npj | digital medicine

Article

Published in partnership with Seoul National University Bundang Hospital

https://doi.org/10.1038/s41746-025-01579-1

MRI-based digital twins to improve
treatment response of breast cancer by
optimizing neoadjuvant chemotherapy

regimens

% Check for updates

Chengyue Wu ® 2345
Jong Bum Son', Jingfei Ma', Gaiane M. Rauch?® & Thomas E. Yankeelov

, Ernesto A. B. F. Lima®®, Casey E. Stowers®, Zhan Xu', Clinton Yam’,
1,5,9,10,11,12

We developed a practical framework to construct digital twins for predicting and optimizing triple-
negative breast cancer (TNBC) response to neoadjuvant chemotherapy (NAC). This study employed
105 TNBC patients from the ARTEMIS trial (NCT02276443, registered on 10/21/2014) who received
Adriamycin/Cytoxan (A/C)-Taxol (T). Digital twins were established by calibrating a biology-based
mathematical model to patient-specific MRI data, which accurately predicted pathological complete
response (pCR) with an AUC of 0.82. We then used each patient’s twin to theoretically optimize
outcome by identifying their optimal A/C-T schedule from 128 options. The patient-specifically
optimized treatment yielded a significant improvement in pCR rate of 20.95-24.76%. Retrospective
validation was conducted by virtually treating the twins with AC-T schedules from historical trials and
obtaining identical observations on outcomes: bi-weekly A/C-T outperforms tri-weekly A/C-T, and
weekly/bi-weekly T outperforms tri-weekly T. This proof-of-principle study demonstrates that our
digital twin framework provides a practical methodology to identify patient-specific TNBC treatment

schedules.

Neoadjuvant therapy is considered the standard-of-care treatment of stage
I-111, locally advanced triple-negative breast cancer (TNBC). Neoadjuvant
therapy increases the success rate for breast conservation surgery by redu-
cing tumor burden and provides the opportunity to treat micro-metastases
in a naive state, thereby improving the progression-free survival of
patients"”. TNBC patients who achieve a pathological complete response
(pCR) in the neoadjuvant setting have a favorable recurrence-free survival;
in contrast, patients who have residual disease after neoadjuvant che-
motherapy (NAC) are at an increased risk of early recurrence and death™.

Current NAC regimens for TNBC are not without limitations. Less
than half of TNBC patients treated with standard taxane/anthracycline-
based NAC have a pCR or minimal residual disease at the time of surgical

resection’. While emerging neoadjuvant therapies’” may improve treat-
ment efficacy, tailoring treatments for individual patients remains a major
barrier to improving the outcome of TNBC patients. For example, the
immunotherapy pembrolizumab was recently approved for high-risk, early-
stage TNBC in combination with chemotherapy’. The KEYNOTE-522 trial
demonstrated that this new regimen achieved a 7.5% improvement in the
PCR rate and an 8.0% improvement in the event-free survival rate in TNBC
patients™"’. However, the combination is also associated with significant
high-grade treatment-related toxicity* . Patients who do not respond well
to pembrolizumab may suffer from (unnecessary) severe side effects,
including increased likelihood of hospitalization, cardiac damage, leukemia,
and even death'". Similarly, for the conventional therapies employed during
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NAC, the therapeutic regimen is far from optimal. NAC for TNBC generally
combines two or three drugs (e.g., doxorubicin, paclitaxel, and docetaxel)
administered in periodic cycles. For each chemotherapy, a few dose and
schedule options are acceptable as determined by population-based studies
of efficacy and toxicity. However, population-based approaches are
intrinsically limited as they can only test a few dosing schedules; indeed, it is
impossible for clinical trials to evaluate all possible drug doses, schedules,
and combinations. Moreover, population-based approaches are, by defini-
tion, not designed to optimize interventions for an individual patient, and
this can lead to sub-optimal outcomes'>".

The need to optimize therapeutic schedules on a patient-specific basis
in breast cancer has recently been well recognized across clinical and reg-
ulatory practice'". Within the last three years, multiple initiatives and
workshops have been organized (by the FDA, AACR, SABCS, ASCO, etc.)
to discuss how to design optimal dosing schedules in breast medical
oncology'*™"*. Through these discussions, the lack of reliable mathematical
models or biomarkers to guide individualized tailoring of therapy has been
recognized as a fundamental barrier. Individualized dose optimization of
systemic therapy is therefore a high-risk decision that must be supported
with sufficient evidence. But the systematic comparison of multiple ther-
apeutic regimens through conventional clinical trials is extraordinarily
resource-intensive. Thus, there is an emerging need to develop individual-
based approaches which can predict responses to various treatment sche-
dules in a practical, rigorous, and resource-light fashion, so to guide the
optimization.

As a potential solution to this challenge, biology-based mathematical
models have recently been shown to accurately predict an individual’s
spatiotemporal tumor response to therapy when calibrated with patient-
specific imaging data'*. The biology-based models can provide mechan-
istic interpretation of response during NAC via model parameters quanti-
fying local tumor cell proliferation, cell mobility, parenchyma mechanics,
therapy efficacy and pharmacokinetics™. Furthermore, once the model is
calibrated with patient-specific data, it is capable of simulating a wide range
of therapeutic regimens, thereby providing a unique opportunity to identify
an optimal intervention in a patient-specific manner.

In this work, we developed practical pipelines to establish patient-
specific digital twins” based on a personalized biology-based model, and
identified the therapeutic schedule(s) that can achieve the best TNBC
response to NAC on a patient-specific basis (Fig. 1). The patient-specific
digital twin was established by calibrating the biology-based model with an
individual’s MRI data, and then used for predicting the patient’s response to
various therapeutic schedules. Three optimization strategies were con-
structed and compared for their ability to improve outcome (i.e., pCR rate),
as well as to provide guidance on the benefit of treatment escalation and de-
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Fig. 1 | Overview of digital twin-based optimization of TNBC response to NAC.
For individual TNBC patients (a), longitudinal MRIs (b) are collected pre- and early
in the course of NAC, and then used to calibrate a biology-based mathematical
model of tumor growth and treatment response, thereby establishing digital twins
(c). The digital twins capture patient-specific tumor characteristics as well as

escalation. We also performed a retrospective validation by comparing the
treatment response predicted by the digital twin to the outcomes observed in
previous clinical trials.

This work is a proof-of-principle study with the overall goal of
demonstrating the rationale and laying the technical foundation of our
digital twin framework. In particular, we show how the digital twin can be
applied in three use cases: 1) provide accurate predictions of the response of
individual patients, 2) identify alternative therapeutic regimens hypothe-
sized to outperform the standard-of-care regimen the patient actually
received, and 3) recapitulate the results of three clinical trials that were
central to establishing the current standard-of-care treatment regimens for
TNBC. Meeting these goals will help motivate the design of future pro-
spective trials and eventually clinical deployment of digital twins for the care
of TNBC patients.

