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High performance with fewer labels using
semi-weakly supervised learning for
pulmonary embolism diagnosis
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This study proposes a semi-weakly supervised learning approach for pulmonary embolism (PE)
detection on CT pulmonary angiography (CTPA) to alleviate the resource-intensive burden of
exhaustive medical image annotation. Attention-based CNN-RNN models were trained on the RSNA
pulmonary embolism CT dataset and externally validated on a pooled dataset (Aida and FUMPE).
Three configurations included weak (examination-level labels only), strong (all examination and slice-
level labels), and semi-weak (examination-level labels plus a limited subset of slice-level labels). The
proportion of slice-level labels varying from 0 to 100%. Notably, semi-weakly supervised models using
approximately one-quarter of the total slice-level labels achieved an AUC of 0.928, closely matching
the strongly supervised model’s AUC of 0.932. External validation yielded AUCs of 0.999 for the semi-
weak and 1.000 for the strong model. By reducing labeling requirements without sacrificing diagnostic
accuracy, this method streamlines model development, accelerates the integration of models into

clinical practice, and enhances patient care.

Machine learning (ML) shows great promise in transforming health care
and medical imaging. Potential benefits include improved physician
accuracy'™, prioritization of examinations with critical findings™, helping
mitigate radiologist shortages’, radiation dose reduction'*", and improving
image quality”. The training of medical imaging ML models has tradi-
tionally involved the annotation of large, curated datasets which is often a
very resource-intensive exercise'*"”. The annotation of such a large number
of images can be a time-consuming and monotonous task, particularly for
granular labels such as segmentation or bounding boxes. In addition, the
recruitment of highly skilled expert radiologists as annotators can pose high
financial costs as these professionals are in high demand, and their time is
valuable. Ultimately, the time-consuming and resource-intensive nature of
medical dataset annotation limits the scalability of a manual approach®.
This is compounded by concerns over label accuracy, particularly in com-
plex imaging studies. Employing multiple independent annotations aims to
alleviate this, but challenges in interrater reliability persist'. Considering
these challenges, there is growing interest in training models with less
granular labels, semi-supervised techniques, and leveraging Al-assisted
annotation. For example, less granular labels (e.g., exam rather than slice-

level labels) can be extracted from radiologist reports via natural language
processing or large language models'®.

The Radiological Society of North America (RSNA) organizes annual
AT challenges, necessitating significant effort in curating high-quality
annotated medical imaging datasets. A prominent example is the RSNA
cervical spine fracture CT dataset"’, which provided three levels of labels:
exam-level, cervical spine segment-level, and bounding box (pixel-level).
Notably, the top-performing model from the cervical spine fracture detec-
tion challenge used only exam and segment-level labels, achieving
remarkable performance without the detailed bounding box labels®. This
observation suggests that models can excel even without utilizing highly
granular labels. Additionally, researchers have explored the potential of
weakly supervised learning techniques, such as multi-instance learning that
use only exam-level labels. Studies on intracranial hemorrhage” and
COVID-19 detection on CT** have demonstrated strong performance
using solely exam-level labels, highlighting the potential of weakly super-
vised approaches in medical imaging.

The detection of pulmonary embolism (PE) on CT pulmonary
angiography (CTPA) is a valuable use case for the investigation of label
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granularity and number in ML model development. PEs are blood clots in
the pulmonary arterial circulation and a potentially life-threatening con-
dition. PE can vary in dramatically in its presentation from large emboli
occupying the central pulmonary arteries, to a small subsegmental embolus
in the lung periphery. Larger PEs may span dozens of images, while smaller
PEs may only occupy a small number of pixels within a few images.
Detecting smaller PEs is challenging due to the large search space of the
entire thorax covered by CTPA. Therefore, relying solely on exam-level
labels may be insufficient, necessitating the use of more granular
annotations.

Accurate and timely diagnosis of PE is essential to improving patient
outcomes, as delays in diagnosis and intervention can significantly increase
mortality. Without treatment, PE carries a mortality rate as high as 30%,
compared to 8% with appropriate management”. Beyond immediate risks,
PE complications can contribute to prolonged hospitalization and increased
healthcare system costs™. Given its clinical significance and the diverse
clinical and radiological presentations, PE represents a compelling use case
for this study.

