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Metabolic syndrome is leading to an increased risk of diabetes and cardiovascular disease. Our study
developed a model using retinal image data from fundus photographs taken during comprehensive
health check-ups to classify metabolic syndrome. The model achieved an AUC of 0.7752 (95% Cl:
0.7719-0.7786) using retinal images, and an AUC of 0.8725 (95% ClI: 0.8669-0.8781) when combining
retinal images with basic clinical features. Furthermore, we propose a method to improve the
interpretability of the relationship between retinal image features and metabolic syndrome by
visualizing metabolic syndrome-related areas in retinal images. The results highlight the potential of

retinal images in classifying metabolic syndrome.

The prevalence of metabolic syndrome is on an increasing trend worldwide,
regardless of social and economic differences among countries'. In countries
such as Australia, France, and Mauritius, the prevalence of metabolic syn-
drome in adult men is estimated to be 17% on average, and that of metabolic
syndrome in adult women is estimated to be 13% on average’. Lifestyle and
overnutrition are primary contributors to this condition'. Specifically, in South
Korea, the prevalence of metabolic syndrome has notably increased following
lifestyle and dietary changes triggered by the COVID-19 pandemic’. Metabolic
syndrome is defined as the set of factors that increase the risk of cardiovascular
disease and diabetes, such as hypertension, central obesity, insulin resistance,
and atherogenic dyslipidemia®’. Individuals with metabolic syndrome are twice
as likely to develop cardiovascular diseases and five times more likely to
develop type 2 diabetes than those without metabolic syndrome”.

Predicting and diagnosing metabolic syndrome can significantly
reduce the risk of cardiovascular diseases and diabetes. Recent advances in
machine learning have facilitated metabolic syndrome prediction using
increasing amounts of clinical data’"". However, most studies have pri-
marily focused on clinical features, with limited exploration of other
modalities. Our study demonstrates the potential of using retinal images for
metabolic syndrome classification. Fundoscopy test is a non-invasive tool
traditionally used to monitor ocular symptoms in diabetic participants.
Recently, retinal image data has been accumulated because it has been
widely used for the purpose of screening in a comprehensive health check-
up. In addition, the clinical importance of retinal images has been increased,
providing information on the characteristics of various diseases'”. Retinal

microvascular abnormalities, such as focal arteriolar narrowing and arter-
iovenous nicking, often indicate microcirculatory damage caused by
hypertension or aging'’ and are associated with diabetes-related retinopathy
and other microvascular diseases'™. Notably, even in the absence of hyper-
glycemia or hypertension, retinal microvascular abnormalities can emerge
due to dyslipidemia or obesity". Metabolic syndrome, in particular, is
known to be associated with atherosclerosis disease'®. Individuals with
metabolic syndrome, regardless of age, gender, or race, exhibit more reti-
nopathy, arteriovenous nicking, focal arteriolar narrowing, smaller retinal
diameters, and larger retinal venular diameters".

Recent studies have focused on using retinal images and deep learning
models to predict and classify diseases like diabetes and cardiovascular
disease'” . However, the studies classifying metabolic syndrome through
retinal images are insufficient. Therefore, our study aims to classify meta-
bolic syndrome using retinal images and enhance the interpretability of
these classifications by visualizing metabolic syndrome-related areas within
the retinal images. Additionally, we incorporated basic demographic fea-
tures, such as age and gender, into our analysis. Furthermore, given that
Body Mass Index (BMI) is a highly relevant factor for metabolic syndrome’,
we investigated the impact of including or excluding BMI in our analysis.

Results

Study population characteristics

We developed a model by fine-tuning a pretrained Vision Transformer-
based model, RETFound, using a dataset collected from 3000 individuals
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who underwent comprehensive health check-ups at Seoul National Uni-
versity Hospital Gangnam Center. The dataset includes retinal images from
both the left and right eyes of each participant, comprising 2972 retinal
images from 1486 individuals with metabolic syndrome and 3028 retinal
images from 1514 normal cases. We assessed the model’s performance using
5-fold cross-validation, using 80% of the data (N =2400) for training and
validation, and the remaining 20% (N = 600) for testing at each run. Spe-
cifically, 2424 retinal images from metabolic syndrome cases and 2376
retinal images from normal cases were used for training and validation,
while 596 retinal images from metabolic syndrome cases and 604 retinal
images from normal cases were used for testing. The baseline characteristics
of the study population are detailed in Table 1.

