRSA spread over T days. We use ŷ ¼
ABMðA; θp; θMÞ to represent it.

We also have another ABM simulator for forecasting. Since we cannot
exactly know future contact networks, we assume they will be the same as
the contact network on day T (i.e.,AT). Therefore, it takes the patient states
on dayT as the input and forecast forT 0 days ahead. It can be represented by
ŷ0F ¼ ABMFðŷ;AT ; θp; θMÞ. However, the assumption on the future con-
tact networks is inaccurate and lead to bias in ŷ0F we forecast. Therefore, we
use another adapter neural networkϕ0 to revise ŷ0F andgive ourfinal forecast
ŷF . We formulate it as ŷF ¼ Adapterðŷ0F ; f ; ϕ0Þ.

With the aforementioned neural network and the ABM simulator, we
then integrate them together to train simultaneously. Specifically, one
training epoch comprises the following steps.
• Step 1: We feed the risk factor data f into the neural network as the

input to estimate the patient-specific parameters θp. In this work, θp is
the probability of being importation cases for each patient p. It is a
vector of size N, where N is the number of patients in the contact
network. Meanwhile, the neural network will also give the general
ABM parameters θM that are applied to all patients (e.g., β, α,⋯ ).

• Step 2:We then feed θp, θM, and the contact networksAt into theABM
simulator and simulate for T steps. The output will be the vector ŷ of
sizeN × T, in which ŷp;t represents the probability of being in the state
carriage for patient p on day t.

• Step 3: We compare the estimated carriage probability ŷ with the
corresponding ground-truth observations (i.e., known carriage
patients based on lab testing) y. We use the weighted binary cross
entropy loss (BCE loss)42Lðŷ; yÞ ¼ P

p

P
twposyp;t logðŷp;tÞ

þwnegð1� yp;tÞ logð1� ŷp;tÞ as the loss function. Here wpos and wneg

are the weights for positive and negative observations. We set
wpos : wneg ¼

P
p

P
t1½yp;t ¼ 0� : Pp

P
t1½yp;t ¼ 1�, where 1½�� is

the indicator function, which is 1 if the condition is true, and 0
otherwise.

• Step 4: Meanwhile, we also feed the ŷp;t for day T to another ABM
simulator to forecast for T 0 days ahead. Note that these T 0 days are for
future and we cannot access to the real contact networks when fore-
casting, we assume that future contact networks will be the same as
what we have for day T. Let ABMF be this ABM simulator for fore-
casting, and ŷ0F of sizeN ×T 0 as rough forecast output (inwhich ŷ0p;tþT 0

represent the probability of being in the state carriage for patient p on
day t þ T 0), we formulate it as ŷ0F ¼ ABMFðŷ;AT ; θp; θMÞ.

• Step 5: However, the assumption that future contact networks will be
the same as on dayT is inaccurate and leads to bias in ŷ0p;tþT 0 . To tackle
this, we use another adapter neural network ϕ0 to revise this rough
output to get the revised forecast output ŷF of size N ×T 0, in which
ŷp;tþT 0 represents the probability of being in the state
carriage for patient p on day t þ T 0. We formulate it as ŷF ¼
Adapterðŷ0F ; f ; ϕ0Þ and compute the BCE loss LðŷF ; yFÞ ¼P

p

P
twposyp;tþT 0 logðŷp;tþT 0 Þ þ wneg ð1� yp;tþT 0 Þ logð1� ŷp;tþT 0 Þ.

• Step 6:With the total lossLðŷ; yÞ+LðŷF ; yFÞ, and the differentiable
ABMsimulator, we can calculate the gradient of the losswith respect to

the neural network parameters ϕ and adapter parameters ϕ0 via
backpropagation. This allows us to better tune the neural network
and learn more reasonable parameters as the input for the ABM
simulator.

The above steps are repeated until the total loss converges. Some-
times, directing the whole NeurABM framework can be extremely hard,
since the framework can be really deep. Intuitively, if we use T days for
ABM calibration and forecast for T′ days ahead, the depth of the fra-
mework becomes at least T+T′. To address this problem, an iterative
training approach following previous work can be helpful: We can
iteratively freeze different parts of the frameworks and train the other
parts, allowing us to simplify the training NeurABM by breaking it down
into two substeps: (1) First, we focus on training the neural network and
the ABM simulator while keeping the adapter and ABM simulator for
forecasting frozen, which allows us to first learn reasonable ABM para-
meters. (2) We then focus on the adapter and the ABM simulator for
forecasting while keeping others frozen, which allows us to learn rea-
sonable parameter for adapter. These two substeps above can be repeated
until convergence. More details are provided in the Supplementary
Information.

Baselines
To compare NeurABM with current modeling or machine learning-based
methods, we also comparewith other baselines includingmachine learning-
based methods (neural network41, decision tree42, naive bayes43, XGBoost44,
Autoencoder+KNN45,46), mechanistic modeling-basedmethods (SIS-ABM
model39,40, SILI-ABM model22), and clinical heuristic methods (length of
stay22).

For machine learning based methods, we train two models: one for
identifying importation cases and another for identifying nosocomial
infection cases. For importation cases, we train on the ground-truth
importation cases from January 2019 to June 2019 and test on July to
December (i.e., the same time period for NeurABM). Note that NeurABM
identifies importation cases without access to ground-truth data from
January 2019 to June 2019. In contrast, the machine learning-based base-
lines require ground-truth labels as training data. To enable these baselines
to function, we provided this additional information, yet they still could not
outperform NeurABM. For identifying current and forecasting future
nosocomial infection cases in eachweek k, we train on data until week k− 1
and test on week k. For modeling-based methods, we run their models
following their original papers22,39 and take the average infected probability
of 100 simulations as the probabilities of being importation cases and
nosocomial infection cases. For clinical heuristic baselines, the length of stay
will consider patients staying longer in the hospital to have higher
probabilities.

Since the outputs of NeurABM framework and baseline models are
probabilities of being classified as importation or nosocomial infection
cases, we applied varying thresholds (ranging from 0 to 1) to convert
these probabilities into binary classification outcomes. This allows us to
predict whether a patient is an importation or nosocomial infection case
when the probability exceeds the threshold, and vice versa. By adjusting
the thresholds, we aim to compare different methods more compre-
hensively. We plotted precision-recall curves (e.g., Fig. 2a), ROC curves
(e.g., Fig. 2c), and the changes in negative predictive value (e.g., Fig. 2b)
across different thresholds. We also provide a detailed description of the
metrics used to evaluate performance in the Supplementary
Information.

Inclusion & Ethics statement
This work is a retrospective observational study and follows the STROBE
statement checklist49. This studywas approved by theUniversity of Virginia
Institutional Review Board forHealth Sciences Research (IRB-HSR-22410),
and the written consent was waived due to the retrospective nature of
the study.
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Data availability
The outputs of our model are available on GitHub via link: https://github.
com/AdityaLab/NeurABM. The electronic health record (EHR) data used
in developing the models is not available since it is highly sensitive, and we
do not have permission to release it. However, we provide the code, a demo,
and a synthetic dataset on GitHub.

Code availability
The code of our model are also available on GitHub via link: https://github.
com/AdityaLab/NeurABM. It also contains a detailed readme file to help
run the code.
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