The wide variability in PE presentation allows us to take a closer look at
the role of label granularity in model development. The RSNA Pulmonary
Embolism CT Dataset (RSPECT)* with slice and exam-level labels offers a
valuable resource for exploring this. Recent research has primarily relied on
detailed annotations like pixel or slice-level labels. For instance, Yang et al®
and Shi et al.” achieved notable results using pixel-level labels, while Huang
et al.” and Rajan et al.’! focused on slice-level annotations. Other studies,
such as Suman et al.”* and Islam et al.”’, explored full slice and exam-level
labels. These studies collectively underscore the prevailing assumption that
granular annotations are essential for accurate PE detection. This study
challenges that assumption by investigating the potential of semi-weakly
supervised learning.

The two most common types of supervised learning are strongly
supervised and weakly supervised learning. In strongly supervised learning,
models are trained on fully annotated data, such as using both slice-level and
exam-level labels in the context of the RSPECT dataset. Weakly supervised
learning, however, uses incomplete or less detailed annotations, often
relying on coarser labels such as solely using exam-level labels. We introduce
a third paradigm, semi-weakly supervised learning, which combines the
broad coverage of exam-level labels with a strategically selected subset of
slice-level annotations. Our hypothesis is that full slice-level annotations are
not essential for good model performance. Instead, we suggest that a
reduced number of slice-level labels can still yield comparable results to fully
annotated models. By varying the proportion of slice-level annotations, we

aim to identify a threshold that balances labeling efficiency with diagnostic
accuracy. This approach can reduce the need for extensive hand-labeled

data, potentially speeding up the development process for high-quality ML
models in PE detection, and can be expanded to other medical imaging
tasks. This could lead to significant cost savings and faster deployment of
these models in clinical settings, ultimately benefiting patient care.

Results

Performance on overall PE detection

Model performance showed a significant initial improvement with just 2.5%
of slice-level labels with the area under the receiver operating characteristic
curve (AUC) increasing from 0.682 (0.652, 0.711) to 0.858 (0.836, 0.881) on
the RSPECT private test set. Performance continued to improve with
increasing label availability (Figs. 1, 2). However, beyond 27.5% label
availability, the gains in performance became less substantial, showing
marginal improvement (Table 1). For example, the AUC was 0.928 (0.910,
0.945) with 27.5% of slice-level labels compared to 0.932 (0.915,0.948) when
using all slice-level labels (p = 0.187).

Evaluations on the external dataset mirrored these findings
(Table 2), showing similar improvements in AUC, accuracy, and F1
score with increasing label granularity. In particular, weakly supervised
learning alone yielded alow AUC 0f 0.656 (0.522,0.790), whereas adding
only 2.5% of slice-level labels improved the AUC to 0.980 (0.953, 1.000),
nearly matching the fully supervised model’s AUC of 1.000 (1.000,
1.000) (p = 0.124).

Detailed AUC values (95% CI) and p values from the DeLong test for
various label percentages are provided in the Supplementary Materials
(Supplementary Tables 1-4), as are results from the RSPECT public test set.

Performance by PE subtype (central vs peripheral)

Figure 1 also shows the AUC curves for central and peripheral PE detection
on the RSPECT private test set, with central PE results derived from the
private central PE subset and peripheral PE results from the private per-
ipheral PE subset. Similar to overall PE detection, both central and per-
ipheral PE models benefited from increasing the proportion of slice-level
labels. Detailed ROC curves are shown in Supplementary Fig. 1, and detailed
comparisons are provided in Supplementary Table 5.

For central PE, the initial weakly supervised model (0% slice-level
labels) already had a relatively high AUC 0f0.817 (0.776,0.858). Introducing
just 2.5% of slice-level labels substantially improved the AUC to 0.972
(0.953, 0.991), closely approaching the fully supervised model’s AUC of
0.987 (0.974, 1.000) (p = 0.05).