Metabolic syndrome classification performance
To evaluate the effectiveness of integrating clinical features with retinal
images in metabolic syndrome classification, we compared the

Table 1 | Baseline characteristics of the study participants

Total Train/ Test
set (N = 3000) validation set (N = 600)
set
(N =2400)

Age 51.8 + 8.7 51.9 + 8.8 51.6 + 8.3
Gender Male 1014 (33.8%) 814 (33.9%) 200 (33.3%)

Female 1986 (66.2%) 1586 (66.1%) 400 (66.7 %)
Body mass index (kg/m?) 244 + 3.3 243 + 3.2 244 + 34
Waist circumference (cm) 86.3 + 9.4 86.3 + 9.4 86.5 + 9.4
Metabolic Yes 1486 (49.5%) 1188 (49.5%) 298 (49.7%)
syndrome

No 1514 (50.5%) 1212 (50.5%) 302 (50.3%)
Hypertension Yes 791 (26.4%) 613 (25.5%) 178 (29.7%)
diagnosis

No 2209 (73.6%) 1787 (74.5%) 422 (70.3%)
Glucose level (mg/dL) 104.0 + 21.5 103 + 21.5 104.3 + 21.7
Diabetes Yes 235 (7.8%) 194 (8.1%) 41 (6.8%)
diagnosis

No 2765 (92.2%) 2206 (91.9%) 559 (93.2%)
Triglycerides (mg/dL) 137.3 + 911 137.1 £+ 91.8  138.0 + 88.6
HDL Cholesterol (mg/dL) 51.1 + 12.2 51.1 + 12.2 50.9 + 12.2
Dyslipidemia Yes 570 (19.0%) 453 (18.9%) 117 (19.5%)
diagnosis

No 2430 (81.0%) 1947 (81.1%) 483 (80.5%)

performances with and without retinal image features, as detailed in Table 2.
Retinal image features were extracted using RETFound” and combined
from both left and right eyes. We employed Logistic Regression to analyze
clinical features such as age, gender, and BMI, and a combination of these
features with retinal image features extracted by RETFound to classify
metabolic syndrome, as illustrated in Fig. 1.

Using only basic demographic features, such as age and gender,
resulted in an AUC of 0.6872 + 1.9e-5 (95% CI). When these were com-
bined with the retinal image features, the AUC improved to 0.7755 (95% CI:
0.7719-0.7792) (p < 0.01). Interestingly, the performance based solely on
retinal image features was comparable, with an AUC of 0.7752 (95% CI:
0.7719-0.7786) (p =0.87), suggesting that while age and gender have a
marginal impact on metabolic syndrome classification, retinal image fea-
tures contribute substantially to performance improvements.

Further analysis, including BMI, a factor strongly associated with
metabolic syndrome, revealed that using BMI alone achieved an AUC of
0.8605 + 1.1e-16 (95% CI). When BMI was combined with age and gender,
the AUC slightly increased to 0.8640 (95% CI: 0.8635-0.8645). Performance
improved further to an AUC of 0.8725 (95% CI: 0.8669-0.8781) when these
clinical features were combined with retinal images, indicating statistical
significance (p = 0.003). These findings clearly demonstrate that our model,
which incorporates retinal images with clinical features, accurately classifies
metabolic syndrome.

Obesity-based subgroup analysis
In Fig. 2, we illustrate the BMI distribution of the test set (N = 600), cate-
gorizing individuals into four groups based on their classification outcomes.
This comparison shows the performance of models using clinical features
such as age, gender, and BMI against those combined with retinal images
and clinical features. Additional findings from the other four folds can be
found in Supplementary Fig. 1. Notably, while metabolic syndrome was
primarily grouped with the obese group (BMI > 25kg/m®) and normal
status with the non-obese group (BMI < 25kg/m’), exceptions were
observed. Accordingly, we performed a subgroup analysis according to
BMI-based obesity. We demonstrated the utility of retinal image features for
classifying metabolic syndrome in the obese group and the non-obese
group, respectively. For example, Group D includes non-obese cases mis-
classified by clinical features but correctly classified with retinal images,
suggesting that retinal images can improve classification performance for
challenging cases. Conversely, Group C suggests that retinal image features
might occasionally lead to misclassifications in less challenging cases.
Figure 3 displays the feature importance scores for predicting normal
or metabolic syndrome in four representative individuals using Shapley
Additive Explanations (SHAP)*. It compares the influence of retinal images
on metabolic syndrome with other clinical features, showing the possibility
that retinal images can be used as a biomarker. Although BMI remained a

Table 2 | Performance comparison of metabolic syndrome classification using basic clinical features (age, gender, BMI) and

retinal image features

Features Precision Sensitivity Specificity F1 score Accuracy AUC

Age, Gender 0.6194 (+0.0023) 0.7906 (+0.0237) 0.5205 (+0.0180) 0.6945 (+0.0081) 0.6547 (+0.0034) 0.6872 (+1.9e-5)

Retinal images 0.6966 (+0.0095) 0.7295 (+0.0298) 0.6861 (+0.0264) 0.7124 (+0.0099) 0.7077 (+0.0038) 0.7752 (+0.0034)

Age, Gender, Retinal 0.6968 (+0.0090) 0.7289 (+0.0285) 0.6868 (+0.0249) 0.7122 (+0.0096) 0.7077 (+0.0038) 0.7755 (+0.0037)

images

BMI 0.7629 (+0.0075) 0.7792 (+0.0104) 0.7609 (+0.0125) 0.7709 (+0.0030) 0.7700 (+0.0029) 0.8605 (+1.1e-16)
Age, Gender, BMI 0.7696 (+0.0046) 0.7799 (+0.0109) 0.7695 (+0.0085) 0.7747 (+0.0041) 0.7747 (+0.0027) 0.8640 (+0.0005)

Age, Gender, BMI, Retinal ~ 0.7718 (+0.0048) 0.8013 (+0.0093) 0.7662 (+0.0068) 0.7863 (+0.0052) 0.7837 (+0.0046) 0.8725 (+0.0041)

images

The mean performance values with 95% confidence intervals were obtained through 5-fold cross-validation. All results were achieved using Logistic Regression, leveraging combined features from the left

and right retinal images extracted with RETFound (Retinal), as detailed in Supplementary Table 2.