Results
Image-guided digital twins made accurate predictions of TNBC
response to NAC
This study included treatment-naive TNBC patients (1= 105) who partici-
pated in the ARTEMIS trial and received the standard two-component
NAC: Adriamycin/Cytoxan (A/C) and Taxol (T). Longitudinal multi-
parametric MRI characterizing morphology, blood flow, and cellularity were
collected before, during, and after A/C therapy. Based on each patient’s MRI
data, a digital twin was established by calibrating a biology-based model
using previously described methods™” (Fig. 2a). As the calibrated digital
twin captures tumor cell migration, proliferation and treatment efficacy with
personalized parameters, it can be used to predict the spatiotemporal
response of the patient’s tumor to the actual administered NAC (Fig. 2a).
Based on the predicted tumor volume (TV) after the actual NAC
schedule is administered, the image-guided digital twins achieved an area
under the receiver operator characteristic (ROC) curve (AUC) (95% con-
fidence interval) of 0.82 (0.73-0.88) for differentiating pCR (n = 64) from
non-pCR cases (1 = 41) (Fig. 2b). The optimal cutoff point of the ROC curve
provided a sensitivity and specificity of 0.67 and 0.80, respectively, with a
predicted pCR rate of 60.95% (51.43-70.48%) in the cohort. Compared to
the actual pCR rate of 59.05%, the y’ test detected no significant difference
between the measured and digital twin-predicted pCR rates (P =0.78).

Digital twin-based treatment optimization revealed individua-
lized opportunities for outcome improvement and treatment de-
escalation

In addition to predicting the response of a patient’s tumor to the actual
therapeutic regimen, the digital twin was also used to systematically predict
response to 128 alternative (but clinically feasible) NAC schedules (Table 1).
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response behaviors, so they can be used to systematically optimize NAC schedules
(d). This digital twin-based optimization schema has the potential to improve pCR
rates of TNBC (e, top), and to identify opportunities for therapy de-escalation

(e, bottom) on a patient-specific basis.
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Fig. 2 | Using the patient-specific digital twins to predict response to various
therapeutic schedules. The framework (a) consists of data preparation (i.e., image
collection and processing pipeline), model personalization (i.e., calibration of the
biology-based model using longitudinal MRI data), and response prediction. The
prediction accuracy was evaluated by comparing the predicted final pathological
status to the actual pathological status via ROC analysis (b). Applying both the actual
schedule (navy curves in (c)) and the alternative schedule (red curves in (c)) of NAC
to the digital twin allows for predicting the dynamics of tumor response (measured

by the change of tumor volume over time; d) to each intervention. In this illustrative
case, the actual therapeutic schedule leads to a predicted tumor volume after NAC
(TVy) larger than the pCR/non-pCR differentiating threshold (TVr, determined
from the optimal cutoff of ROC; see “Methods” section “Establishment of patient-
specific digital twin to predict TNBC response to NAC” for details); thus, we predicted
this patient as a non-pCR. In contrast, the alterative schedule leads to a predicted
TV less than the TV j; thus, we predicted the alternative schedule would lead to a
PCR for this patient.

Table 1 | Candidate therapeutic schedules

Treatment Schedule strategy

No. of cycles Duration of therapy (days)®
A/C 4 56, 60, 64, 68, 72, 76, 80, 84
T 12 56, 60, 64, 68, 72, 76, 80, 84

4 56, 60, 64, 68, 72, 76, 80, 84

“Cycles of NAC cycles are evenly separated during a given duration of therapy. For example, a
therapeutic schedule of “No. of cycles = 4, duration of therapy = 84 days” means “4 cycles, 3 weeks
per cycle”.

The predicted responses to alternative schedules were then compared to the
patient’s response to their actually received treatment to identify schedules
that would hypothetically have outperformed the actual treatment
(Fig. 2¢, d).

Three optimization strategies were constructed to identify the
optimal NAC regimen from all alternative NAC schedules: 1)
“multi-step optimization” which sequentially optimizes the
administration of each component of NAC (i.e.,, A/C and T,
respectively) before its initiation (Fig. 3a), 2) “simultaneous opti-
mization” which optimizes all NAC components at the same time
before treatment initiation (Fig. 3b), and 3) “midway optimization”
which begins with a standard schedule for the first NAC compo-
nent, and optimizes subsequent components based on the outcome
from the first component (Fig. 3c). We sought to determine whether
each optimization strategy can significantly improve an individual
patient’s post-NAC residual tumor volume (and therefore improve
the possibility of achieving pCR), as well as provide guidance on de-
escalation. For convenience, we refer to the predicted residual
tumor volume at the end of the A/C and T components as TV,
and TVr, respectively. (Note: since T is the last component of NAC,
TVr is also the residual TV at the completion of all NAC).

Multi-step optimization identified opportunities for patient-
specific treatment escalation or de-escalation

The multi-step optimization strategy illustrated that changing the A/
C or T schedule can yield a significant difference in the predicted
outcomes across the patients. Figure 4a shows an example (Patient 1),
whereby the optimal A/C schedule that resulted in the minimal TV,
¢ had a duration of 56 days. Compared to the 63-day duration the
patient actually received, the optimization suggested a potential
benefit to delivering A/C treatment with a denser schedule (more
aggressive, i.e., escalation). Conversely, Fig. 4b shows another
example (Patient 2), whereby five different A/C schedules resulted in
the same minimal TV,,c of 0 cm’, which had a duration within the
56-72 day range, thus all identified as optimal A/C schedules.
Compared to the 59-day duration the patient actually received, the
optimization revealed a potential benefit to deliver A/C with a less
dense schedule (i.e., de-escalation). Interestingly, the optimized and
actual duration of A/C were both 56 days for Patient 3 (Fig. 4c),
suggesting that no alteration in the treatment schedule was needed
for this patient. Of the 105 patients, the analysis identified 47 who
would have had the opportunity for A/C escalation, 37 for A/C de-
escalation, and 21 for whom no change in the A/C schedule was
needed (Fig. 5a).

After identifying optimal TV outcomes from A/C, the optimal T
schedules can then be found. As shown for Patient 1 in Fig. 4d, the optimal
T schedule had a duration of 56 days, while the T schedule that the patient
actually received had a duration of 84 days, suggesting potential benefits of
escalation. A similar escalation benefit was observed for Patient 3 (Fig. 4f).
Conversely, for Patient 2 (Fig. 4e), given the optimal A/C schedules, the
optimal T schedules had a duration between 56-84 days compared to the
77-day duration the patient actually received, suggesting a potential
benefit of de-escalation. Of the 105 patients, the analysis identified 82
patients who would have had the opportunity for T escalation, 10 for T de-
escalation, and 13 for whom no change in the T schedule was needed
(Fig. 5b).
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Fig. 3 | Illustration of the three optimization strategies. In the multi-step opti-
mization strategy (a), patient-specific response is predicted for all candidate A/C
schedules (light blue area represents the range of tumor volume, TV, predicted from
various A/C schedules), with the schedule yielding the minimized TV, identified as
the optimal A/C schedule. Based on the minimized TV ¢, patient-specific response is
then predicted for all candidate T schedules (light green area), and the one yielding
the minimal TV7 is identified as the optimal T schedule. Together, the optimal A/C
and T schedules form the optimal NAC schedule (red area). In the simultaneous
optimization strategy (b), patient-specific response is predicted for all candidate A/C
and T schedules, with the one yielding the minimal TV identified as the optimal
NAC schedule (red area). In the midway optimization strategy (c), the A/C schedule
is fixed to the actual schedule (black curve). Based on the TV achieved from the actual
A/C schedule, patient-specific response is predicted to all candidate T schedules, with
the one yielding the minimal TV identified as the optimal T schedule.