In contrast, peripheral PE detection began with a lower baseline AUC
of 0.647 (0.614, 0.680) under weakly supervised learning. Although adding
2.5% of slice-level labels improved performance to an AUC of 0.829 (0.802,
0.856), it required about 27.5% of slice-level labels to achieve near-peak
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Fig. 1 | Impact of label granularity on model performance as a function of AUC.
The graphs illustrate the performance of the models in terms of AUC across different
datasets (a: RSPECT private test, b: external validation) as a function of the

Percentage of Labels Used

percentage of slice-level labels used. The solid lines represent the performance of
average predictions across fivefold cross-validation, and the shaded areas corre-
spond to the 95% confidence intervals (CI).
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Fig. 2 | ROC Curves for all kinds of PE detection on the RSPECT private dataset.
Receiver operating characteristic (ROC) curves for models trained with varying
proportions of labeled data (0 to 100%) are shown for a the RSPECT private dataset
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and b a pooled external validation dataset. The corresponding area under the curve
(AUC) values are displayed in the legend for each panel.

Table 1 | Performance in detecting PE on the RSPECT private test set

Slice Labels (%) TP FN TN FP AUC Acc SEN SEC PPV NPV F1

0 351 87 437 569 0.682 0.546 0.801 0.434 0.382 0.834 0.517
2.5 313 125 871 135 0.858 0.820 0.715 0.866 0.699 0.874 0.707
5 305 133 912 94 0.878 0.843 0.696 0.907 0.764 0.873 0.729
10 344 94 860 146 0.900 0.834 0.785 0.855 0.702 0.901 0.741
20 327 111 955 51 0.916 0.888 0.747 0.949 0.865 0.896 0.801
275 344 94 954 52 0.928 0.899 0.785 0.948 0.869 0.910 0.825
35 351 87 942 64 0.927 0.895 0.801 0.936 0.846 0.915 0.823
42.5 364 74 915 91 0.935 0.886 0.831 0.910 0.800 0.925 0.815
50 356 82 942 64 0.928 0.899 0.813 0.936 0.848 0.920 0.830
75 367 71 921 85 0.934 0.892 0.838 0.916 0.812 0.928 0.825
100 350 88 939 67 0.932 0.893 0.799 0.933 0.839 0.914 0.819

TP true positive, FN false negative, TN true negative, FP false positive, AUC area under the receiver operating curve, Acc accuracy, SEN sensitivity, SPEC specificity, PPV positive predictive value, NPV

negative predictive value.

performance (AUC 0.912 [0.891, 0.933]) close to the fully supervised
model’s AUC of 0.917 (0.898, 0.937) (p=0.119).

Discussion

In this study, we investigated whether labeling every slice is necessary for
accurate PE exam-level classification. Our experiments demonstrated that
weakly supervised learning, using only exam-level labels, is limited for PE
detection. The weakly supervised model achieved an AUC of just 0.682
(0.652, 0.711) on the RSPECT private test dataset, significantly lower than
both strong and semi-weak learners. This is likely due to the need for
localization of subtle emboli in PE diagnosis, which is more challenging than
tasks like COVID-19 or intracranial hemorrhage (ICH) detection” where
weakly supervised methods have shown success™ .

Detecting PE using CTPA can pose a significant challenge, even for
experienced radiologists. Despite the high sensitivity of PE diagnosis on
CTPA™, ML models should still possess the capability to detect smaller PE,
such as subsegmental pulmonary embolism (SPE). SPEs are often small,
occupying only a few voxels on imaging, akin to searching for a needle in a

haystack. In fact, the positive predictive value of SPE diagnosis was a mere
25% when compared to the PIOPED 11 study ™, underscoring the diagnostic
complexity. Furthermore, interobserver agreement for SPE is notably lower
compared to proximal PEs™. Additionally, filling artifacts may mimic true
thrombotic material, adding to the complexity of the differentiation between
PE and mimics”. Compounding these challenges are factors that contribute
to poorer image quality, such as streak artifact, breathing motion, and poor
opacification of the pulmonary arterial tree. These factors collectively
degrade the sensitivity of PE detection, rendering it a considerably more
challenging task compared to other pathologies that may require less
granular annotation schema.