The best performance for each evaluation metric among the models using different features is highlighted in bold.
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Fig. 1| Model architecture. The left and right retinal images of each participant were
learned separately using RETFound™, a Vision Transformer (ViT)"*-based model, to
extract image features. These features are then concatenated with clinical features,
and the combined features are used to classify them as either having metabolic

Transformer based
Explainability method

Explanation Results

syndrome or being normal through Logistic Regression. The model also employs a
transformer-based explainability method”’ to visualize which parts of the images are
most indicative of metabolic syndrome, enhancing the interpretability of our model.

40
Group A (428)
Group B (91)
® Group C(36)
35 ® Group D (45)
30

20

15

Normal Metabolic Syndrome

Fig. 2 | BMI distribution for normal and metabolic syndrome participants,
categorized into four groups based on their classification outcomes. Group A is
participants who were correctly classified both when using clinical features alone and
when using combined clinical and retinal image features. Group B is participants
misclassified both when using only clinical features and when using the combined
clinical and retinal image features. Group C are participants correctly classified when
using only clinical features but misclassified when using combined clinical and
retinal image features. Group D are participants correctly classified when using
combined features but misclassified when using only clinical features. The red line
indicates a BMI of 25 kg/m’.

significant predictor, retinal image features emerged as particularly influ-
ential in cases where BMI showed a negative correlation with metabolic
status. Notably, in predicting metabolic syndrome among obese individuals,
both BMI and retinal images positively impacted classification, with retinal
images being more influential. These findings showed the benefit of inte-
grating retinal images with clinical features to improve classification per-
formance in challenging cases, especially for non-obese individuals.

Performance analysis on associated diseases

Metabolic syndrome is associated with an increased risk of developing
conditions such as hypertension, diabetes, and dyslipidemia. To explore this
association, we used retinal image features trained to classify metabolic
syndrome to classify these associated diseases. Figure 4 shows the classifi-
cation performance for hypertension, diabetes, and dyslipidemia using
retinal image features alone, clinical features (age, gender, BMI) alone, and a
combination of both.

Our model demonstrated the potential to enhance classification
accuracy for these related diseases. Notably, the combination of retinal
images and clinical features improved performance for all three diseases
compared to using clinical features alone (p < 0.01). In the case of dia-
betes, retinal image features alone performed slightly better than the
combination (p=0.43), indicating a unique contribution of retinal
images in diabetes. However, for hypertension and dyslipidemia, the
performance using both clinical and retinal image features together
showed improvements over using retinal image features alone (p <0.01).
These results indicate that retinal image features related to metabolic
syndrome can contribute to the accurate diagnosis of these closely
associated diseases.

Explainable visualization

Figure 5 illustrates the explanation results obtained through the classifica-
tion performance of RETFound from 224x224 retinal images (AUC =
0.7401 + 0.0081) as detailed in Supplementary Table 2. These results were
generated using a transformer-based explainability method”’. The visuali-
zation highlights areas in the retinal images associated with metabolic
syndrome versus normal conditions. The left column represents retinal
images from normal participants, and the right column represents those
from participants with metabolic syndrome. Each row corresponds to ret-
inal images from five representative individuals from the normal and
metabolic syndrome groups, respectively. For each participant, the left and
right retinal images are shown alongside their corresponding explanation
maps. In these maps, bluer areas indicate regions less associated with the
participant’s condition (normal or metabolic syndrome), whereas redder
areas indicate regions more strongly associated with the condition.
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Fig. 3 | Feature importance scores for predicting normal or metabolic syndrome
in four representative individuals. Feature importance is expressed as the sum of
SHAP values for each feature. A positive SHAP value indicates a positive correlation
with the ground truth, while a negative SHAP value indicates a negative correlation.
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Information outside the plot represents the participant’s BMI, ground truth, and the
results and probabilities predicted by the model (Pred: Prediction, Pred Prob: Pre-
diction Probability). The red line indicates a BMI of 25 kg/m”.

We observed that while there are differences between individuals, the
optic disc and vessels around the optic disc regions of the retinal images
generally receive relatively larger attention in metabolic syndrome partici-
pants in the explanation maps. This suggests that changes or abnormalities
in these areas could be indicative of a participant’s condition. Specifically, in
the normal retinal images (a—e), most regions show blue areas in the
explanation, indicating fewer regions associated with normal conditions. In
contrast, the metabolic syndrome retinal images (f-j) exhibit more red areas,
particularly around the optic disc or retinal vessel, suggesting these regions
may play a critical role in distinguishing between normal and metabolic
syndrome conditions. Additionally, individuals represented in rows (a), (b),
(), (d), (g), (h), and (i) have different explanation results for their left and
right retinal images. This discrepancy highlights the importance of ana-
lyzing both left and right retinal images together for better classification
performance of metabolic syndrome. Overall, these observations suggest
that specific regions of retinal images may contribute to improved diagnosis
of metabolic syndrome.