Simultaneous optimization clearly identified patients who could
benefit from altering the therapeutic schedules

The simultaneous optimization strategy also showed that changing the entire
NAC schedule can yield a significant difference in predicted outcomes across
the patients. For Patient 1 (Fig. 4g), the TV was reduced from 6.90 cm® to
0.03 cm’ by simultaneously optimizing the A/C and T schedules. In this case,
the optimization suggested that delivering the treatment with a denser
schedule changed the predicted outcome from non-pCR to pCR. For Patient
3 (Fig. 4i), the TV was reduced from 4.31 cm’ to 3.22 cm”® by simultaneously
optimizing the A/C and T schedules; however, this improvement did not
change the predicted status of non-pCR after completion of NAC. Con-
versely, Patient 2 (Fig. 4h) achieved a pCR with the actual treatment schedule,
and simultaneously optimizing the treatment schedule was able to find de-
escalating options to maintain the pCR status after NAC.

Comparing the final outcomes from the multi-step (Fig. 4d-f) and
simultaneous optimization strategies (Fig. 4g-i), we observed that both
yielded the same optimal outcome (i.e., minimized TVr). However, when
the optimal outcome can be achieved with multiple therapeutic schedules,
the simultaneous optimization can provide more schedules that lead to this
optimal outcome (Fig. 4h). We noted that the option(s) identified from the
multi-step optimization strategy were always a subset of the option(s)
identified from the simultaneous optimization strategy. Of the 41 patients
who had a non-pCR outcome from their actual NAC, 26 (i.e., 63.41%) were
predicted to achieve a pCR with treatment schedules identified by either the
multi-step or simultaneous optimization strategies.

Midway optimization identified different optimal outcomes than
the multi-step and simultaneous optimizations

The midway optimization strategy again showed that changing the T
schedule yielded a significant difference in predicted outcomes across the
patients. As the initial conditions for the midway optimization strategy are

different from the multi-step and simultaneous optimization strategies, the
midway optimization can yield a different optimal outcome than the other
two strategies. For example, the T schedule optimized with the midway
strategy for Patient 1 (Fig. 4j) had a duration of 56 days, which was identical
to both the multi-step and simultaneous optimized T schedules. However,
the midway optimized outcome (i.e., TV) was 0.30 cm’, which was an order
of magnitude greater than the multi-step and simultaneous optimized
outcome of 0.03 cm’. In contrast, a smaller TV ¢ could not be achieved for
Patients 2 and 3 by optimizing the A/C schedules (Fig. 4b, c); thus, the
midway optimization provided the same optimal outcome (i.e., minimized
TVr) as the other two strategies, though with fewer options to achieve this
optimal outcome (Fig. 4k, 1). Of the 41 patients who had a non-pCR from
their actual NAC, 22 (i.e., 53.66%) were predicted to achieve a pCR with
treatment schedules identified by the midway optimization strategy.

Digital twin-based treatment optimization significantly improved
PCR rates in TNBC

The multi-step optimization resulted in a TV,,c with a median (inter-
quartile range; IQR) of 0.32 (0.00-1.42) cm® over the whole cohort, and a
TV 0f0.26 (0.00~1.20) cm’ (Fig. 6a-b). In comparison, the TV ¢ predicted
with the actual treatment was 0.43 (0.00-1.66) cm’, and the TV-; predicted
with the actual treatment was 1.29 (0.01-2.72) cm’. Therefore, optimizing
the A/C schedule caused a decrease in the TV, though it was not sig-
nificant (P = 0.28). However, optimizing the T schedule led to a significant
decrease in the TV (P <0.01). Similarly, the simultaneous optimization
resulted in a TV of 0.26 (0.00-1.20) cm® (Fig. 6¢), which was a significant
decrease (P < 0.01) from the TV predicted with the actual treatment. The
midway optimization resulted in a TV of 0.45 (0.00-1.61) cm’ (Fig. 6d),
which was also a significant decrease (P < 0.01) from the TV predicted with
the actual treatment.

Both the multi-step and simultaneous optimization strategies pre-
dicted an improved pCR rate of 85.71%, representing a significant absolute
improvement of 24.76% over that actually observed in the cohort (P < 0.001
by the y test). Using the midway optimization strategy, the pCR rate was
predicted to improve to 81.90%, representing a significant absolute
improvement of 20.95% over that actually observed in the cohort (P < 0.001
by the ¥’ test) (Table 2). No significant difference was observed between pCR
rates predicted by all three optimization strategies (P> 0.4).

Validating digital twin-based predictions via historical clinical
trial data

To further validate our optimization analysis, we conducted a retrospective
study to determine if the digital twin-based methodology can recapitulate
the findings observed in three landmark clinical trials that compared A/C
and T administrative schedules.

INT C9741" determined that dose-dense A/C-T significantly
improved clinical outcomes (determined by disease-free and overall survi-
val; DFS and OS) compared to the conventional tri-weekly A/C-T. To
reproduce this study with our digital twin system, we simulated the response
of the individual patients in our cohort to the two regimens. Our simulation
showed that the digital twin-based prediction yielded a pCR rate of 49.52%
and 73.33% for the conventional and dose-dense regimens of A/C-T,
respectively (Table 3). The y° test demonstrated a significant difference
between these pCR rates (P < 0.001), consistent with the efficacy of the trial
itself which found that the dose-dense regimen resulted in a significantly
better outcome.

Sparano et al.”>’ (ECOG 1199) as well as more recent meta-analyses by
Khan et al.*, established that weekly and bi-weekly Taxol provided similar
outcomes (DFS and OS) superior to that provided by tri-weekly Taxol,
especially for TNBC”. Using the digital twin system, we simulated indivi-
dual patients’ responses to the weekly, bi-weekly, and tri-weekly T regimens
in combination with a conventional regimen of A/C. Our digital-twin-based
predictions yielded pCR rates of 49.52%, 55.24%, and 60.00%, respectively,
for the tri-weekly, weekly, and bi-weekly T regimens (Table 3). The weekly
and bi-weekly T regimens led to higher pCR rates than the tri-week regimen,
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Fig. 4 | Outcome from three optimization strategies in three example patients.
a-c and d-f show the results of first (i.e., A/C optimization) and second (i.e., T
optimization) steps, respectively, of the multi-step optimization for each patient. In
(a-c), the blue curves represent the outcomes from all candidate A/C schedules, with
the black and red dots indicating the actual and the optimized outcomes, respec-
tively. In (d-f), the light green curves/surfaces represent the outcomes of the can-
didate T schedules with 12 cycles, the navy curves/surfaces represent the outcomes of
the candidate T schedules with 4 cycles, and the gray flat plane depicts the threshold
of residual tumor volume (TVr,) for differentiating pCR from non-pCR. g-i show
the results of the simultaneous optimization in the same three patients, in which the

light green surfaces represent the outcomes from all A/C and T candidates with 12
cycles, and the navy surfaces represent the outcomes from all A/C and T candidates
with 4 cycles. j-1 show the results of the midway optimization, in which the light
green curves represent the outcomes from the candidate T schedules with 12 cycles,
and the navy curves represent the outcomes from the candidate T schedules with 4
cycles. Patient 1 had a non-pCR with their actual treatment, and optimization of
therapeutic schedule suggests this could be improved to pCR. Patient 2 had a pCR
with their actual treatment, and optimization of schedule suggests an opportunity
for de-escalation. Patient 3 had a non-pCR either with the actual or optimized
therapeutic schedules.

as the trial observed. However, the y” test demonstrated no significant dif-
ferences between the three regimens (P> 0.1).