By incorporating a small number of labels, approximately 2.5% of total
slice-level labels, we observed a significant performance boost. The AUC on
the RSPECT private test dataset increased from 0.682 (0.652,0.711) to 0.858
(0.836, 0.881), with similar improvements seen in the external validation
dataset. Performance continued to improve with more slice-level labels but
plateaued beyond 27.5% label availability, suggesting diminishing returns
for additional labeling efforts.
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Table 2 | Performance in detecting PE on the external validation set

Slice Labels (%) TP FN TN FP AUC Acc SEN SEC PPV NPV F1

0 37 1 1 26 0.656 0.585 0.974 0.037 0.587 0.500 0.733
2.5 37 1 24 3 0.980 0.938 0.974 0.889 0.925 0.960 0.949
5 36 2 24 3 0.977 0.923 0.947 0.889 0.923 0.923 0.935
10 38 0 22 5 0.993 0.923 1.000 0.815 0.884 1.000 0.938
20 38 0 25 2 0.996 0.969 1.000 0.926 0.950 1.000 0.974
27.5 38 0 25 2 0.999 0.969 1.000 0.926 0.950 1.000 0.974
35 38 0 25 2 0.996 0.969 1.000 0.926 0.950 1.000 0.974
42.5 38 0 25 2 0.998 0.969 1.000 0.926 0.950 1.000 0.974
50 38 0 25 2 0.999 0.969 1.000 0.926 0.950 1.000 0.974
75 38 0 25 2 0.998 0.969 1.000 0.926 0.950 1.000 0.974
100 38 0 25 2 1.000 0.969 1.000 0.926 0.950 1.000 0.974

TP true positive, FN false negative, TN true negative, FP false positive, AUC area under the receiver operating curve, Acc accuracy, SEN sensitivity, SPEC specificity, PPV positive predictive value, NPV

negative predictive value.

Our findings challenge the prevailing assumption in PE research that
extensive fine-grained labeling is essential for high performance. Previous
studies, such as those by Yang et al.”® and Shi et al.”, relied on detailed
annotations and reported a sensitivity of 75.4% and an AUC of 0.812,
respectively. Other approaches, like PENet by Huang et al.”, achieved an
area under the receiver operator curves (AUROC) of 0.84 and 0.85 using
slice-level labels, while Pi-PE by Rajan et al.”' reached an AUC of 0.85 on a
dataset with predominantly segmental PE cases with sparsely annotated
images. Islam et al.” reported an AUC of 0.929 for exam-level PE using an
ensemble model on 1000 cases from the RSPECT training dataset. In
contrast, our semi-weakly supervised learner using only 27.5% of slice-level
labels outperformed these prior studies, suggesting that a small but accu-
rately labeled dataset can be sufficient, reducing the need for extensive
labeling efforts. More detailed comparison, including label type, and the
amount of each type of labels are presented in Table 3. Figure 3 showcases
example images where the semi-weak learner demonstrated its ability to
correctly detect small PE. Moreover, unlike these prior studies that often
used smaller testing datasets, we evaluated our models on the RSPECT
public test, RSPECT private test, and external test datasets with a total of
over 2100 exams, providing a more robust examination of model
performance.

Our analysis of central versus peripheral PE detection further illustrates
the variable need for granular labeling. Central PE, typically featuring larger
and more conspicuous clots, proved easier to detect: with no slice-level
labels, the model achieved an AUC of 0.817, and adding just 2.5% slice-level
labels raised the AUC to 0.972, nearing the fully supervised model’s AUC of
0.987.In contrast, peripheral PE, often smaller and more subtle, started from
a lower weakly supervised baseline AUC of 0.647 and required 27.5% of
slice-level labels to reach near-peak performance (AUC 0.912 vs. fully
supervised AUC 0.917). These findings suggest that while minimal granular
labeling may suffice for “easier” tasks, more challenging cases—such as
small or subsegmental PEs—benefit from additional granular annotations.
A tiered or adaptive labeling strategy could thus be employed, allocating
more detailed labels only to complex cases, thereby optimizing both
annotation efficiency and model performance.

However, our approach has limitations. The threshold tuning
method based on Youden’s ] index does not take into account the clinical
consequences of false negative and positive predictions nor the clot bur-
den of false negative cases. Balancing sensitivity and specificity in a clinical
context might require different weighting to minimize missed PE cases.
Another limitation is the relatively small size of the external validation
dataset, which may affect the generalizability of our findings. Additionally,
CT studies were standardized to 184 slices based on average lung size to
enhance GPU efficiency and lung coverage. This uniform approach might
impact model learning due to down-sampling or over-sampling of CT

images. Future research could explore varying slice lengths to optimize
diagnostic accuracy.