Discussion

In this study, we conducted experiments and analyses on the feasibility of
predicting metabolic syndrome using retinal images. Our approach
achieved an AUC of 0.8725 ( + 0.0041), outperforming the model that relied
solely on basic clinical features. These results highlight the potential of
retinal images as a useful biomarker in this context.

Given that BMI is a significant factor for metabolic syndrome, we
targeted challenging cases where BMI contradicts metabolic syndrome. Our
hypothesis is that while BMI serves as a dominant factor in predicting
metabolic syndrome, different subgroups may be influenced by distinct
clinical risk factors, including latent retinal image features that are not
captured by traditional markers. This is relevant in cases where BMI alone
does not align with metabolic syndrome diagnosis, such as individuals with
obesity (BMI = 25 kg/m?) who are not diagnosed with metabolic syndrome
and those who are non-obese (BMI < 25 kg/m?) but have metabolic syn-
drome. The advantage of our model becomes especially evident in these

challenging cases. Additionally, we found that retinal image features asso-
ciated with metabolic syndrome also correlate with diseases like hyperten-
sion, diabetes, and dyslipidemia. This study not only improved metabolic
syndrome classification performance but also provided interpretable visual
evidence demonstrating the advantages of using retinal images.

Our study demonstrated that retinal image representations learned by
a Vision Transformer-based model contribute to the classification of
metabolic syndrome, when combined with clinical features. Previous stu-
dies predicting metabolic syndrome have primarily relied on patients’
clinical information from health check-ups or genetic information, using
conventional machine learning methods such as Random Forest, SVM and
Decision Tree”™"" However, these approaches often involve invasive features
and require additional data collection effort. In contrast, retinal images offer
a non-invasive and efficient alternative. Studies leveraging retinal images
and deep learning for disease classification have demonstrated high per-
formance, highlighting the significance of retinal images as biomarkers™****.
Our findings confirm the potential of retinal images as non-invasive bio-
markers for metabolic syndrome. This expands our understanding of how
retinal images can be used to detect and monitor various systemic health
conditions.

This study suggests the potential utility of secondary findings derived
from non-invasive fundoscopy, a tool commonly used in large-scale
population screening health check-ups. Incorporating such findings with-
out additional costs may add value to existing screening tests. While further
validation is needed, this approach could contribute to improved risk
stratification and support preventive healthcare efforts, potentially bene-
fiting patient outcomes on a broader scale. In population screening, where
the prevalence of the target disease is low, even small improvements in
performance metrics such as sensitivity and specificity can influence
outcomes”. High sensitivity reduces the likelihood of false negatives, while
high specificity helps minimize false positives, potentially reducing unne-
cessary follow-ups and overtreatment. Incremental performance gains,
while modest, could enhance the accuracy and reliability of screening tests in
large populations. Secondary findings from fundoscopy may offer
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The p-value was used to show the statistical significance of combining clinical and
retinal features, comparing the AUCs of models using retinal features alone, clinical
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Fig. 5 | Explainable visualizations of normal and metabolic syndrome. Results
were generated using the transformer-based explainability method”’. Each row
shows a participant’s retinal images (left and right) and their explainable
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visualizations according to normal (a-e) or metabolic syndrome (f-j). The redder
regions correspond to the greater relevance of each participant’s condition.

additional insights that warrant further investigation to explore their

potential in improving risk management and patient care outcomes.
Fundoscopy is a useful clinical tool that allows visual inspection of the

central nervous system’*’', retinal vasculature™”, and other aspects of the eye

through a non-invasive method. It provides a wealth of information, making
it clinically very useful”. For example, it can reveal signs of an increase in
intracranial pressure’”’, evidence of end-organ damage arising from
hypertension or diabetes™*, and the risk of stroke*>”. It can also serve as
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biomarkers for diseases such as Alzheimer’s disease®, cardiovascular
disease”, and heart failure*’. Since metabolic syndrome is known to be a risk
factor for cerebrocardiovascular disease, if metabolic syndrome can be
classified through fundoscopy, it is expected to help prevent various
diseases*'. Despite its clinical benefits, funduscopy images are not com-
monly used by general physicians, clinicians”, or community hospitals®.
The use of fundoscopy may be uncommon, and if not interpreted by an
expert, the results may not be reliable”. Training for fundoscopy is quite
challenging, as it is considered one of the more difficult medical skills*'. Even
experienced ophthalmologists mainly focus on things that are confined to
ophthalmic diseases, so it is difficult to reach the point of applying important
clinical information, such as metabolic syndrome, that is imposed on the
acquired fundoscopy image in the clinic. While studies on radiomics
applying artificial intelligence to fundoscopy images are actively underway,
they are generally focused on ophthalmic diseases such as retinopathy**,
glaucoma™", or neurological diseases related to the CNS*, papilledema®.
However, it has also shown capability in predicting systemic diseases such as
cardiovascular diseases, Parkinson’s disease'”*"*%,