Finally, SWOG S022 investigated four different A/C and T
regimens with a 2 x 2 factorial design™. The trial observed that the

four regimens resulted in similar disease-free survival over the
population, while also suggesting a non-significant improvement of
DFS and OS in the TNBC patients with bi-weekly A/C and T. Using
the digital twin system, we simulated the response of the individual
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Fig. 6 | Treatment outcomes with and without optimization. a-d shows the
improvement in outcomes for the whole cohort (n = 105) with the first step of multi-
step optimization, second step of multi-step optimization, simultaneous optimi-
zation, and midway optimization, respectively. In each panel, the light blue and light
red violin plots depict the distribution of predicted outcomes with the actual

schedule and the optimized schedule, respectively. The boxplots show the median
(red line) and IQR (blue box) of the corresponding outcomes. All three optimization
strategies lead to a significant reduction of TV when compared to the treatment
schedule the patient actually received.

Table 2 | Outcome improvement in the cohort predicted from the optimal treatment schedule

Outcome Actual treatment Multi-step optimization Simultaneous optimization Midway optimization
TVac (cm?) 0.43 (0.00-1.66) 0.32 (0.00-1.42) / /

TV+ (emd) 1.29 (0.01-2.72) 0.26% (0.00-1.20) 0.26° (0.00-1.20) 0.45° (0.00-1.61)

pCR rate 60.95% 85.71%* 85.71%* 81.90%*

“Indicates significantly different from the pCR rate achieved by the actual treatment.

patients in our cohort to the four regimens investigated by SWOG
S022. Our digital-twin-based predictions yielded pCR rates of
79.05%, 72.38%, 73.33%, and 69.52%, respectively, for the
four regimens (Table 3). The y’ test demonstrated no significant pair-
wise differences (P>0.1) between the arms, though Arm 1 had
the highest pCR rate. Both results were consistent with the trial
outcome.

Overall, our digital twin-based predictions on response to alternative
treatment regimens had a high agreement with the observations in previous
clinical trials.

Discussion
Existing methods of predicting response are insufficient for patient-tailored
treatment. Numerous efforts have been devoted to correlating imaging™*
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Table 3 | Retrospective validation of digital twin predicted responses

Trial Tested regimens Digital twin predicted  Trial observation
PCR rate

INT C9741 conventional regimen: 4 cycles of A (60 mg/m?) + C 49.52% Dose-dense regimen led to significant better outcome

(600 mg/m? every 3 weeks — 4 cycles of T (175 mg/m?)

every 3 weeks

dose-dense regimen: 4 cycles of A (60 mg/m2) + C 73.33%°

(600 mg/m2) every 2 weeks — 4 cycles of T (175 mg/m2)

every 2 weeks
ECOG Tri-weekly Taxol: 4 cycles of A (60 mg/m?) + C (600 mg/ 49.52% Weekly and bi-weekly Taxol provided similar outcomes that were
1199 + m?) every 3 weeks — 4 cycles of T (175 mg/m?) every superior tri-weekly Taxol

3 weeks

weekly Taxol: 4 cycles of A (60 mg/m?) + C (600 mg/m?) 55.24%

every 3 weeks — 12 cycles of T (80 mg/m?) weekly

Bi-weekly Taxol: 4 cycles of A (60 mg/m?) + C (600 mg/m?  60.00%

every 3 weeks — 4 cycles of T (175 mg/m?) every 2 weeks
SWOG Arm 1: 6 cycles of A (60 mg/m?) + C (600 mg/m? every2  79.05% All regimens provided similar outcomes in breast cancer subtypes,
S0221 weeks — 6 cycles of T (175 mg/m?) every 2 weeks while a non-significant benefit was observed for bi-weekly regimen

Arm 2: 15 cycles of A (24 mg/m?) + C (60 mg/m?) weekly ~ 72.38% (Arm 1) in TNBC.

— 6 cycles of T (175 mg/m?) every 2 weeks

Arm 3: 6 cycles of A (60 mg/m?) + C (600 mg/m?) every 2 73.33%

weeks — 12 cycles of T (80 mg/m?) weekly

Arm 4: 15 cycles of A (24 mg/m?) + C (60 mg/m?) weekly ~ 69.52%

— 12 cycles of T (80 mg/m?) weekly

“Indicates the pCR rate from dose-dense regimen is significantly higher than that from the conventional regimen.

and/or molecular biomarkers™"’ to the response of breast cancer to

neoadjuvant therapy. More recently, machine learning techniques have
been used to extract features from imaging or multi-modal data to build
prognostic models for predicting response*"*. However, these population-
based approaches rely on statistical inference from properties of large
populations that can obscure conditions specific to the individual patient
over time". In contrast, biology-based mathematical models that explicitly
account for tumor behavior with mechanism-related parameters (e.g., cell
mobility, invasiveness, proliferation, and treatment-induced response) are
interpretable and have the ability to be personally calibrated to an individual
patient’s data, thus providing unique opportunities to guide personalized
tailoring of treatment'”.

To address the unmet needs for personalized NAC for TNBC,
we established patient-specific digital twins by calibrating a biology-
based mathematical model that explicitly accounts for cell mobility,
invasiveness, proliferation, and treatment-induced response from the
patient’s longitudinal MRI data. Once calibrated, the digital twin was
able to predict the patient’s response to a range of therapeutic
schedules, thereby providing the opportunity to identify optimal
therapeutic regimens on a patient-specific basis. Through this pro-
cess, we were able to identify scheduling strategies that we hypo-
thesize would lead to absolute improvements in the pCR rate from
the 60.95% observed in the 105-patient TNBC cohort to
81.90-85.71% predicted by the digital twin-based optimization.
Importantly, it was observed that changing NAC regimens affected
different patients differently. In particular, out of the 41 non-pCR
patients in the study cohort, 26 patients were identified as being able
to achieve a pCR through treatment optimization (e.g., Fig. 4g).
Conversely, the effect of altering the NAC regimen was small and did
not lead to a pCR outcome in the remaining 15 patients (e.g., Fig. 4i).