In conclusion, our semi-weakly supervised model achieved perfor-
mance comparable to a fully supervised approach while requiring granular
labels for only about 50 slices per exam, approximately one-quarter of the
total. This finding suggests that not all imaging tasks demand exhaustive
annotation, and that strategically allocating a limited proportion of slice-
level labels can still guide models toward robust diagnostic performance. By
reducing the substantial labor and cost of manual labeling without com-
promising accuracy, our approach offers a resource-efficient, scalable path
to integrating Al into clinical imaging workflows. Moreover, the observed
differences in labeling requirements between central and peripheral PEs
imply that future strategies may tailor annotation granularity based on
lesion complexity. Overall, these insights promote more cost-effective and
clinically impactful implementations of AI in medical imaging.

Methods

Dataset description

Ethics review board approval was not required as this study utilized publicly
available, open-source data. Our study utilized the RSPECT dataset, which
originally comprised 9,446 CTPA exams (Table 4) and was sourced from the
Kaggle pulmonary embolism detection competition (https://www.kaggle.
com/competitions/rsna-str-pulmonary-embolism-detection). In this com-
petition, the data were partitioned into three non-overlapping subsets:
training, public test, and private test. Following the competition’s protocol,
we developed our models using the training set, performed model tuning on
the public test set, and conducted final evaluations on the private test set.
Additionally, we employed two publicly available datasets, Aida and
FUMPE, which together provided 65 exams (38 positives) for external
validation (Table 4)*.

For preprocessing, we performed extensive data cleaning. Digital
imaging and communications in medicine (DICOM) files from the
RSPECT dataset were converted to neuroimaging informatics technology
initiative (NIfTT) format using the dicom2nifti Python library. We utilized
TotalSegmentator'' to segment the lungs, thereby defining our three-
dimensional volume of interest (VOI). Specifically, a 3D bounding box was
generated to encompass the segmented lung region. Within this VOI, we
applied window settings (width =700, center =100) to achieve optimal
contrast and normalization of image intensities”. To ensure label con-
sistency, we enforced the rule that an exam is labeled positive only if at least
one slice within the exam is positive. During this validation, we identified
and removed 153 examinations that were labeled as positive at the exam-
level but contained no positive slice labels, indicating incoherent labeling.
Additionally, we excluded exams labeled as indeterminate due to impaired
image quality”’. Detailed preprocessing steps are shown in Fig. 4, with
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169 internal and 200 external studies.

AUC 0.94 on validation, 0.85 on high-

severity test dataset

Sparse contours at 10 mm slice spacing for
1874 positive and 718 negative studies.

Sparse

Multi-hospital dataset, sparsely annotated at 10 mm

spacing

Two-stage 2D Conv-LSTM for sparse annotated

detection

Ref. 31

pixel-level

Exam-level labels for 7279 studies (RSPECT  AUC 0.95 on external test dataset

dataset), tested on 106 external studies.

Slice-level,

RSPECT dataset (7279 studies), external test

(106 studies)

CNN + Bi-LSTM with Attention Mechanism

Ref. 32

Exam-level

AUC 0.929 on a hold-out test set from
RSPECT training dataset with 1000

studies

1,542,144 slices (train); Exam-level labels

for 7279 studies.

Slice-level,

RSPECT dataset (7279 studies), CAD-PE challenge,
FUMPE, and in-house PE-CAD datasets

ViT, Swin transformer, CNNs with transfer

learning and vessel-oriented image

representation

Ref. 33

Exam-level

Semi-weak model: AUC 0.928 on private
test set and AUC 0.999 for the pooled

external validation dataset

Partial slice labels depend on training

Slice-level,

RSPECT dataset (7279 studies), RSPECT public test

CoAtNet + Attention + Bi-LSTM

Ours

strategy; Exam-level labels for all studies.

Exam-level

dataset (650 studies), RSPECT private test dataset

(1517 studies), CAD-PE Challenge, FUMPE

In contrast to previous fully supervised or sparsely annotated approaches, our semi-weakly supervised model demonstrates competitive or superior performance while relying on fewer granular labels.

additional exclusion reasons provided in Supplementary Table 6. This
process distilled the RSPECT dataset to 6958 training examinations (2161
positives: 396 central PE and 1765 peripheral PE), 642 public test set
examinations (192 positives: 39 centrals and 153 peripherals), and 1444
private test set examinations (438 positives: 89 centrals and 349 peripherals).
The pooled external validation dataset was unchanged. The RSPECT public
and private test sets and pooled external validation datasets were used for
model evaluation.