In this study, we extracted retinal features related to metabolic syn-
drome from the retinal images of both eyes of each participant. We com-
pared the performance of using a participant’s two retinal images separately
versus together and found that using both the left and right retinal images
together resulted in better performance. We used 224 x 224 retinal images,
treating each image as an independent case in the RETFound model,
achieving an AUC of 0.7401 (+0.0081) (Supplementary Table 2). By
incorporating Logistic Regression as the final classifier on the extracted
features, the performance improved to an AUC of 0.7575 (£0.0093).
Further improvement was achieved by concatenating the retinal image
features from both eyes of each participant and applying Logistic Regres-
sion, which resulted in an AUC of 0.7752 ( + 0.0034) (Table 2). The different
impact of the left and right eyes is also evident in the visual explanation in
Fig. 5. It showed that the predictive impact of retinal images varied for each
participant, with metabolic syndrome-related areas differing between the
two eyes even in the same participant. This suggests that features related to
metabolic syndrome obtained from both eyes may differ, which can con-
tribute to improved metabolic syndrome classification.

Additionally, we conducted further analysis using higher-resolution
512 x 512 retinal images. The results showed that using 512 x 512 images for
training led to lower performance compared to using 224 x 224 images
(Supplementary Table 2). We hypothesize that this result may be attributed to
the pretraining process of RETFound, which utilized 224 x 224 input images.

To objectively evaluate the classification performance of Logistic
Regression, we compared it with conventional machine learning models,
including Decision Tree, Random Forest, XGBoost, and SVM, as well as
deep learning models incorporating fully connected layers with batch
normalization and dropout (Supplementary Table 4). The parameters were
selected using a grid search based on the AUC. Logistic Regression was
tuned by combining the parameters C, penalty, and solver. Specifically, L1
regularization was utilized to enhance feature selection, and the saga solver
was employed to ensure stable optimization. SVM was tuned by exploring
combinations of kernel, C, degree, and gamma. Various kernel types, as well
as multiple degrees, were explored to optimize the model. XGBoost was
tuned using combinations of learning rate, number of estimators, max
depth, and subsample ratio. For Decision Tree, the parameters max depth
and criterion were explored to determine the optimal tree structure. Ran-
dom Forest was optimized by adjusting the number of estimators and the
max depth. The result demonstrated that Logistic Regression showed
slightly better performance compared to the other classifiers across most of
the evaluation metrics. This result suggests that the robust feature extraction
capabilities of RETFound, which leverages its Vision Transformer (ViT)
architecture pretrained on a large-scale retinal image dataset, effectively
capture the complex, non-linear patterns inherent in retinal images,
enabling a simple linear model like Logistic Regression to serve as an
effective final classifier. Additionally, Logistic Regression, combined with
regularization, provided an effective method to handle the 2,048 image

features (1024 per retinal image) along with clinical features. This approach
minimized redundancy and enabled streamlined learning. Since each of the
two retinal images corresponds to clinical data for the same patient, using a
simpler classifier prevented unnecessary re-learning of clinical information
when combining retinal and clinical features.

To evaluate the effectiveness of RETFound in metabolic syndrome
classification, we compared its performance with models pretrained on
retinal image datasets (Supplementary Table 3). First, we assessed VGG16,
which was pretrained on 143,669 retinal images augmented from the Eye-
PACS, APTOS, and MESSIDOR datasets (https://www.kaggle.com/code/
jameelsawafta/diabetic-retinopathy-using-vggl6-custom-model/output).
After fine-tuning these weights on our dataset, we obtained an AUC of
0.6669 (+0.0317) for metabolic syndrome classification. Second, we used
the weights from FLAIR™, a Contrastive Language-Image Pretraining
(CLIP)-based model that utilizes both retinal images and text. While FLAIR
employs ResNet50 as the image encoder, it also includes weights for pro-
cessing text. For our study, we excluded the text encoder and used only the
image encoder. FLAIR was pretrained on 284,660 retinal images from 37
open-access datasets, including EyePACS, APTOS, MESSIDOR, and
IDRID. We fine-tuned FLAIR weights on our dataset and achieved an AUC
of 0.6682 (+0.0267). In comparison, the AUC of RETFound was 0.7401
(£0.0081), outperforming both VGG16 and FLAIR. These results suggest
that the enhanced performance of RETFound in metabolic syndrome
classification is attributable to its pretraining on a much larger and more
diverse retinal image dataset. Additionally, the findings highlight that Vision
Transformer (ViT)-based models, such as RETFound, exhibit enhanced
learning capabilities for metabolic syndrome compared to CNN-based
models like VGG16 and ResNet50. Regarding the architectural differences
between the models, while CNN-based models like ResNet50 and VGG16
are effective at capturing localized features through convolutional opera-
tions, they have limitations in learning long-range dependencies within
images, which are often important for complex medical imaging tasks. In
contrast, ViT models process images as sequences of patches instead of
relying on localized convolution operations. By leveraging self-attention
mechanisms, ViTs assess the relative importance of each patch within the
image, enabling it to capture global dependencies and offering a more
comprehensive understanding of retinal images'. Accordingly, RETFound
has the advantage of identifying major anatomical structural changes in
retinal images, including the optic nerve and large vessels™, compared to
CNN-based models.