Three optimization strategies were developed to account for three
different clinical scenarios. Multi-step optimization aims to optimize both
components of NAC and allows for longitudinal updating of a treatment
plan. Since this approach optimizes the NAC components sequentially, the
schedule identified as optimal for each component also provides a practical
way to systematically investigate treatment escalation or de-escalation for
each NAC component. For the A/C component of our study, the multi-step

optimization identified 47 of the 105 patients who had an opportunity to
achieve a better outcome through escalation, while 37 patients had a pos-
sibility to preserve pCR with a de-escalation. However, multi-step optimi-
zation tends to favor early and aggressive options; In this regard, the
simultaneous optimization has an advantage as it aims to make a one-time
decision for the NAC regimen. Simultaneous optimization also allows for
comprehensive interpretation on the combined effects of (and interactions
between) different components of NAC. This is especially true when pCR
can be achieved by multiple combinations of A/C and T schedules thereby
providing clinicians and patients with scheduling flexibility.

Both the multi-step and simultaneous optimizations begin
prior to initiating NAC. Our current protocol requires at least one
follow-up imaging session for model calibration; in practice, mul-
tiple imaging sessions are not usually performed during-treatment.
To address this limitation, we developed the midway optimization
strategy. Instead of beginning prior to initiating therapy, midway
optimization allows the first component of NAC to be delivered
according to the standard of care and then optimizes the remaining
component(s) given the outcome of that first component. Midway
optimization is more practical than the other two, though it may
provide a less optimal outcome. Fortunately, in our study cohort,
no significant difference in the improved pCR rates was observed
between the three optimization strategies, which demonstrated that
the midway optimization is an acceptable complementary alter-
native to the multi-step and simultaneous optimizations. One
promising way to make the multi-step and simultaneous optimi-
zations more clinically practical is to link the biology-based
mathematical model with a deep learning network. This would
allow for estimating model parameters to predict the spatio-
temporal development of the tumor using only the pre-treatment
imaging data; we have presented a preliminary study on this
approach*.

The accuracy of the digital twin-based prediction was determined by
comparing the predicted post-NAC response to the final pathological
report, which yielded an AUC of 0.82 for differentiating pCR versus non-
PCR, and a predicted pCR rate in the cohort that had no significant dif-
ference from the measured rate. Moreover, the reliability of the digital twin-
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based predictions of response to alternative therapeutic regimens was
validated by virtually testing the effectiveness of various therapeutic regi-
mens that had been investigated in previous clinical trials: INT C9741°,
ECOG 1199, and SWOG $0221”. Based on the predicted pCR rates, we
successfully observed that the dose-dense regimen of A/C-T leads to a
significantly higher rate of pCR than the conventional regimen (INT
C9741). We further observed that the weekly and bi-weekly Taxol schedules
led to statistically identical pCR rates, and both were (not-significantly)
higher than the pCR rate from the tri-weekly Taxol schedule (ECOG 1199).
For the SWOG S0221 study, we observed that the four regimens based on
combinations of weekly or bi-weekly A/C with weekly or bi-weekly Taxol
led to statistically identical pCR rates, and that bi-weekly A/C + Taxol
provided the highest pCR rate. All the observations from our digital-twin-
based simulations matched the outcomes obtained by the actual trials.

We do, though, acknowledge that there are limitations in how our
retrospective validation was executed. In particular, these three historical
trials are not exactly the same as our study design; for example, they were
designed for adjuvant therapy, used survival rates as the evaluation end-
points, and involved multiple breast cancer subtypes. Also, these trials did
not collect longitudinal imaging data, so we used our own dataset to qua-
litatively reproduce the trial observations. A better cohort for the retro-
spective study would compare different neoadjuvant chemotherapy
regimens for breast cancer, preferably early-stage TNBC, with longitudinal
MRI collected before and during treatment for a range of treatment sche-
dules, and with the data publicly available. Unfortunately, to the best of our
knowledge, a cohort with these characteristics (that is publicly available)
does not currently exist. However, the three historical clinical trials we used
in our study were focused on comparing breast cancer chemotherapy
regimens, and have directly led to the current clinical guidelines for the
treatment of breast cancer in the neoadjuvant setting"**, which are the
directly related to our validation needs. Thus, we consider the agreement
between our predictions and these trial observations an important retro-
spective validation of our digital twin methodology. Additionally, as the
primary aim of this proof-of-principle study is to demonstrate the rationale
and lay the technical foundations of our digital twin framework, the current
retrospective results sufficiently serve this purpose.

The lack of trials comparing different neoadjuvant dosing schedules
speaks directly to the need of our study: developing a practical methodology
to support design of prospective trials that address the unmet need of
patient-specific treatment tailoring. As essential next steps, practical—and
low-risk—prospective studies to validate and eventually deploy digital twin
frameworks can be designed on a cohort of early-stage TNBC patients who
receive 1) longitudinal MRI, and 2) different NAC dosing schedules within
the SOC options. We now describe two ways on how this next step could be
achieved.

First, our digital twin can be included in “silent mode” for an obser-
vational trial in which the longitudinal MRI are collected to build the digital
twins, but the model prediction and optimization results are not released to
affect clinical decisions. Similar to the current study, the digital twins will be
used to predict the individual patients’ response to the actual administered
treatment and all possible SOC dosing schedules. Based on the prediction,
the patients can be categorized into two groups:

1. Escalation: if a patient is predicted to have a non-pCR response with the
actual schedule, but predicted to have a pCR with an alternative SOC
schedule.

2. Non-escalation: If a patient is predicted to achieve a pCR with the actual
schedule, or predicted to have a non-pCR with either the actual or
alternative schedules.

Assuming the digital twins accurately predict the patients’ response to
all NAC dosing schedules, patients in the Escalation group would have
received less aggressive schedules than needed for achieving pCR, while
patients in the Non-escalation group would have received the most
aggressive schedules. Thus, we hypothesize that the actual pCR rate in the
Escalation group will be significantly lower than that in Non-escalation

group (P < 0.05 with the y* test). This presents a readily testable hypothesis
within our digital twin framework.

In the current cohort of 105 TNBC patients, based on the multi-step
and simultaneous optimizations, 26 patients were categorized into the
Escalation group, while the remaining 79 patients were categorized into the
Non-escalation group. The pCR rates were 30.77% and 68.35%, respectively,
for the two groups (P<0.01 with the y* test). This result supports the
rationale of using digital twins to identify patients who will benefit from
treatment escalation. Based on this internal evidence, our immediate next
step is to perform prospective observational trials. Such a design has very low
risk to the patients since the actual treatment decisions are made by the
oncologists and not affected by the digital twins.

Second, after sufficient validation via observational studies, our digital
twin can be further validated through a randomized adaptive trial. In the
control arm, the treating oncologists would decide the dosing schedule
without using digital twins. In the experimental arm, the oncologists will
provide an initial plan for the patient’s NAC dosing schedule, and the digital
twins will predict response to the initial plan as well as all other SOC dosing
schedules. Patients in the experimental arm will be categorized into two
groups based on the digital twin prediction:

1. Escalation: if a patient is predicted to have a non-pCR response with the
initial plan, but pCR with an alternative SOC schedule identified by the
digital twin.