The private test set was further divided into two subsets: the
Central PE (main pulmonary arteries) dataset and the Peripheral PE
(segmental or subsegmental pulmonary arteries) dataset, based on
granular labeling. Both subsets included all 1,006 negative cases. The
Central PE dataset comprised 89 positive cases labeled as “Central
PE = =17, while the Peripheral PE dataset included 349 positive cases
without the “Central PE ==1" label. These subsets were designed to
evaluate model performance in distinguishing between central and
peripheral PE, further validating relationships between granular labels
and different PE types.

Data augmentation

Data augmentation was utilized to prevent overfitting. Using the Albu-
mentations Python library", we applied a suite of augmentations to enhance
dataset diversity, including random rotation (0 to 10 degrees), scaling and
translation (up to 10%), and modifications to image brightness and contrast.
We also incorporated random horizontal flips, motion blur, median blur,
Gaussian blur, and Gaussian noise (variance of 0.004). Additionally, we
performed random cutouts and applied optical or grid distortions. Finally,
we combined adjacent axial slices into a single 3-channel image for our
models.

Model architectures

We used an end-to-end training pipeline (Fig. 5) to develop three learners:
weakly, strongly, and semi-weakly supervised (Supplementary Fig. 2). To
implement these models, we utilized transfer learning with a CoAtNet-0
model", pretrained on ImageNet and provided by HuggingFace®. The
CoAtNet model, which combines convolutional networks and transfor-
mers, served as the feature extractor. We then applied batch normalization,
an attention layer, and three bidirectional LSTM layers to aggregate features
sequentially along the z-axis within CT scans. Finally, a fully connected layer
outputted a probability score (0 to 1) after sigmoid normalization. Addi-
tional experiment results with alternative feature extractors (ViT and other
CNNis) are included in the Supplementary Materials (Supplementary Fig. 3
and Supplementary Table 7).

To control the level of supervision, we introduced a hyperparameter
that defined the proportion of slices retaining their instance-level labels,
while the remainder were masked. To reflect real-world annotation
practices, we chose to evenly sample the labeled axial slices from the
extent of the lungs. This method ensures that annotations are uniformly
distributed across the lung volume, mirroring how radiologists typically
annotate images to capture diverse regions and variations. For example,
if there were 200 lung slices and the proportion was 27.5%, ~54 slices
retained their labels, and 146 were masked. At higher proportions, the
model receives more fine-grained, slice-level guidance, making it more
similar to a strongly supervised model. Conversely, at lower proportions,
the model must rely more heavily on exam-level labels, closely simu-
lating weaker supervision. Using all slices corresponded to a strongly
supervised model, and using no slices corresponded to a weakly
supervised model.

Model training setup

We used the filtered training set of the RSPECT dataset, consisting of CT
images resized to (184, 256, 256). To address the class imbalance, we
implemented a weighted random sampling strategy, assigning weights of
~3.22 (total number of exams/number of positive examples = 6958/
2161) to positive PE cases and 1.45 (total number of exams/number of
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Fig. 3 | Example cases of model detected pul-
monary embolism. Example cases highlighting a
semi-weak learner accurately detecting pulmonary
emboli in both peripheral and central locations. The
left image component indicates the location of the
PE (white arrows) while the right image component
displays the model’s attention map using element
wise Grad-CAM.

Table 4| Demographics and label distribution for RSNA 2020 PE detection challenge (RSPECT) and external validation (Aida and

FUMPE) datasets
Dataset Split Demographics Slice-level labels Examination level labels
Male Female Age (y) Positive Negative Total Positive Negative Total

RSPECT Train - - - 96,540 (5.39) 1,694,054 (94.61) 1,790,594 2368 (32.53) 4911 (67.47) 7279
Public - - - 7451 (5.07) 139,402 (94.93) 146,853 200 (30.76) 450 (69.24) 650
Private - - - 18,846 (4.89) 366,392 (95.11) 385,238 468 (30.85) 1049 (69.15) 1517

External Aida - - 45-93 624 (6.16) 9498 (9.38) 10,122 5(16.67) 25 (83.33) 30
FUMPE 17 18 24-82 2304 (26.2) 6488 (73.8) 8792 33 (94.29) 2 (5.71) 35
Pooled NA NA 24-93 2928 (15.5) 15,986 (84.5) 18,914 38 (58.46) 27 (41.54) 65

Data we presented as the number of labels with percentages in parentheses. Age is provided as a range.