We observed that the optic disc and the surrounding vessels were
predominantly highlighted in the explanatory visualization (Fig. 5). More-
over, we recognize the potential importance of identifying specific vascular
characteristics, such as arteriolar narrowing or venular dilation, which have
been associated with systemic conditions"**. The association between ret-
inal image features and vascular health is supported by prior studies that
have demonstrated links between retinal status and cardiovascular
disease”*****. Our findings are consistent with this evidence, particularly in
showing that fundoscopy-derived features used for predicting metabolic
syndrome are also associated with cardiovascular disease. These results align
with earlier research highlighting the connections between retinal image
features, vascular disease, and metabolic syndrome'****. Therefore, as an
indirect method to explore the association between retinal image features
extracted from RETFound and vascular status, we analyzed the relationship
between these image features and vascular-health indicators. Since our data
were collected from participants undergoing comprehensive health eva-
luations, we included coronary vascular features in our analysis. The eva-
luation of coronary atherosclerosis was conducted through coronary CT
angiography, which allowed for the identification of plaques or stenosis in
the coronary arteries”. This process enabled the acquisition of data on
coronary vascular changes. Also, we found that metabolic syndrome is
related to erythrocyte parameters”*, and erythrocyte parameters are related
to vascular caliber”'. Therefore, we analyzed the correlation between retinal
image features and coronary vascular changes, as well as erythrocyte
parameters such as hematocrit, hemoglobin, and red blood cell count.
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To explore the potential link between retinal image features and vas-
cular health, we first utilized RETFound to concatenate 1024 retinal image
features obtained from the left and right retinal images, resulting in a total of
2048 features. These features were then reduced to a single dimension
through PCA, and their correlations with vascular-health-related variables,
such as coronary vascular changes, hematocrit, hemoglobin, and red blood
cell coun,t were analyzed using the Pearson correlation analysis (Supple-
mentary Table 5). The analysis showed a coefficient of —0.2627 (p = 0.0023)
for coronary artery vascular changes. The coefficient of —0.4960
(p = 3.94 x 10™*) for hematocrit, —0.5616 (p = 1.75 x 10™*°) for hemoglobin,
and —0.4759 (p = 3.48 x 10™") for red blood cell count, confirming a mar-
ginal but generally negative correlation between vascular-health-related
features and retinal image features. These findings suggest that features
derived from retinal images provide weak but statistical evidence of their
relevance to vascular health. Consequently, this study highlights the
potential relevance of considering vascular health in patients identified
through retinal image analysis as being at risk for metabolic syndrome.
Encouraging lifestyle modifications that support vascular health may offer
additional benefits in such cases. Additionally, further exploration into the
incorporation of vascular status assessments in screening protocols, taking
into account patient age and underlying conditions, could provide insights
into improving preventive strategies and patient outcomes.

In addition, we found that metabolic syndrome is related to
creatinine®>”, and uric acid*"*. Therefore, we analyzed the correlation
between retinal image features and creatinine and uric acid using the same
method as in the vascular-health correlation check. They showed coeffi-
cients of —0.4804 (p = 1.32 x 10*') and —0.4921 (p = 9.47 x 10°**), respec-
tively (Supplementary Table 6), elucidating the association between retinal
image features and creatinine as well as uric acid.

While metabolic syndrome-related retinal image features improved
classification performance, some participants could be adequately classified
using only clinical features. In such cases, retinal features occasionally
introduced noise, which may have impacted the model’s performance.
Although the RETFound model performed well without extensive image
preprocessing, the use of advanced processing techniques could potentially
enhance performance, particularly for participants whose retinal features
are crucial for accurately diagnosing metabolic syndrome.

Additionally, we acknowledge the limitation of using a non-mydriatic
approach, as the pupil size may impact image quality and field of view,
potentially restricting the full generalizability of our results. However, this
non-mydriatic method enhances accessibility in non-specialist settings,
such as primary care clinics or health check-up centers, supporting broader
applicability outside of ophthalmic clinics.

We provided a visual explanation showing that specific regions in
retinal images can be relevant to the diagnosis of metabolic syndrome.
However, explanation methods originally designed for natural images may
have limitations in understanding the features of medical images, including
retinal images. Therefore, advanced explanation methods specifically
designed for medical images need further study. As the regions related to
metabolic syndrome showed different impacts between individuals, per-
sonalized explanation methods should also be explored for future medical
applications.