2. Non-escalation: If a patient is predicted to have a pCR with the initial
plan, or predicted to have non-pCR with either the initial plan or
alternative schedules.

In the experimental arm, patients categorized into the Escalation group
can be offered the digital-twin optimized dosing schedule, while patients
categorized into the Non-escalation group will receive the initial plan. With
patients randomized into the control and experimental arms, we hypo-
thesize that the final pCR rate in the experimental arm will be significantly
higher than the control arm (P < 0.05 with the y test). This adaptive design
allows for using novel statistical metrics like the “conditional average
treatment effect” to analyze individualized treatment response”** while
minimizing patient risk as no therapy reduction occurs based on the digital
twin. Treatment de-escalation, though clinically important, is considered
higher risk and would be investigated in later prospective studies.

Our digital twin-based treatment optimization schemes are practical,
accurate, retrospectively validated, and built on key underlying character-
istics of cancer; however, there are opportunities for improvement. The
biology-based model used in our current digital twin pipeline only captures
treatment efficacy, but no toxicity. Although the candidate NAC schedules
we investigated are within a clinically practical range, and we empirically
considered schedules with a shorter duration could lead to a higher chance
of adverse toxicity under the same total dose, explicitly accounting for
toxicity remains an open problem for model development. One way to
address this limitation is to incorporate pharmacokinetic-
pharmacodynamic modeling*>”. Additionally, the current mathematical
model needs to be extended to account for the development of novel tar-
geted- and immuno-therapies. Still, the chemo-backbone remains the most
effective component of neoadjuvant therapy for early-stage TNBC includ-
ing the latest update to that combines chemotherapy with Pembrolizumab®.
Thus, the investigation of alternative, but clinically feasible, A/C+ T
schedules is of considerable clinical relevance.

Generalizability is an important consideration in evaluating clinical
decision-making tools, and external validation is essential for reliable
translation. We have shown the generalizability of our digital twin model’s
ability to predict pCR on an external dataset from the multi-institutional
trial, I-SPY2"". In this case, our digital twins achieved an AUC of 0.78 for
differentiating pCR from non-pCR in a cohort of 91 patients with various
breast cancer subtypes™. Future validation through prospective trials (as
described above) will also help to determine the generalizability of the
proposed digital twin framework. Importantly, our digital twin is built on a
biology-based, mechanistic model calibrated to individual patient imaging

npj Digital Medicine | (2025)8:195


www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-025-01579-1

Article

data, where the predictive process for each patient is independent of the
results for the other patients. This is a fundamentally different from the
“training-validating-testing” procedure in population-based approaches
(like a statistical or machine learning model) and therefore provides the
advantage of robust generalizability.

Another opportunity for future study is to develop robust methods of
uncertainty quantification for establishing trust in the digital twin for clinical
applications™. For example, due to the lack of imaging data acquired during
the T regimen, we assigned model parameters describing the T effect based
on parameters calibrated for A/C efficacy and decay (see the Methods
section “Establishment of patient-specific digital twin to predict TNBC
response to NAC” for more information). Even though the AUC achieved in
this study indicated this assignment is reasonable to capture the patients’
response dynamics, it results in a source of uncertainty in predicted out-
comes and such an uncertainty is not quantifiable with current approach.
This limitation can be addressed by collecting additional MRI data early in
the course of T. Furthermore, the digital twin implementation can be
upgraded from the current deterministic parameter calibration to Bayesian
calibration™. This would allow for directly providing quantification of
uncertainty in personalized parameters and predicted outcomes, as well as
assessment of sources of prediction bias. Quantifying the uncertainty of the
predictions is central to providing both transparency and understanding
when translating digital twins to guide clinical decision-making.

Beyond MRI-guided digital twins, future investigation may also
involve integrating multi-modal data™ into the modeling™. Recently
emerging efforts on multi-modal data fusion have shown strong potential
on improving cancer diagnosis’, prognosis™®, and response
prediction®”**, However, these pioneering studies are based on population-
based approaches (especially artificial intelligence techniques), which
commonly face the question of interpretability and generalizability. Inte-
grating multi-modal data through biology-based digital twins promises a
more reliable approach in promoting precision medicine. Consideration of
multi-modal data also provides the opportunity to address other clinically
important questions which are not explicitly considered in our current
model. Examples include the status of the axillary lymph nodes (by
including ultrasound data) and metastasis (by including liquid biopsy data).

In conclusion, we established digital twin-based optimization schemes
to identify NAC schedules that led to the optimal post-NAC outcome on a
patient-specific basis. The prediction reliability was retrospectively validated
and three optimization strategies providing similar optimization benefits
ensured robust performance under different application scenarios. The
development approaches provide a practical framework for the design of
adaptive clinical trials and translating digital twin techniques for persona-
lized optimization of NAC treatment plans in TNBC, which are also
applicable to other types of cancer and therapies.

Methods

Patient population

Treatment-naive stage I-III TNBC patients were enrolled in the prospective
clinical trial, “ARTEMIS: A Robust TNBC Evaluation FraMework to
Improve Survival” (ClinicalTrials.gov Identifier: NCT02276443, registered
on October 21, 2014)*. The Institutional Review Board (IRB) of The Uni-
versity of Texas MD Anderson Cancer Center reviewed and approved the
ARTEMIS study protocol (2014-0185). All patients were provided informed
consent. All study procedures performed were in accordance with ethical
standards of the IRB and with the 1964 Helsinki Declaration and its later
amendments or comparable ethical standards. All patients received four
cycles of Adriamycin/Cytoxan (A/C) for the first component of NAC; each
cycle was given once every two weeks (dose-dense) to three weeks. Patients
who were chemo-insensitive (i.e., with disease progression, or < 70%
reduction in tumor volume at the end of A/C) were offered the opportunity
to enroll in a biomarker-guided clinical trial using targeted therapy. Patients
who were chemo-sensitive (i.e., with > 70% reduction in tumor volume at
the end of A/C) were recommended to continue standard-of-care paclitaxel
(Taxol; T)) weekly for 12 cycles, or every 3 weeks for four cycles. (The exact T

regimen for each patient was determined by their treating physician.) A total
of 105 patients from the ARTEMIS trial were included in this study based on
the following inclusion criteria: 1) signed informed consent between April
2018 to May 2021, 2) biopsy-confirmed stage I-III diseases, 3) completed
NAC with T, 4) availability of the entire drug administration schedule, and
5) access to longitudinal multiparametric MRI scans without acquisition
error or artifacts.

Imaging data and processing

All patients underwent longitudinal multiparametric MRI scans before
treatment (MRI,), after two cycles of A/C (MRIL,), and after four cycles of A/
C (MRI;). The images collected at each scan included diffusion-weighted
(DW-) MRI at two b-values (100, 800 s/mm?’), and a median (range) of 42
(36-50) frames of dynamic contrast enhanced (DCE-) MRI with a temporal
resolution of 11.1 (7.6-12.4) seconds. We have previously established a
highly automated pipeline to process the longitudinal MRI data from each
patient™” to yield tumor-tissue masks, pharmacokinetic maps from DCE-
MR, and tumor cellularity maps from DW-MRI, and image alignment
across multiple visits. Details of image acquisition and processing can be
found in prior work™.