2161 positive and 4797
negative examinations

training and

> s
validation set

1
N
d

167 Processing Conversion
Failures

Mismatch
9446 examinations

153 Slice/Exam Label ]

1 Misaligned Orientation

192 positive and 450
negative examinations

{ 8 impaired Image Quality ]

—>  Public test set

RSNA Competition Dataset

Cases

438 positive and 1006
negative examinations

{ 20 impaired Image Quality J

—> —>  Private test set

Cases

53 Processing Conversion
Failures

Fig. 4 | Data cleaning and splitting pipeline. This flowchart illustrates the pre-
processing and splitting of the RSPECT, AIDA, and FUMPE datasets into various
sets for internal training, validation, and testing. The white boxes highlight the
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exclusion criteria (label mismatches, processing failures, and misaligned orienta-
tions), the yellow box highlights the training dataset, and the green box highlights the
test datasets.

negative examples = 6958/4797) to negative PE cases. These weights
were applied using PyTorch’s WeightedRandomSampler in the Data-
Loader, ensuring each training epoch included a balanced representa-
tion of both classes.

Allmodels were developed with PyTorch version 2.1.0 and trained on
two NVIDIA A100 GPUs, each with 80 GB of memory. Training

employed the Adam optimizer with an initial learning rate of 1e-4 and a
batch size of 16. We used the binary cross-entropy loss function to eval-
uate performance. Each training run consisted of 30 epochs, incorporating
early stopping to prevent overfitting and a Cosine Annealing learning rate
scheduler (Tyax=30, min_Ir=1e-6) to dynamically adjust the
learning rate.
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while weakly supervised learning (weak learner) uses none. This setup enables
experiments to assess the impact of varying amounts (1) of slice-level labels (0, 2.5, 5,
10, 20, 27.5, 35, 42.5, 50, 75, and 100%) on model performance.

Experiment setup, evaluations, and statistical analysis

To analyze the impact of label granularity, we tested different percentages of
slice-level labels used for model training. The weakly supervised model used
only exam-level labels. The strongly supervised model used all exam and
slice-level labels. Semi-weakly supervised models were trained with all
exam-level labels and 0, 2.5, 5, 10, 20, 27.5, 35, 42.5, 50, 75, and 100% of
available slice-level labels. To provide clearer context, these percentages
roughly translate into the number of slice-level annotations needed per
exam. For instance, utilizing 2.5% of slice-level labels corresponds to about
4 slice annotations per exam, whereas using 27.5% translates to ~53 slice
annotations per exam (see Supplementary Table 8). Fivefold cross-
validation (CV) was used for training. All evaluations were performed at
the exam-level. Initial performance assessments were conducted using the
hold-out RSPECT public test dataset. We used Youden’s ] index to identify
the optimal threshold on the receiver operator curve (ROC) by maximizing
the difference between true and false positive rates. This threshold was
applied to the evaluation using the RSPECT private test set. To assess
generalizability, we performed external validation on pooled Aida and
FUMPE datasets.

Model performances were primarily assessed based on average pre-
dictions across the five CV models using AUC, accuracy, sensitivity, spe-
cificity, positive predictive values (PPV), and negative predictive values
(NPV). We further compared model performance by conducting pairwise
AUC comparisons using the DeLong test. Confidence intervals were cal-
culated with the confidence interval Python library (v1.0.4), employing the
binomial method for accuracy, sensitivity, specificity, PPV, and NPV, and
the fast DeLong method for AUC*.

Data availability

The RSPECT training dataset is available via the competition page at
https://www.kaggle.com/c/rsna-str-pulmonary-embolism-detection.
External validation datasets are available at https://figshare.com/
collections/FUMPE/4107803/1 and https://datahub.aida.scilifelab.se/
10.23698/aida/ctpa.

Code availability
The source code used in this study is available at https:/github.com/
zxjasonhu/pe_granular_analysis.
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