Another limitation of our study is that it utilized a Korean cohort,
which may limit the generalizability of our findings. Accordingly, additional
performance comparisons of various classifier models are required through
the optimization of classifier models, and the final selection of the classifier
model must be made carefully. Future research should include diverse
cohorts, encompassing different races and ethnicities, to validate the
applicability of our approach across various populations. In this respect,
there is a need for more extensive retinal image datasets to conduct active
research on retinal image analysis. Access to a larger and more diverse
dataset would allow for more robust and comprehensive studies, enhancing
the reliability and utility of retinal images in diagnosing metabolic syndrome
and related diseases. This study relied on a minimal set of health check-up
information, which is expected to facilitate future dataset expansion.

Our study demonstrates marginal incremental improvements in per-
formance metrics. Retrospective metrics alone do not fully capture the
challenges of integrating these findings into clinical workflows. Therefore,
future studies should include prospective clinical trials and real-world
validations to assess their practical applicability. Additionally, cost-
effectiveness studies or decision curve analyses should be conducted as
the next steps to better illustrate how these performance differences might
impact patient outcomes and healthcare budgets.

Overall, our study highlights the potential of using a Vision
Transformer-based model to enhance the diagnosis of metabolic syndrome
and related diseases by integrating retinal images with clinical features. By
providing interpretable visual evidence and effectively addressing challen-
ging cases, our approach contributes to more accurate and comprehensive
diagnostic tools in the medical field. Future research should focus on
refining image processing techniques and exploring more sophisticated
models to fully utilize the potential of retinal image features in medical
diagnosis.

Methods

Ethics statement

The Institutional Review Board of Seoul National University Hospital
approved the study protocol (H-2209-005-1354), and the study was con-
ducted in accordance with the Helsinki Declaration. Informed consent was
waived by the board.

Dataset

The data used in this study were obtained from Korean participants of a
comprehensive health check-up at Seoul National University Hospital
Gangnam Center between 2014 and 2016. The details of the health check-up
system are described elsewhere®. Briefly, individuals have comprehensive
health screening tests such as anthropometric tests, laboratory tests, imaging
tests, and fundus photography using 45° digital non-mydriatic fundus
camera (TRC-NWS8, Topcon Inc.)”. Images were captured in a darkened
room to facilitate natural dark adaptation and adequate pupil dilation
without the use of pharmacological agents. The right eye was imaged first,
followed by a brief pause to allow the left pupil to regain optimal size before
capturing the image.

The data preprocessing strategy was designed with several considera-
tions. First, the approach of generating synthetic data through augmentation
prior to the training process was excluded due to concerns about the
potential reuse of patient information. Such practices could compromise the
interpretability and reliability of the results from a clinical perspective. To
address data imbalance, we employed random undersampling, selecting
participants from the majority class to match the size of the smaller classes.
This approach ensured the authenticity of the dataset while maintaining
clinical validity. Additionally, participants with low retinal image quality
were excluded. The RETFound model, pretrained on a large-scale retinal
image dataset, effectively captures the general visual features of retinal
images. This pretraining enables the model to deliver robust performance
even with a relatively small but balanced dataset.

As a result, among 8225 participants with retinal images, 3000 parti-
cipants were selected. Of these, 1514 were normal, and 1486 had metabolic
syndrome. The participants used in the study have both left and right retinal
images, so the total number of retinal images used for learning is 6000. The
labeling of whether a participant has metabolic syndrome in the dataset is
determined as positive for metabolic syndrome if there are three or more
clinical features that exceed the standards specified for Waist Circumference
(WC), Triglycerides (TG), HDL cholesterol (HDL), Hypertension (HTN),
and Glucose. Waist circumference should be equal to or greater than 90 cm
for males, or equal to or greater than 85 cm for females. Triglyceride (TG)
levels should be equal to or greater than 150 mg/dl. For males, HDL cho-
lesterol levels should be less than 40 mg/dl, and for females, less than 50 mg/
dl. Fasting plasma glucose levels should be equal to or greater than 100 mg/
dl, or indicative of diabetes. Blood pressure should be equal to or greater than
130/85 mmHg (or being treated for hypertension). In addition to metabolic
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syndrome, our data includes participants with diseases such as cataract,
drusen, fatty liver, breast cancer, colorectal cancer, gastric cancer, liver
cancer, lung cancer, prostate cancer, renal cancer, and thyroid cancer.

Image preprocessing

The original image we used is distributed in various sizes, with the smallest
size being 1382 x 1382 and the largest size being 2150 x 2150. The original
images were resized to 350 x 350 and then center-cropped to 224 x 224,
with the intent to concentrate on the interior details of the retinal image.
Furthermore, to investigate the performance differences arising from var-
iations in retinal image resolution, we also examined the results of training
the model using retinal images that were resized to 775 x 775 and then
center-cropped to 512 x 512 from the original images. Also, we converted
the original image from NPY format to PNG. We applied auto augmen-
tation (rand-m9-mstd0.5-inc1) of the timm library (version 0.3.2, Hugging
Face, USA) during the training process to enhance image variability.
Additionally, random image regions were erased with a 25% probability and
filled with black during the learning process.