Establishment of patient-specific digital twin to predict TNBC
response to NAC

We have developed a biology-based mathematical model to represent the
dynamics of tumor growth and response to NAC™. In particular, the model,
which is governed by a reaction-diffusion partial differential equation,
describes the spatiotemporal change in tumor cells, N(x,t), due to cell
migration (1st term on the right-hand side of Eq. (1)), proliferation (2nd
term), and treatment-induced death (3rd term):

N ;’: D _ . (D(x. )VN(x. 1)
+k(x) (1 _N (’5’ t)) NGe, ) — NG, ) S, 0, W
with
D(x,t) = Dye "™, (2
A, b=a i: e Pm) C(x), 3)

=1

where D(x,t) is tumor cell mobility determined by a diffusion coefficient, Dy,
with mechanical coupling via the von Mises stress, o(x,t)*. k(x) is the cell
proliferation rate at position x, and 0 is the carrying capacity that defines that
maximum number of cells that can occupy a voxel. «; and f3; represent the
efficacy (per unit dose) and decay rates of drug i, respectively, and T;;
indicates the time of the j-th administration of drug i at a total of J; times.
C(x) is the estimate of the spatial distribution of the drugs, which is derived
from the DCE-MRI data®. A detailed list of the variables, parameters, and
their definitions is given in Table 4.

For each patient, the geometry of the computational domain was
determined by the segmented breast contour, tumor, fibroglandular, and
adipose tissues. The tumor cellularity maps, {N(x, t = MR, ), N(x, t = MRI,),
N(x, t = MRI;)} were derived from the apparent diffusion coefficient maps at
each of the three imaging time points. These tumor cellularity maps, along
with the therapeutic information, were used for model initialization and
personalizing the model parameters in Egs. (1) — (3). More specifically, k(x),
Dy, a3, a0, B3, and B, are calibrated on a patient-specific basis. As no MRI
data was available during the paclitaxel regimen, the efficacy of paclitaxel
was assigned to a literature value”’, a3 = 0.3 day™; the decay rate of paclitaxel
was assigned as the average of the calibrated A and C decay rates,
B3 =(B1+ B,)/2. (The details of our numerical implementation has been
previously described™).
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Table 4 | Definition and assignment of the model variables and parameters

Quantities Definition Assignment

Domains Q Breast tissue domain Generated from pre-treatment anatomical MRI
T End time point of NAC procedure Assigned based on clinical data

Variables X Spatial coordinate in breast tissue Associated with spatial domain, x € Q

t Time

Associated with temporal domain, t € [0, T]

Tumor cell number

N, 1)

Initialized from pre-treatment DW-MRI measurement of tumor cellularity map®?,
computed via Eq. 1 from main text

D(x,t)  Diffusive mobility of tumor cells Computed via Eqg. 2 from main text

Ax,t)  Death rate induced by the /" drug Computed via Eq. 3 from main text, i=1 and 2 for A/C, and i = 3 for Taxol

ox,t)  von Mises stress Computed from gradient of N(x,t) based on breast tissue mechanical property***®
Cx) Spatiotemporal distribution of /" drug Assigned based on DCE-MRI*

Ji Total number of administrations of the /" drug Assigned based on clinical data

Ty Time of the /" administration for the /" drug Assigned based on clinical data

Parameters  k(x) Proliferation rate of tumor cells

Locally calibrated®

6 Tumor cells carry capacity Assigned based on empirical value®
aj Efficacy rate of the /" drug Globally calibrated®

Bi Decay rate of the i'" drug Globally calibrated or sampled

Do Diffusion coefficient of tumor cells in the absence of Globally calibrated

mechanical restrictions

1% Stress-tumor cell diffusion coupling constant

Assigned based on based on breast tissue mechanical property®®

#“Locally calibrated” means the parameter is calibrated to yield a value for each individual voxel in each patient’s tumor ROI; i.e., locally calibrated parameter is a spatially varying map.
“Globally calibrated” means the parameter is calibrated to yield a value for each patient’s whole tumor ROI; i.e., globally calibrated parameter is a scalar.

Once the model was calibrated on a given patient’s specific data, it was
referred as the digital twin as it can provide a prediction of how an indivi-
dual’s tumor will respond to not only the actual NAC schedule, but also an
array of alternative therapeutic regimens (Fig. 2a).

Given the actual treatment schedule, an individual patient’s digital twin
predicted the residual tumor volume (TV) after completing NAC. We
evaluated the accuracy of the digital twins by performing receiver operating
characteristic analysis (ROC) on the predicted residual TV after NAC (TVr)
to differentiate pCR and non-pCR for each patient in the cohort (Fig. 2b).
From the ROC curve, the optimal cutoff point was determined by max-
imizing Youden’s ] statistic® (i.e., sensitivity + specificity - 1), from which
the corresponding threshold for pCR versus non-pCR was determined and
termed TVp;=1.90cm’. That is, if we predicted a patient to have a
TV < TVr, then we were predicting that patient would have a pCR out-
come after completing NAC. Given alternative treatment schedules (Fig.
2¢), the individual patient’s digital twin predicted the tumor response
dynamics as well as the TV for each schedule. The predicted response to
alternative therapeutic regimens was compared to the patient’s response to
the treatment they actually received, thereby providing an opportunity to
identify therapeutic regimens that could outperform the standard-of-care
(Fig. 2d).

Selection of alternative therapeutic regimens of NAC

We evaluated the effect of altering the NAC regimens (ie., the A/C-T
schedules) on patient response. We note that the alternative therapeutic
schedules were selected from other clinically feasible options. As the
standard-of-care A/C therapy is generally administrated every 2-3 weeks for
four cycles, we tested eight different therapeutic schedules of A/C with a
duration between 56 and 84 days (Table 1). Similarly, the standard-of-care T
therapy is generally administered weekly for 12 cycles, or every 2-3 weeks for
four cycles. Thus, we tested 16 different therapeutic schedules of T con-
sisting of eight options for 12 cycles with a duration between 56 and 84 days,
and eight options for four cycles with a duration between 56 and 84 days
(Table 1). In total, 128 clinically feasible schedules of NAC were investigated
for each patient. To minimize the effect of altering the NAC regimens on
toxicity, we kept the total dose constant for each schedule.

Digital twin-based therapeutic schedule optimization strategies
We considered three optimization strategies (useful in three different clin-
ical settings) to identify alternative therapeutic regimens, they consisted of 1)
multi-step optimization, 2) simultaneous optimization, and 3) midway
optimization. Multi-step optimization seeks to optimize the A/C compo-
nent of the NAC regimen and then, from the optimal outcome of A/C,
optimize the second T component. Simultaneous optimization attempts to
optimize both A/C and T components at the same time. Midway optimi-
zation begins from the outcome of the actually administered A/C regimen
and only optimizes the second regimen (ie., T). Multi-step optimization
corresponds to updating the treatment plan each time follow-up data
becomes available, simultaneous optimization identifies a single pre-
treatment plan, and midway optimization includes at least one image
acquired after the initiation of therapy for digital twin calibration.

For the multi-step optimization (Fig. 3a), each patient’s digital twin was
first used to predict the individual’s response to all eight candidate A/C
schedules. The minimal TV,,c predicted by the digital twin from all
investigated A/C schedules was considered the optimal outcome of A/C.
The corresponding A/C schedule(s) resulting in this minimal TVy,c
was(were) identified as the optimal A/C schedule(s). Note that if multiple
schedules ended up with the same minimal TV,c, multiple optimal A/C
schedules are allowed (for example, the Patient 2 in Fig. 4b). Then, based on
the optimal outcome of A/C, we used the patient’s digital twin to predict
response to all 16 alternative T schedules. The minimum predicted TV
from all investigated T schedules was considered the optimal outcome of T;
note that this procedure also produces the optimal outcome of the whole
NAC procedure. The corresponding T schedule(s) resulting in this minimal
TV was (were) identified as the optimal T schedules. Moreover, the optimal
pathological status was determined by evaluating if the predicted minimal
TVy was below the differentiating threshold TVy; (defined in Methods
section “Establishment of patient-specific digital twin to predict TNBC
response to NAC”), as illustrated in Fig. 2d.

For the simultaneous optimization (Fig. 3b), each patient’s digital twin
was used to predict their response to all 128 combinations of alternative A/C
and T schedules. The minimal TV predicted from all combinations of A/C-
T schedules was considered the optimal outcome of the whole NAC
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procedure. The corresponding A/C-T schedule(s) resulting in this minimal
TVr was (were) identified as the optimal NAC schedule(s). Similarly, the
optimal pathological status was determined by evaluating if the predicted
minimal TV was below TVr.

For the midway optimization (Fig. 3c), we begin with the predicted
TV c from the actual A/C schedule and then used each patient’s digital
twin to predict their response to all 16 candidate T schedules. Similar to the
previous to optimization schemes, the minimal predicted TV was con-
sidered the optimal outcome of the entire NAC procedure. The corre-
sponding T schedule(s) resulting in this minimal TV was(were) identified
as the optimal NAC schedule(s). The optimal pathological status was
determined by evaluating if the predicted minimal TV was below TV .

For each patient, we evaluated the effects of changing the therapeutic
schedules (via each optimization strategy) on their outcome, and compared
to the outcome from the therapeutic schedule the patient actually received.
Additionally, we compared the optimal schedules and associated final
outcomes (i.e., residual TV and pCR status after NAC) from each of the
three optimization strategies to determine if they all produced statistically
equivalent benefits.

Retrospective validation on digital twin-predicted response to
alternative therapeutic regimens

We identified three seminal trials that compared A/C and T administrative
schedules for our retrospective validation (Table 3). First, Citron et al.”'
reported a randomized trial (INT C9741) investigating the effect of different
A/Cand T schedules on the response of axillary node-positive breast cancer
response to adjuvant chemotherapy. The trial determined that the dose-
dense regimen significantly improves clinical outcomes (defined by disease-
free and overall survival; DFS and OS) compared to the conventional tri-
weekly regimen. The conclusion that dose-dense regimens have superior
performance was subsequently reported in multiple independent studies®.
For retrospective validation, we used our patient-specific digital twin
formalism to simulate individual patient response to the two regimens
(Table 3) that were employed in the INT C9741 trial. We then derived the
PCR rate for each regimen by evaluating if the predicted TV was below
TV, and tested the following hypothesis, H;: the dose-dense regimen will
lead to a significant higher rate of pCR than the conventional regimen in the
cohort (n=105).

The second trial (ECOG 1199) was carried out by Sparano et al.”>* and
investigated the efficacy of two different Taxol-based regimens in the
adjuvant setting for breast cancer. The trial observed that weekly paclitaxel
(Taxol; T) after the standard A/C improves DFS and OS in women’’, and
provided long-term benefits for TNBC”. A more recent meta-analysis
reported the superiority of both the weekly and bi-weekly dose-dense T
regimens over the conventional tri-weekly regimen, while also noting
similar outcomes between the weekly and dose-dense T regimens™. For
retrospective validation, we used our patient-specific digital twin formalism
to simulate individual patient response to the three T regimens investigated
in ECOG 1199 and the associated meta-analyses (Table 3). We then derived
the pCR rate from each regimen by evaluating if the predicted TVt was
below TV, and tested the following hypothesis, H,: 1) the weekly and bi-
weekly T regimens lead to significantly higher pCR rates than the tri-weekly
T regimen, and 2) the weekly and bi-weekly T regimens have no significant
difference in resulted pCR rates.

The third trial (SWOG S0221) we considered was performed by Budd
etal.””, which sought to determine the optimal dose and schedule of A/Cand
T administration as the adjuvant therapy for early-stage breast cancer with a
2 x 2 factorial design. The trial observed that the four regimens resulted in
statistically similar DFS, while in the subset of TNBC patients, a non-
significant improvement of DFS and OS was suggested with bi-weekly
dosing of both A/C and T. For retrospective validation, we used our patient-
specific digital twin formalism to simulate individual patient responses to
the four regimens in SWOG S0221 (Table 3). We then derived the pCR rate
from each regimen by evaluating if the predicted TV was below TV j, and
tested the following hypothesis, H3: 1) No significant difference in pCR rates

will be observed across Arm 1-4 regimens, and 2) Arm 1 regimen leads to the
highest pCR rate in the cohort.

Statistical analysis
The confidence intervals of the AUC from the ROC analysis, and of pCR
rates, were calculated with the Bootstrapping method with a resampling size
of 1000. We statistically evaluated the effects that optimizing the therapeutic
schedules had on the patient outcomes. For the multi-step optimization
strategy, we first used the Wilcoxon test to compare the TV predicted from
the optimal schedule to the TV, predicted from the actual treatment.
Second, we used the Wilcoxon test to compare the TV predicted from the
optimal schedule to the TV predicted from the actual treatment. Third, we
used the y test to compare the predicted pCR rate from the optimal schedule
to the predicted pCR rate from the actual treatment, as well as to the measured
PCR rate. Similarly, for the simultaneous optimization and midway optimi-
zation strategies, we first used the Wilcoxon test to compare the predicted
optimal TV to the predicted TV resulting from the actual treatment. Sec-
ond, we used the y test to compare the predicted pCR rate from the optimal
schedule to both the measured and predicted pCR rate from the actual
treatment. In all cases, statistical significance was defined as P-value < 0.05.
For the retrospective validation using the therapeutic regimens found
in INT C9741, ECOG 1199 +, and SWOG S0221, we used the Xz test to
compare the pCR rates predicted from our digital twin formalism to the
PCR rates found in the actual trials. Again, a P-value < 0.05 was considered
significant.

Data availability

Raw data for this study were generated at The University of Texas MD
Anderson Cancer Center. Raw data are not publicly available due to IRB
restrictions of data containing information that could compromise research
participant privacy and/or consent. The derived data that support the
findings of this study are available from the corresponding author upon
reasonable request.
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