Model development

In this study, the RETFound model, a ViT-based deep learning frame-
work, was employed for metabolic syndrome prediction from retinal
images. This model leverages a self-supervised learning approach using
Masked AutoEncoder (MAE)®, which is trained without human-crafted
labels. It learns patterns or structural features of the image by masking
patches of the input image and encouraging the model to reconstruct the
original image. The image features obtained through this self-supervised
learning significantly improve the model’s classification performance.
The RETFound was initially trained on the ImageNet-1K dataset and
further trained on 904,170 retinal images sourced from MEH-MIDAS
and Kaggle EyePACS™. This retinal-specific pretraining allows
RETFound to outperform standard ImageNet-pretrained models by
better capturing anatomical features of the fundus. RETFound demon-
strated high performance in classifying ophthalmic conditions such as
glaucoma and wet age-related macular degeneration (AMD). Further-
more, it proved its enhanced performance compared to other models
trained using the same method through external validation, which
involved fine-tuning the model on one of three retinal image datasets
related to diabetic retinopathy severity (APTOS-2019, IDRID, MESSI-
DOR) and evaluating it on the other datasets. Given RETFound’s out-
standing performance on large-scale datasets and its ability to effectively
handle various diseases, we selected it as the training model for metabolic
syndrome classification.

We conducted a comparative analysis of RETFound’s performance
against other CNN-based models pretrained on ImageNet-1k, with both
RETFound and the CNN-based models being fine-tuned on our dataset
(Supplementary Table 2). This demonstrates the performance and sig-
nificance of models trained using large-scale retinal images. Then the fea-
tures extracted by each image model from retinal images of both eyes were
combined with clinical features and used to classify metabolic syndrome
using Logistic Regression. Other conventional machine learning models
were also evaluated for comparison, as shown in Supplementary Table 4.
Fine-tuning of RETFound involved 50 epochs of training on our specific
dataset. The learning rate began at 8e-5 and was increased through warmup
for the first 10 epochs before being decreased according to a scheduler that
periodically decreases the learning rate using the cosine function. The batch
size was 16, the model training was based on cross-entropy loss, and the
AdamW optimizer. Computations were performed using an NVIDIA RTX
A6000 GPU. The Logistic Regression classifier used for the final classifica-
tion employed an L1 regularization, with an inverse regularization strength
(C) of 0.03, and the solver used was saga.

Model evaluation
We applied 5-fold cross-validation to estimate the generalization perfor-
mance of our model for classifying participants with and without metabolic

syndrome. The model’s performance was evaluated using precision, sensi-
tivity, specificity, F1 score, accuracy, and AUC. Additionally, we obtained
95% confidence intervals through cross-validation and conducted a t-test to
determine the statistical significance of our results. These p-values validated
the effectiveness of using retinal images by comparing the performance of
models using basic clinical features alone versus models combining them
with retinal images. This process also demonstrated the model’s capability in
classifying diseases related to metabolic syndrome, such as hypertension,
diabetes, and dyslipidemia.

Model interpretation

We interpreted the metabolic syndrome prediction results of our proposed
model using SHAP and a transformer-based explainability method. SHAP
quantifies the importance of individual features in a predictive model using
Shapley values from cooperative game theory. It calculates the average
marginal contribution of each feature across all possible combinations of
features, providing a fair allocation of each feature’s contribution to the
prediction. This method offers insights into how each feature influences the
model’s predictions independently*. In Fig. 3, the SHAP values of age and
gender are combined, and in the case of retinal features, the SHAP values
from all features extracted from the left and right retinal images are
aggregated. This approach allowed us to discern the significance of each
feature in our interpretable analysis.

The role of the transformer-based explainability method parallels that
of GradCAM® in the context of interpreting CNN-based models. While
GradCAM provides visual explanations by highlighting important regions
in the input for CNNs, the transformer-based explainability method is
specifically designed for Vision Transformer(ViT) models. This method,
derived from the attention rollout method”, offers more advanced inter-
pretability. The attention rollout method uses the average of the attention
heads to get a visualization of the results, but has the drawback of over-
simplifying different attention head values and ignoring other parts of the
network, such as activations and linear styles. The transformer-based
explainability method addresses these shortcomings by using Layer-wise
Relevance Propagation (LRP)".

This method offers more nuanced interpretability for ViT archi-
tectures, such as RETFound, which demonstrate improved performance
compared to traditional CNN-based models (Supplementary Tables
2 and 3). Consequently, the transformer-based explainability method is
well-suited to elucidate the results of RETFound, leveraging the inherent
strengths of transformer models to deliver clearer and more insightful
interpretations of their high performance.

Data availability

The original raw data are not publicly available due to restrictions (insti-
tutional policy to protect the privacy of research participants) but are
available from the corresponding author upon reasonable request. All other
data from the analysis are included in the article and its supplementary
information or are available upon reasonable request.

Code availability

We used Python (version 3.7.12, Python Software Foundation, Wilmington,
DE, USA) and PyTorch (version 1.8.14-culll, Meta Al, Menlo Park, CA,
USA) to train the deep learning models. We fine-tuned our dataset using
weights pretrained with RETFound at https://github.com/rmaphoh/
RETFound_MAE. The code for the overall pipeline is available for use
with the permission of the corresponding author and institution upon
reasonable request.
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